活动二 曲柄连杆机构在发动机运行过程中的受力分析
- 格式:ppt
- 大小:471.00 KB
- 文档页数:21
二、曲柄连杆机构—教案教案4教学时数:2重点:机体组的构造分析、安装使用注意事项难点:机体组的构造难点突破方法:利用课件展示构造,并利用现场教学加深印象第二章曲柄连杆机构第一节概述一、功用1、把燃气作用在活塞顶上的力转变为曲轴的转矩。
2、把飞轮的旋转运动转化为活塞的往复直线运动。
教学方法:想一想,这二个功用分别通过哪些行程实现?(启发)结论:在作功行程中,曲柄连杆机构把活塞的往复运动转变成曲轴的旋转运动,对外输出动力,而在其他三个行程中,即进气、压缩、排气行程中又把曲轴的旋转运动转变成活塞的往复直线运动。
二、组成曲柄连杆机构的主要零件可以分为三组:机体组、活塞连杆组和曲轴飞轮组。
三、工作特点1、工作条件差(教学方法:通过工作原理分析得出结论:“三高:高温、高压、高速;而且受腐蚀性气体的作用。
”)2、受力大。
(教学方法:通过工作原简单分析说明)3、润滑困难。
(同上)四、受力分析主要承受气体作用力、往复惯性力、旋转离心力及机件摩擦力的作用。
这些力不断大小和方向不断发生变化,其作用效果可由曲——连机构对不同位置的受力进行分析得出。
教学方法:分析其中一个位置的受力,其余引导学生自主分析第二节机体组一、气缸体利用课件展示其基本构造,并对其不同部分的构造和作用进行分析1.气缸体形式(1)一般式:亦称元裙式(2)龙门式:亦称有裙式(3)隧道式:亦称整体式分别利用课件展示其基本构造,并对其特点进行分析,重点是将基本思路展示在课堂上,帮助学生在理解上基础上记忆。
2.气缸体冷却形式(1)水冷式(2)风冷式教学方法:通过课件展示,并分析其优缺点。
3.气缸的排列形式(1)直列式(2)双列式(V型)(3)对置式教学方法:利用课件演示4.气缸套(1)干式气缸套:外表面不与冷却水接触。
(课件展示)(2)湿式气缸套:外表面与冷却水直接接触。
(课件展示)1、气缸盖的功用(1)密封气缸(2)安装其他机构的零件3)组成进气道2、气缸盖的结构:一般用灰铸铁或铝合金铸造而成。
汽车设计课程设计说明书题目:曲柄连杆机构受力分析一、课程设计要求根据转速、缸内压力、曲柄连杆机构结构参数,计算发动机运转过程中曲柄连杆机构受力,完成计算报告,绘制曲柄连杆机构零件图。
1.1 计算要求掌握连杆往复惯性质量与旋转离心质量折算方法;掌握曲轴旋转离心质量折算方法;掌握活塞运动速度一阶、二阶分量计算方法;分析活塞侧向受力与往复惯性力及相应设计方案;分析连杆力及相应设计方案;采用C语言编写曲柄连杆机构受力分析计算程序;完成曲柄连杆机构受力计算说明书。
1.2 画图要求活塞侧向力随曲轴转角变化连杆对曲轴推力随曲轴转角变化连杆轴承受力随曲轴转角变化主轴承受力随曲轴转角变化活塞、连杆、曲轴零件图(任选其中两个)二、计算参数2.1 曲轴转角及缸内压力参数曲轴转速为7000 r/min,缸内压力曲线如图1所示。
图1 缸内压力曲线2.2发动机参数本计算过程中,对400汽油机进行运动和受力计算分析,发动机结构及运动参数如表1所示。
表1 发动机主要参数参数指标发动机类型汽油机缸数 1缸径D mm 91冲程S mm 63曲柄半径r mm 31.5连杆长l mm 117偏心距e mm 0排量 mL 400活塞组质量'm kg 0.425连杆质量''m kg 0.46m kg 0.231曲轴旋转离心质量k标定功率及相应转速 kw/(r/min)17/7500最高爆发压力 MPa 5~6MPa三、计算内容和分析图3.1 运动分析3.1.1曲轴运动近似认为曲轴作匀速转动,其转角,t t t n 37006070002602πππα=⋅==s rad s rad dt d /04.733/3700≈==παω3.1.2活塞运动规律图2 中心曲轴连杆机构简图1)活塞位移 111cos cos x r