煤的低温干馏知识讲座
- 格式:doc
- 大小:488.00 KB
- 文档页数:25
煤的干馏一、煤的热分解煤在隔绝空气条件下加热至较高温度而发生的一系列物理变化和化学反应的复杂过程,称为煤的热解,或称热分解和干馏。
迄今为止煤加工的主要工艺仍是热加工,煤炼焦工业就是典型的例子,煤的气化和液化过程也都和煤的热解过程分不开。
研究煤的热解对热加工技术有直接的指导作用,如对炼焦而言可指导选择原煤,寻求扩大炼焦用煤的途径,确定合适的工艺条件和提高产品质量。
另外还可指导开发新的热加工技术,如高温快速热解,加氢热解和等离子体热解等。
1.煤受热发生的变化煤在隔绝空气下加热时,煤中有机质随温度的提高而发生一系列变化,形成气态(煤气),液态(焦油)和固态(半焦或焦炭)产物。
典型烟煤受热发生的变化过程见图6-1-01。
可见煤热解过程大致可分为三个阶段:⑴第一阶段(室温~300℃)在这阶段,煤的外形无变化,褐煤在200℃以上发生脱羧基反应,近300℃时开始热解反应,烟煤和无烟煤在这一阶段一般没有什么变化。
脱水发生在120℃前,而脱气(CH4,C O2和N2)大致在200℃前后完成。
⑵第二阶段(300~600℃)这一阶段以解聚和分解反应为主,煤粘结成半焦,并发生一系列变化。
煤从3 00℃左右开始软化,并有煤气和焦油析出,在450℃前后焦油量最大,在450~600℃气体析出量最多。
煤气成分除热解水、CO和CO2外,主要是气态烃,故热值较高。
烟煤(特别是中等变质程度的烟煤),在这一阶段经历了软化、熔融、流动和膨胀直到再固化等一系列特殊现象,产生了气、液、固三相共存的胶质体。
液相中有液晶或中间相(mesophase)存在。
胶质体的数量和质量决定了煤的粘结性和成焦性的好坏。
固体产物半焦与原煤相比有一部分物理指标如芳香层片的平均尺寸和氦密度等变化不大,说明半焦生成过程中的缩聚反应还不很明显。
⑶第三阶段(600~1000℃)这是半焦变成焦炭的阶段,以缩聚反应为主。
析出的焦油极少,挥发分主要是煤气,700℃后煤气成分主要是氢气。
煤的干馏一、煤的热分解煤在隔绝空气条件下加热至较高温度而发生的一系列物理变化和化学反应的复杂过程,称为煤的热解,或称热分解和干馏。
迄今为止煤加工的主要工艺仍是热加工,煤炼焦工业就是典型的例子,煤的气化和液化过程也都和煤的热解过程分不开。
研究煤的热解对热加工技术有直接的指导作用,如对炼焦而言可指导选择原煤,寻求扩大炼焦用煤的途径,确定合适的工艺条件和提高产品质量。
另外还可指导开发新的热加工技术,如高温快速热解,加氢热解和等离子体热解等。
1.煤受热发生的变化煤在隔绝空气下加热时,煤中有机质随温度的提高而发生一系列变化,形成气态(煤气),液态(焦油)和固态(半焦或焦炭)产物。
典型烟煤受热发生的变化过程见图6-1-01。
可见煤热解过程大致可分为三个阶段:⑴第一阶段(室温~300℃)在这阶段,煤的外形无变化,褐煤在200℃以上发生脱羧基反应,近300℃时开始热解反应,烟煤和无烟煤在这一阶段一般没有什么变化。
脱水发生在120℃前,而脱气(CH4,C O2和N2)大致在200℃前后完成。
⑵第二阶段(300~600℃)这一阶段以解聚和分解反应为主,煤粘结成半焦,并发生一系列变化。
煤从3 00℃左右开始软化,并有煤气和焦油析出,在450℃前后焦油量最大,在450~600℃气体析出量最多。
煤气成分除热解水、CO和CO2外,主要是气态烃,故热值较高。
