2014年华师大版数学八上能力培优14.2勾股定理的应用
- 格式:doc
- 大小:101.50 KB
- 文档页数:4
14.2勾股定理的应用(1)
教学目标
1.知识目标
(1)了解勾股定理的作用是“在直角三角形中已知两边求第三边”;而勾股逆定理的作用是由“三角形边的关系得出三角形是直角三角形”.
(2)掌握勾股定理及其逆定理,运用勾股定理进行简单的长度计算. 2.过程性目标
(1)让学生亲自经历卷折圆柱.
(2) 让学生在亲自经历卷折圆柱中认识到圆柱的侧面展开图是一个长方形(矩形).
(3)让学生通过观察、实验、归纳等手段,培养其将“实际问题转化为应用勾股定理解直角三角形的数学问题”的能力.
教学重点、难点
教学重点:勾股定理的应用.
教学难点:将实际问题转化为“应用勾股定理及其逆定理解直角三角形的数学问题”.
原因分析:
1.例1中学生因为其空间想象能力有限,很难想到蚂蚁爬行的路径是什么,为此通过制作圆柱模型解决难题.
2.例2中学生难找到要计算的具体线段.通过多媒体演示来启发学生的思维.
教学突破点:突出重点的教学策略:
通过回忆复习、例题、小结等,突出重点“勾股定理及其逆定理的应用”,
教学过程
【解析】蚂蚁实际上是在圆柱的半个侧面内爬行.大家用一
解
现准备将一块形为直角三角形的绿地扩大,使其仍为直角三
(四)作业:习题
(五)策略分析
为防止以上错误的出现,除了讲清楚定理,还应该强调:
1.定理中基本公式中的项都是平方项;
2.计算直角边时需要将基本公式移项变形,按平方差计算.
3.最后求边长时,需要进行开平方运算.。
勾股定理的应用活动二:实践探究交流新知【探究】如右图,蚂蚁在点A处观察到点B处有食物,于是它想从A处爬向B处,蚂蚁怎么走最近呢?回忆圆柱的展开图,并尝试利用“两点之间线段最短〞找出最短路线.活动三:开放训练表达应用【应用举例】图14-2-例1 如图14-2-,一圆柱体的底面周长为20 cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路径.(准确到0.01 cm)变式变形:如图14-2-,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.图14-2-在训练学生的读题能力和标准书写解题过程的能力的根底上,使学生进一步理解勾股定理,体会数学与现实世界的联系.活动四:课堂总结反思1.小雨用竹杆扎了一个长80 cm、宽60 cm的长方形框架,由于四边形容易变形,需要用一根竹杆作斜拉杆将四边形定形,那么斜拉杆最长需________ cm.2.小杨从学校出发向南走150米,接着向东走了360米到九龙山商场,学校与九龙山商场的距离是________米.图14-2-3.如图14-2-:带阴影局部的半圆的面积是多少?(π取3.14)4.如图14-2-,一个梯子AB长,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为,梯子滑动后停在DE的位置上,测得BD长为,求梯子顶端A下落了多少米?总结、扩展学生活动:通过本堂课的学习,你有哪些收获?你有哪些困惑?对同学,你有哪些温馨提示.教学说明:学生畅谈自己的收获,通过本节课的学习,同学们经历了运用勾股定理和勾股逆定理解决简单实际问题的过程,体会转化思想及数学和生活的密切联系.作业:1.课本P121中的随堂练习1和22.课本P123中的习题14.2中的1、2、3.学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,到达全面提高的目的【知识网络】勾股定理的实际应用(1)勾股定理实际应用常见题型框架图式总结,更容易形成知识网络如有侵权请联系告知删除,感谢你们的配合!。
第十四章勾股定理14.2 勾股定理的应用【知识与技能】(1)能用勾股定理解决实际问题.(2)能利用勾股定理和其逆定理综合解决相关问题.【过程与方法】(1)在解决实际问题的过程中培养学生建立数学模型的意识和能力.(2)在解决问题中体会转化思想的意义.【情感态度与价值观】(1)通过对勾股定理的逆定理的探究,体会从特殊到一般的研究方法,培养良好的学习习惯.(2)在自主探究运用逆定理解决实际问题中感受数学价值,增强学好数学的信心.运用勾股定理和其逆定理解决实际问题.把实际问题转化为数学问题的思维过程.多媒体课件.思考下面的问题:1.直角三角形的性质有哪些?2.勾股定理的内容是什么?勾股定理的逆定理如何运用?3.两点之间的最短路线是什么?如图,滑竿在机械槽内运动,∠ACB 为直角,已知滑竿AB长2.5米,顶点A 在AC 上运动,量的滑竿下端B 距C 点的距离为1.5米,当端点B 向右移动0.5米时,求滑竿顶端A 下滑多少米?【分析】滑竿在下滑中它的长度是不变的,先在直角三角形ACB 中利用勾股定理求出AC 的长,然后再在直角三角形ECD 中利用勾股定理求出CE 的长,即可求出AE 的长.【教师点拨】勾股定理在实际生活中有着广泛的应用,他的前提是直角三角形,在求解时常运用题目中的条件构造直角三角形,而构造直角三角形方式有两种:一是根据已知条件中的直角构造,二是作垂线构造.(1)勾股定理只在直角三角形中成立,运用时,必须分清斜边、直角边,然后在使用;若没有明确告诉斜边的情况下,经常有两解,勿漏解。
(2)勾股定理将“形”转化为“数”,而这对于实际问题的解决起着积极的作用。
(3)勾股定理的应用:1.已知直角三角形任意两边,求第三边;2.已知直角三角形的一边,求另两边的关系;3.用于说明平方关系;4.作长为n 的线段。
【正式作业】教材118P 习题1.14 6。