αβλλ⎡⎤⎛⎫⎛⎫=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,其中()()⎥⎦⎤⎢⎣⎡-+-⋅=⎥⎦⎤⎢⎣⎡-+-≈⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛+≈-=-≈-=-==⋅=≈==t t r r x l r l r 04.733cos 14685.3104.733cos 15.31)2cos 1(4)cos 1(sin 2111cos 11)2cos 1(21sin sin 211)sin 1(sin 1cos sin sin /sin 27.01175.31/2222221222αλααλλαλαααλαλββαλαβλ又活塞位移曲线如图3所示图3 活塞位移曲线2)活塞速度 ⎪⎭⎫ ⎝⎛+==αλαω2sin 2sin r dt dx v()αλαωα2cos cos +=r d dv令0=αd dv, 有()01cos 2cos 2cos cos 2=-+=+αλααλα,︒≈⎥⎥⎦⎤⎢⎢⎣⎡-+⎪⎭⎫ ⎝⎛==-+84.6412141arccos 021cos 21cos 2max2λλααλα曲轴转角解得最大活塞速度时的即最大活塞速度 ⎪⎭⎫⎝⎛+=max max max 2sin 2sin αλαωr vsm s rad mm /86.2326.169sin 11725.3163.84sin /37005.31≈⎪⎭⎫⎝⎛︒⨯+︒⋅⨯=π平均活塞速度 s m r mm n r Sn v m /7.1430min/70005.31230230=⋅⋅=⋅==活塞速度曲线如图4所示图4 活塞速度曲线3)活塞加速度 ()αλαωαα2cos cos 2+=⋅==r dtd d dv dt dv j()αλαωα2sin 2sin 2+-=r d dj令0=αd dj,有 ()0cos 41sin cos sin 4sin 2sin 2sin =+=+=+αλαααλααλα,由0sin =α,即︒=0α或︒=180α时,得正、负最大加速度:),得第二>时(仅当,得当由418.175)41arccos(0cos 41/3.12356)1(,/6.21496)1(22180220λλααλλωλωαα ≈-='=+-≈--=≈+===s m r j s m r j 个负最大加速度,即()αλαωα'+'='2cos cos 2r j()[]2222/4.12418811cos 2cos sm r r -≈⎪⎭⎫ ⎝⎛+-=-'+'=λλωαλαω 活塞加速度曲线如图5所示图5 活塞加速度曲线3.1.3连杆运动规律 1)连杆摆动角由αλβsin sin =,得()αλβsin arcsin =()λβλβ-==arcsin arcsin min max2)连杆摆动角速度 dtd βω=1 αλαλωβαλωβωαλωββαλβ221sin 1cos cos cos cos cos sin sin -===⇒=⋅⇒=dt d dt d 3)连杆摆动角加速度 ⎪⎪⎭⎫⎝⎛-==αλαλωωε2211sin 1cos dt d dt d ()()232222sin 1sin 1αλαλλω---=3.2 受力分析 3.2.1 活塞气体力活塞气体力 ()h g g F p p P ⋅-=010 N其中:g p 缸内气体压力 bar (1bar=5101⨯pa);0p 大气压力 一般取0p =1bar ;04.65104911042222≈⨯⋅=⨯=--ππD F h cm 2活塞气体力曲线如图6所示图6 活塞气体力曲线3.2.2 往复惯性力往复运动质量 '''3.0m m m j ⋅+=,连杆质量—活塞组质量,—m m ''' 563.046.03.0425.0=⨯+= kg 往复惯性力 ()2cos cos2j j P m r ωαλα=-⋅⋅+⋅ 往复惯性力曲线如图7所示图7 往复惯性力曲线3.2.3 活塞侧压力及连杆力气体压力与往复惯性力作用在气缸中心线上,将往复惯性力用单位活塞面积的力计量,则合成的单位活塞面积的力为:()αλαω2cos cos 2+-=+=hj g j g F r m p p p pk t p p l n 、、、对曲轴连杆机构的作用如右图所示。