烟煤(特别是中等变质程度的烟煤),在这一阶段经历了软化、熔融、流动和膨胀直到再固化等一系列特殊现象,产生了气、液、固三相共存的胶质体。
液相中有液晶或中间相(mesophase)存在。
胶质体的数量和质量决定了煤的粘结性和成焦性的好坏。
固体产物半焦与原煤相比有一部分物理指标如芳香层片的平均尺寸和氦密度等变化不大,说明半焦生成过程中的缩聚反应还不很明显。
⑶第三阶段(600~1000℃)这是半焦变成焦炭的阶段,以缩聚反应为主。
析出的焦油极少,挥发分主要是煤气,700℃后煤气成分主要是氢气。
煤的低温干馏它主要指煤在干馏终温500~700℃的过程。
中国一些城市目前还使用中温干馏炉(700~900℃)生产城市煤气,故也编入本节。
煤低温干馏始于19世纪。
二次世界大战期间,德国利用低温干馏焦油制取动力燃料。
战后由于廉价石油的冲击,使低温干馏工业陷于停滞。
当今,单一的煤低温干馏已不多见,但从能源以及化工考虑,它还是得到一定的发展。
煤低温干馏可以得到煤气、焦油和残渣半焦。
这过程相当于使煤经过部分气化和液化,把煤中富氢的部分以液态和气态的能源或化工原料产出。
而且低温干馏过程比煤的气化和直接液化简单得多,加工条件温和,若低温干馏产品能找到较好的利用途径,煤的低温干馏今后还是有竞争力的。
另外煤的低温干馏技术已成为其它工艺的组成部分而得到发展,例如煤的加氢干馏等。
适合于低温干馏的煤是无粘结性的非炼焦用煤、褐煤或高挥发分烟煤。
中国这类煤储量丰富,目前主要用于直接燃烧,若能通过低温干馏回收煤气与焦油,可使煤得到有效的综合利用。
1.低温干馏的产品性质前已述及烟煤低温干馏的产品产率、组成和性质与高温干馏有很大区别,见表6-1-03和6-1-04。
干馏半焦的性质列于表6-1-09。
可见半焦的反应性与比电阻比高温焦高得多,而且煤的变质程度越低,其反应性和比电阻越高。
半焦的高比电阻特性,使它成为铁合金生产的优良原料。
半焦硫含量比原煤低,反应性高,燃点低(250℃左右)是优质的燃料,也适合用于制造活性炭,炭分子筛和还原剂等。
2.煤低温干馏工艺低温干馏的方法和类型很多,按加热方式有外热式,内热式和内外热结合式;按煤料的形态有块煤、型煤与粉煤三种;按供热介质不同又有气体热载体和固体热载体二种;按煤的运动状态又分为固定床、移动床、流化床和气流床等。
这里仅简介几种。
⑴ 连续式外热立式炉目前国内仍用来制取城市煤气的伍德炉示于图6-1-02。
烟煤连续地由炭化室顶部的辅助煤箱加入炭化室,生成的热半焦排入底部的排料箱,炭化过程中底部通入水蒸气冷却半焦,并生成部分水煤气,水煤气与干馏气由上升管引出。
第二章煤的低温干馏1.煤干馏过程简介煤的干馏又称为煤的热解,是煤化工的重要过程之一。
它指煤在隔绝空气条件下加热、分解,生成焦炭(或半焦)、煤焦油、粗苯、煤气等产物的过程。
按加热终温的不同,可分为三种:900~1100℃为高温干馏,即焦化;700~900℃为中温干馏;500~600℃为低温干馏(见煤低温干馏)。
与高温干馏(即焦化)相比,低温干馏的焦油产率较高而煤气产率较低。
一般半焦为50%~70%,低温煤焦油8%~25%,煤气80~100m3/t(原料煤)。
煤低温干馏技术的应用始于19世纪,当时主要用于制取灯油(或称煤油)和蜡。
19世纪末,因电灯的发明而趋于衰落。
第二次世界大战前夕及大战期间,纳粹德国基于战争的目的,建立了大型低温干馏工厂,生产低温干馏煤焦油,再经高压加氢制取汽油、柴油。