发动机曲柄连杆机构组成作用和受力分析发动机的曲柄连杆机构是发动机最重要的机构,它的重要性体现在在三点:缸体和缸盖组成发动机工作的基础部件;实现活塞的往复直线运动和曲轴旋转动行的转变;保证气缸的密封,这是发动机正常工作的重要保证!发动机曲柄连杆机构的机体组是发动机工作的基础很多人将曲柄连杆机构的组成分为三部分:机体组、活塞连杆组和曲轴飞轮组。
机体组包括缸体、缸盖、缸垫、缸套和油底壳等,它们是发动机工作的基础部件,如在缸体和缸盖内设有润滑油道和冷却水道,并在缸体上安装有润滑系统的机油泵,机油滤清器和冷却系统的循环水泵。
发动机配气机构基本全部在缸盖安装。
活塞连杆组包括活塞、连杆、活塞环、活塞销、连杆等。
曲轴飞轮组包括曲轴、连杆轴承、主轴承、止推垫、飞轮等。
活塞连杆组和曲轴飞轮组实现活塞的往复直线运动和曲轴旋转动行的转变:在做功冲程中,活塞带动曲轴做旋转运动,对外输出动力。
而在进气、压缩、排气行程中又把曲轴的旋转运动转变成活塞的往复直线运动,为做功冲程做好准备。
曲柄连杆机构的活塞连杆组和曲轴飞轮组曲柄连杆机构一个非常重要的作用是保证气缸的密封性能,建立足够的气缸压力,它是发动机正常工作的保证。
气缸的密封需要缸套、活塞和活塞环的良好配合实现。
良好的配合间隙保证了气缸内的高压燃汽不会窜入油底壳,油底壳的机油不会窜入气缸参与燃烧。
曲柄连杆机构的活塞,活塞环和缸套磨损后,配合间隙增大,气缸的密封性能下降,气缸内的燃汽窜入油底壳,加速机构的变质,发动机动力下降。
同时油底壳机油进入气缸参与燃烧,发动机冒蓝烟,加速机油的消耗和发动机内部积碳的生成。
曲柄连杆机构主要承受气体作用力、往复惯性力、旋转离心力及机件摩擦力的作用。
并且高温、高速、高压、存在腐蚀和润滑困难。
发动机工作时,曲柄连杆机构直接与高温高压气体接触,曲轴的旋转速度又很高,活塞往复运动的线速度相当大,同时与可燃混合气和燃烧废气接触,曲柄连杆机构还受到化学腐蚀作用,并且润滑困难。
第3章 曲柄连杆机构 43
第一节 曲柄连杆机构的运动与受力
一、曲柄连杆机构的运动
以中心曲柄连杆机构(曲轴中心线位于气缸中心线上的曲柄连杆机构,如图3-3所示)为例,设中心曲柄半径为R ,连杆长度为L ,根据力学推导,活塞的位移x 、速度v 、加速度a 随曲轴转角α的变化关系为
22(1sin cos )2(sin sin 2)2
(cos cos 2)x R v R a R λααλωααωαλα=+
−=+=+
式中:λ——连杆比,λ=R/L ,一般在1/3~1/4;
ω——曲轴角速度,匀速运动时,它等于30
πn ; n ——曲轴转速,rpm 。
如图3-4所示为活塞位移、速度和加速度曲线。
图3-3 中心曲柄连杆机构简图 图3-4 活塞位移、速度和加速度曲线 曲柄连杆机构的运动特点如下。
(1)曲轴虽然做匀速运动,但活塞的速度却是不均匀的,它在上、下止点处速度等于零,
在α=90°稍前处和α=270°稍后处达到最大值。
即活塞从上止点向下止点运动和从下止点向上止点运动的约前半个行程是加速,后半个行程是减速。
(2)由于活塞运动速度的变化,导致其加速度的变化,在速度为零处的加速度最大,而速度最大处的加速度等于零。
加速度的变化,导致了惯性力的产生,使发动机产生冲击、振动和磨损,需要采取相应平衡措施。
二、曲柄连杆机构的工作条件及受力分析
发动机工作时,曲柄连杆机构直接与高温、高压气体接触;曲轴的旋转速度很高,活塞往复运动的线速度相当大,同时与可燃混合气和燃烧废气接触;此外曲柄连杆机构还受到化。