战后,大量廉价石油的开采,使煤低温干馏工业再次陷于停滞状态,各种新型低温干馏的方法多处于试验阶段。
历史上曾出现过很多低温干馏方法,但工业上成功的只有几种。
这些方法按炉的加热方式可分为外热式、内热式及内热外热混合式。
外热式炉的加热介质与原料不直接接触,热量由炉壁传入;内热式炉的加热介质与原料直接接触,因加热介质的不同而有固体热载体法和气体热载体法两种。
内热式气体热载体法鲁奇-斯皮尔盖斯低温干馏法是工业上已采用的典型方法。
此法采用气体热载体内热式垂直连续炉,在中国俗称三段炉,即从上而下包括干燥段、干馏段和冷却段三部分(图1)。
褐煤或由褐煤压制成的型块(约25~60mm)由上而下移动,与燃烧气逆流直接接触受热。
炉顶原料的含水量约15%时,在干燥段脱除水分至 1.0%以下,逆流而上的约250℃热气体冷至80~100℃。
干燥后原料在干馏段被600~700℃不含氧的燃烧气加热至约500℃,发生热分解;热气体冷至约250℃,生成的半焦进入冷却段被冷气体冷却。
半焦排出后进一步用水和空气冷却。
从干馏段逸出的挥发物经过冷凝、冷却等步骤,得到焦油和热解水。
煤的低温干馏知识讲座资源、环境和人口是当前困扰人类社会发展的三大问题,这三大问题与能源都有密切的关系。
迄今为止,我国能源一直是以煤为主的多元化结构。
一次能源主要包括石油、天然气、煤、核电和水电,我国则以煤为主,煤占66.1%,石油24.6%,天然气2.5%,水电6.8%。
所以中国形成了富煤少油缺气的能源格局。
1.1煤的形成煤是由一定地质年代生长的繁茂植物在适宜的地质环境下,经过岁月漫长的煤化过程而形成的可燃矿物,属于化石燃料。
占我国一次能源消费的66.1%;根据成煤植物的不同,煤可分为两大类,既腐植煤和腐泥煤。
前者起源于高等植物,在自然界中储量大,分布广。
我们通常讲的煤都是腐植煤;后者起源于低等植物和浮游生物,储量很少。
由于腐植煤在自然界中分布最广,储藏量最大,而且在煤炭利用和化学加工方面占有主要地位,我们炼焦用的煤都是腐植煤。
植物在整个成煤过程主要经过泥炭化作用和变质作用两个过程,不同的煤是不同的泥炭发展到不同变质阶段的产物。
因此,煤的性质和煤的生产过程密切相关。
根据变质程度的高低,腐植煤依次分为褐煤、烟煤和无烟煤。
烟煤是炼焦生产的主要用煤,随着变质程度的加深,烟煤又分为长焰煤、气煤、肥煤、焦煤、廋煤和贫煤。
总体上根据变质程度的不同,植物演变成煤大致经过植物、泥炭、褐煤、烟煤、无烟煤五个阶段。
煤的低温干馏工业和干馏原理一、煤的低温干馏概念煤的低温干馏是除了煤的直接液化和间接液化意外,由煤制取清洁燃料的又一最为可行的技术路线。
通过煤的低温干馏不仅可以获得洁净的液体和气体燃料,而且可以得到清洁的固体燃料及固体或液体化学品,同时从根本上实现了煤的分级和梯级深加工和利用,是发展循环经济和低碳经济的最佳技术途径之一。
二、焦化工业历史与革新随着焦化工业的快速发展,中国也成为世界焦炭生产、消费及贸易大国。
中国第一座机械化焦炉建于20世纪20年代,自50年代开始,自主设计,建设的焦炉成为产业发展的主流。
陕北兰炭产业的起源可追述到上世纪八十年代中期,神府东胜煤矿开始建设,由于运输困难,煤炭加工利用的水平较低,为了提高煤的附加值,当地老百姓发明了堆烧生产兰炭的方法。
煤的低温干馏知识讲座资源、环境和人口是当前困扰人类社会发展的三大问题,这三大问题与能源都有密切的关系。
迄今为止,我国能源一直是以煤为主的多元化结构。
一次能源主要包括石油、天然气、煤、核电和水电,我国则以煤为主,煤占66.1%,石油24.6%,天然气2.5%,水电6.8%。
所以中国形成了富煤少油缺气的能源格局。
1.1煤的形成煤是由一定地质年代生长的繁茂植物在适宜的地质环境下,经过岁月漫长的煤化过程而形成的可燃矿物,属于化石燃料。
占我国一次能源消费的66.1%;根据成煤植物的不同,煤可分为两大类,既腐植煤和腐泥煤。
前者起源于高等植物,在自然界中储量大,分布广。
我们通常讲的煤都是腐植煤;后者起源于低等植物和浮游生物,储量很少。
由于腐植煤在自然界中分布最广,储藏量最大,而且在煤炭利用和化学加工方面占有主要地位,我们炼焦用的煤都是腐植煤。
植物在整个成煤过程主要经过泥炭化作用和变质作用两个过程,不同的煤是不同的泥炭发展到不同变质阶段的产物。
因此,煤的性质和煤的生产过程密切相关。
根据变质程度的高低,腐植煤依次分为褐煤、烟煤和无烟煤。
烟煤是炼焦生产的主要用煤,随着变质程度的加深,烟煤又分为长焰煤、气煤、肥煤、焦煤、廋煤和贫煤。
总体上根据变质程度的不同,植物演变成煤大致经过植物、泥炭、褐煤、烟煤、无烟煤五个阶段。
煤的低温干馏工业和干馏原理一、煤的低温干馏概念煤的低温干馏是除了煤的直接液化和间接液化意外,由煤制取清洁燃料的又一最为可行的技术路线。
通过煤的低温干馏不仅可以获得洁净的液体和气体燃料,而且可以得到清洁的固体燃料及固体或液体化学品,同时从根本上实现了煤的分级和梯级深加工和利用,是发展循环经济和低碳经济的最佳技术途径之一。
二、焦化工业历史与革新随着焦化工业的快速发展,中国也成为世界焦炭生产、消费及贸易大国。
中国第一座机械化焦炉建于20世纪20年代,自50年代开始,自主设计,建设的焦炉成为产业发展的主流。
陕北兰炭产业的起源可追述到上世纪八十年代中期,神府东胜煤矿开始建设,由于运输困难,煤炭加工利用的水平较低,为了提高煤的附加值,当地老百姓发明了堆烧生产兰炭的方法。
由于生产工艺简单,投资小,产品应用领域广、价值高,因此,土法兰炭厂在本地得到了迅猛发展。
但是,与此同时造成了严重的资源浪费和环境污染问题。
上世纪九十年代中后期,通过技术改造和新工艺新方法的应用,陕北的土法兰炭生产逐渐被干馏炉炼焦工艺所取代,但由于兰炭生产企业分散、规模小、技术人才缺乏、无配套废水处理及自动化程度低等原因,导致这些兰炭企业仍存在煤气利用率低,废气、废水污染严重等问题。
神木县委县政府为促进兰炭生产技术水平的提高,改善当地环境,实现煤炭高效转化和可持续发展,于2007年下大力气关闭所有小型兰炭企业,推广年产60万吨以上的大型兰炭生产新技术新工艺。
三、煤的干馏过程与干馏产物的应用1、煤的干馏过程干馏是指煤或油页岩等固体燃料在隔绝空气条件下进行加热分解成气、液、固三相产物的过程。
按照干馏终温的不同,煤的干馏一般分为以下三类:1) 低温干馏干馏温度:500-700℃,主要产品为煤气、焦油和半焦;2)中温干馏干馏温度:700-900℃,主要产品为城市煤气生产;3)高温干馏干馏温度:1000℃左右,主要产品为焦炭。
当煤料的温度高于100℃时,煤中的水分蒸发出;温度升高到200℃以上时,煤中结合水释出;高达350℃以上时,粘结性煤开始软化,并进一步形成粘稠的胶质体(泥煤、褐煤等不发生此现象);至400~500℃大部分煤气和焦油析出,称一次热分解产物;在450~550℃,热分解继续进行,残留物逐渐变稠并固化形成半焦;高于550℃,半焦继续分解,析出余下的挥发物(主要成分是氢气),半焦失重同时进行收缩,形成裂纹;温度高于800℃,半焦体积缩小变硬形成多孔焦炭。