发动机中曲柄连杆中连杆端的受力发动机中曲柄连杆机构是汽车动力系统的核心部分,它负责将活塞的往复运动转化为旋转运动,进而驱动曲轴转动。
在这样一个精密复杂的系统中,每个部件都承担着至关重要的角色。
今天,我们就来聊聊这个系统中一个非常关键的部分——连杆端部的受力情况。
首先得明确一点,连杆端部的受力可不是随便说说的,它直接关系到整个曲柄连杆机构的正常工作。
想象一下,当你驾驶一辆汽车时,你感受到的是车轮与地面的接触力,以及由此产生的向前的动力。
而在这个连杆端部,我们感受到的就是这种动力传递到曲轴上的“力量”。
让我们从连杆的结构说起。
连杆就像是连接曲柄和活塞的桥梁,它不仅需要承受来自活塞侧的压力,还要确保曲柄能够平稳地转动。
在这个过程中,连杆会经历拉伸、压缩、扭转等多种力学状态,这些状态的变化直接影响到连杆的受力情况。
以活塞为例,当活塞下行时,它会施加一个向下的压力给连杆。
这个压力的大小取决于活塞的速度、活塞与连杆的间隙以及活塞的质量。
想象一下,如果活塞下行的压力过大,连杆就会承受过大的拉力;反之,如果压力过小,连杆就可能会因为没有足够的力量而无法正常转动。
除了活塞的直接作用外,连杆还受到其他因素的影响。
比如,当曲柄转动时,它会通过连杆与活塞相连的部分产生一个向外的力矩。
这个力矩的大小取决于曲柄的设计、转速以及连杆的刚度。
这个力矩的方向与活塞下行时的拉力方向相反,但它们共同作用于连杆,使得连杆能够在曲柄的带动下平稳地转动。
在这个过程中,连杆还可能受到来自其他部件的作用力。
比如,连杆轴承会受到来自曲柄和连杆自身重量的垂直载荷,以及来自润滑油膜的剪切力。
这些力的大小和方向都会对连杆的受力产生影响。
那么,这些力的合力是如何分布的呢?我们可以借助一些简单的力学原理来分析这个问题。
假设连杆是一个均匀的棒状结构,那么它的受力可以分为三个主要部分:拉伸力、压缩力和扭转力。
这三个力的大小和方向都是相互关联的,它们共同决定了连杆在各个方向上的受力情况。
曲柄连杆机构中的作用力、力矩及平衡机构内容提要功用:曲柄连杆机构是内燃机实现工作循环,完成能量转换的传动机构,用来传递力和改变运动方式。
工作中,曲柄连杆机构在作功行程中把活塞的往复运动转变成曲轴的旋转运动,对外输出动力,而在其他三个行程中,即进气、压缩、排气行程中又把曲轴的旋转运动转变成活塞的往复直线运动。
总的来说曲柄连杆机构是发动机借以产生并传递动力的机构。
通过它把燃料燃烧后发出的热能转变为机械能。
工作条件:发动机工作时,曲柄连杆机构直接与高温高压气体接触,曲轴的旋转速度又很高,活塞往复运动的线速度相当大,同时与可燃混合气和燃烧废气接触,曲柄连杆机构还受到化学腐蚀作用,并且润滑困难。
可见,曲柄连杆机构的工作条件相当恶劣,它要承受高温、高压、高速和化学腐蚀作用。
组成:曲柄连杆机构的主要零件可以分为三组,机体组、活塞连杆组和曲轴飞轮组。
一、.曲柄连杆机构中的作用力及力矩作用在曲柄连杆机构上的力有气体力和运动质量惯性力。
气体力作用于活塞顶上,在活塞的四个行程中始终存在,但只有作功行程中的气体力是发动机对外作功的原动力。
气体力通过连杆、曲柄销传到主轴承。
气体力同时也作用于气缸盖上,并通过气缸盖螺栓传给机体。
作用于活塞上和气缸盖上的气体力大小相等、方向相反,在机体中相互抵消而不传至机体外的支承上,但使机体受到拉伸。
曲柄连杆机构可视为由往复运动质量和旋转运动质量组成的当量系统。
往复运动质量包括活塞组零件质量和连杆小头集中质量,它沿气缸轴线作往复变速直线运动,产生往复惯性力;旋转运动质量包括曲柄质量和连杆大头集中质量,它绕曲轴轴线旋转,产生旋转惯性力,也称离心力。
往复惯性力和旋转惯性力通过主轴承和机体传给发动机支承。
二、平衡机构现代轿车特别重视乘坐的舒适性和噪声水平,为此必须将引起汽车振动和噪声的发动机不平衡力及不平衡力矩减小到最低限度。
在曲轴的曲柄臂上设置的平衡重只能平衡旋转惯性力及其力矩,而往复惯性力及其力矩的平衡则需采用专门的平衡机构。