当干馏在室式干馏炉内进行时,一次热分解产物与赤热焦炭及高温炉壁相接触,发生二次热分解,形成二次热分解产物(焦炉煤气和其他炼焦化学产品)。
2、煤干馏产物煤干馏的产物主要是煤炭、煤焦油和煤气。
煤干馏产物的产率和组成取决于原料煤质、炉结构和加工条件(主要是温度和时间)。
随着干馏终温的不同,煤干馏产品也不同。
低温干馏固体产物为结构疏松的黑色半焦,煤气产率低,焦油产率高;高温干馏固体产物则为结构致密的银灰色焦炭,煤气产率高而焦油产率低。
中温干馏产物的收率,则介于低温干馏和高温干馏之间。
煤干馏过程中生成的煤气主要成分为氢气和甲烷,可作为燃料或化工原料。
高温干馏主要用于生产冶金焦炭,所得的焦油为芳香烃、杂环化合物的混合物,是工业上获得芳香烃的重要来源;低温干馏煤焦油比高温焦油含有较多烷烃,是人造石油重要来源之一。
3、干馏产物的利用1)煤气的利用煤气可作为工业燃料气用于冶金、建筑行业等的加热炉,供燃气汽轮机发电、焦炉、干馏炉等用;还可作居民燃气用。
2)焦油的利用煤焦油是焦化工业的重要产品之一,其产量约占装炉煤的3%~4%,其组成极为复杂,多数情况下是由煤焦油工业专门进行分离、提纯后加以利用。
焦油各馏分进一步加工,可分离出多种产品,目前提取的主要产品有:(1)萘用来制取邻苯二甲酸酐,供生产树脂、工程塑料、染料。
油漆及医药等用。
(2)酚及其同系物生产合成纤维、工程塑料、农药、医药、燃料中间体、炸药等。
(3)蒽制蒽醌燃料、合成揉剂及油漆。
(4)菲是蒽的同分异构体,含量仅次于萘,有不少用途,由于产量大,还待进一步开发利用。
(5)咔唑是染料、塑料、农药的重要原料。
(6)沥青是焦油蒸馏残液,为多种多环高分子化合物的混合物。
用于制屋顶涂料、防潮层和筑路、生产沥青焦和电炉电极等。
四、陕北60万吨兰炭生产工艺介绍第一章陕北60万吨兰炭生产工艺1.1 SJ-Ⅶ型低温干馏炉SJ低温干馏炉是1996年成立的三江煤化工研究所在复热立式炉和山西晋城三八方炉的基础上设计完成的。
目前已在陕北榆林地区和内蒙的东胜地区广泛使用,炉型也由开始的SJ-Ⅰ型发展到现在的SJ-Ⅶ型。
SJ-Ⅶ型低温干馏炉是目前兰炭生产的优良炉型,不但投资少、产量大而且好操作,另外,在提高了焦油收率的同时,也解决了喷孔结疤和炉内挂渣的问题。
1.1.1 SJ-Ⅶ型低温干馏炉的结构SJ-Ⅶ型低温干馏炉基本构造见图1.1。
1.辅助煤箱;2. 集气阵伞;3. 爬梯;4. 花墙;5.炉体;6. 小拱墙;7. 排焦箱;8. 炉底平台;9. 推焦盘;10. 刮板机;11.水封箱图1.1 SJ-Ⅶ型低温干馏炉基本构造图炉子截面:3000×5900mm,干馏段高(即花墙喷孔至阵伞边的距离)为7020mm,炉子有效容积91.1m3。
距炉项1.1 m处设置集气阵伞,采用5条布气墙(四条完整花墙、二条半花墙),花墙总高3210mm。
考虑花墙太高稳定性不好,除了用异型砖砌筑外,厚度也从350mm加大至590mm。
花墙间距为590 mm,中心距为1180mm。
花墙顶部之间设置有小拱桥。
干馏炉炉体采用粘土质异型砖和标准砖砌筑,硅酸铝纤维毡保温。
采用工字钢护炉柱和护炉钢板结构,加强炉体强度并使炉体密封。
1.1.2 SJ-Ⅶ型低温干馏炉的特点(1)炉内花墙顶部之间设置小拱桥;通过小拱桥的支撑作用,可以增加花墙的强度,防止花墙坍塌。
(2)拉焦盘浸入水封内;SJ-Ⅶ型低温干馏炉的花墙下面是水冷排焦箱和出焦漏斗,出焦漏斗下面又设置有拉焦盘,最下面是出焦刮板机。
拉焦盘和刮板机均泡在水封内,这样的好处是不但拉焦盘不会变形,保证了炉子的均匀出焦,而且在没有冷却煤气的情况下也可以正常运转,同时还可以避免半焦堵馏子。
(3)取消了冷却煤气冷却段,改为炉底水冷夹套式冷却排焦箱;老式方炉中给冷却煤气的主要作用是为了保护拉焦盘。
并回收半焦的显热,但通冷却煤气会增加循环煤气量,因而增加电耗,加大成本。
把拉焦盘浸入水封后,可不需要用冷却煤气来保护。
另外,能够从半焦中回收的热量也较少,经济意义不是很大,因此取消冷却煤气是比较合理的。
(4)文丘里塔选用11根文丘里管;文丘里管的作用是增加气液之间的接触,达到提高焦油回收率的目的。
选用11根文丘里管不但可以简化文丘里塔的结构,而且只需用一台水泵进行热水循环。
一般,文丘里文氏管的喉管气速取15-20m/s为宜。
喷头安装位置距喉管200mm,喷头的水压>14.7Pa(1.5Kg/),每个文丘里管的喷水量5.2 m3/h。
通过生产实践证明,在文丘里管塔内大约80%焦油被洗脱。
1.2陕北60万吨兰炭生产工艺1.2.1 工艺流程陕北60万吨兰炭生产工艺包括备煤工段、炭化工段、筛焦工段、煤气净化工段和污水处理工段。
总工艺流程及30万吨兰炭厂三维效果图分别见下图。
原料煤通过二级破碎后,块度20-80mm,通过运煤皮带送入位于干馏炉上方的储煤仓,由加煤工按照干馏炉的处理量添加加煤,加入的量以炉顶不亏料为原则。
原料煤在干馏炉内逐渐下降,依次经过干燥段、干馏段和冷却段,最后经推焦机推落至熄焦池内,经刮扳机将兰炭送至烘干机内进行干燥,干燥后经皮带运输机送至筛分机,筛分得兰炭成品。
焦炉煤气从干馏炉顶部上升管和桥管进入煤气集气箱,在桥管设有热环喷淋水,将煤气进行初冷,初冷后煤气从塔顶进入文丘里塔,来自热水循环系统热循环水从塔顶喷淋而下,煤气与下降的热循环水在文丘里管充分接触,大约80%的焦油被冷却水带入塔底,冷却并除去大部分焦油的煤气从文丘里塔底导出,进入旋流板塔。
在旋流板塔内,来自冷水循环系统的冷循环水与煤气逆流接触,煤气被继续冷却并除去其中所含焦油。
经过两级冷却和除焦油处理的煤气继续下行,进入电捕焦油器,进一步除去煤气中的焦油后进入煤气风机。
通过煤气风机,一部分煤气被送至干馏炉,一部分被送至兰炭烘干机,剩余部分至事故火炬放空或送至发电厂发电。
配送到煤气烘干机和干馏炉的煤气总量与送至事故火炬煤气量之比大约为4:6。
图1.2 陕北60万吨兰炭生产工艺总流程图该工艺中各部分去除的焦油在各循环池内静止分层后,通过焦油泵送入焦油储罐。
1.备煤楼;2. 干馏炉;3. 文丘里塔;4. 旋流板塔;5. 电捕焦油器;6. 煤气风机;7. 煤气烘干机;8. 剩余煤气总管;9. 列管式换热器;10. 主控制室图1.3 30万吨兰炭厂三维效果图1.2.2 各工段简介1.2.2.1备煤工段1. 备煤工段主要设施和设备:备煤场、装载机、受煤地坑、输送皮带、震动筛、面煤仓、料斗、地磅。
2. 备煤工段的工序和特点:原料煤经由煤地坑下皮带机输送到筛煤楼,在震动筛中进行筛选。
筛下的面煤由皮带送到面煤仓密封储存,通过放料装置装车外运。
块度在20-150mm的块煤由皮带机送到干馏炉顶的辅助煤箱,确保炉顶辅助煤箱常满和煤斗存煤不低于设定的料位最低线。
皮带全高架走廊式封闭,筛煤楼采用封闭式。