【最新】华师大版八年级数学上册14.2勾股定理的应用1导学案新华师大版八年级数学上册14.2勾股定理的应用1导学案【学习目标】能运用勾股定理及直角三角形的判定条件解决实际问题.【重、难点】在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值.【预习指导】一、学前准备1、已知Rt △ABC 中,∠C=90°,若BC=4,AC=2,则AB=_______;若AB=4,BC=则AC=_________.2、一个直角三角形的模具,量得其中两边的长分别为5cm 、3cm ,?则第三边的长是_________.3.要登上8m 高的建筑物,为了安全需要,需使梯子底端离建筑建6m .?问至少需要多长的梯子?二、【教学过程】一.创设情境1.如图,一圆柱体的底面周长为20cm ,高AB为4cm ,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程.(精确到0.01cm ).(1)自制一个圆柱,尝试从A 点到C 点沿圆柱侧面画出几条路线,你认为哪条路线最短呢?(2)如图,将圆柱侧面剪开展成一个长方形,从A 点到C 点的最短路程是什么?你画对了吗?(3)蚂蚁从A 点出发,想吃到C 点上的食物,它沿圆柱侧面爬行的最短路程是多少?三、练习1:有一圆柱形油罐,底面周长是12米,高是5米,现从油罐底部A 点环绕油罐建梯子,正好到A 点的正上方B 点,问梯子最短需多少米?2、如图,在长、宽都是3,高是8的长方体纸箱的外部,一只蚂蚁从顶点A 沿纸箱表面爬到顶点B 处,求它所行的最短路线的长。
3. 在一棵树的10 m 高处有两只猴子,其中一只猴子爬下树走到离树20 m 的池塘A 处,另一只爬到树顶后直接跃向池塘的A 处,如果两只猴子所经过的路程相等,试问这棵树有多高学习体会:我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角三角形中的任意两边就可以依据勾股定理求出第三边.从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a 2+b 2=c 2”看成一个方程,只要依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程.四、例题讲解BA10cm 4cmcmB A例:一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如左图的某工厂,问这辆卡车能否通过该工厂的厂门练习:如图所示,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160米,假设一拖拉机在公路MN上沿PN方向行驶,周围100米以内会受到噪声的影响,那么学校是否会受到噪声的影响?说明理由,若受影响,已知拖拉机的速度为18千米/时,则学校受影响的时间有多长?五、小结由学生分组进行总结,教师请个别组学生在全班总结勾股定理的应用方法六、课堂练习:1.若一个三角形的一个角等于其他两个角的差,那么这个三角形是____________三角形2.在△ABC中,∠A: ∠B: ∠C=1:2:3,则BC:AC:AB=_________3.设直角三角形的三条边长为连续自然数,则这个直角三角形的面积是____________4.甲、乙两人同时从同一地点出发,甲往东走了4km,乙往南走了6km,这时甲、乙两人相距__________km.5.在△ABC中,AB=AC=4cm, ∠A: ∠B=2:5,过点C作△ABC的高CD,与AB交于D点,则CD=_______6.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(取3)是().(A)20cm (B)10cm (C)14cm (D)无法确定7.如果梯子的底端建筑物有5m,15m长的梯子可达到该建筑物的高度大约是()A.13mB.14m C 15m D. 16 m8.如图,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=3m,BC=4m,?CD=?12m,AD=13m.求这块草坪的面积.9、如图所示,在长方形纸片ABCD中,AD=4cm,AB=14cm,按如图方式折叠,使点B与点D重合,折痕为EF,求DE的长。
14.2 勾股定理的应用学习目标:1.会运用勾股定理求线段长及解决简单的实际问题;(重点)2.能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长.(难点)自主学习一、知识链接1. 你能补全以下勾股定理的内容吗?如果直角三角形的两直角边长分别为a,b,斜边长为c,那么____________.2.勾股定理公式的变形:a=_________,b=_________,c=_________.3.在Rt△ABC中,∠C=90°.(1)若a=3,b=4,则c=_________;(2)若a=5,c=13,则b=_________.合作探究一、探究过程探究点1:勾股定理的应用例1如图,一根12米高的电线杆CD两侧各用15米的铁丝固定,求两个固定点A、B之间的距离.【方法总结】解题关键是利用转化思想将实际问题转化成直角三角形模型,然后利用勾股定理求出未知的边长.【针对训练】如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?探究点2:勾股定理逆定理的应用例2如图,某港口P位于东西方向的海岸线上. “远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q,R处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?分析:题目已知“远航”号的航向、两艘船的一个半小时后的航程及距离,实质是要求出两艘船航向所成角,由此容易联想到勾股定理的逆定理.【方法总结】解决实际问题的步骤:构建几何模型(从整体到局部);标注有用信息,明确已知和所求;应用数学知识求解.例3一个零件的形状如图①所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边的尺寸如图②所示,这个零件符合要求吗?【针对训练】如图,在四边形ABCD中,AC⊥DC,△ADC的面积为30,DC=12,AB=3,BC=4,求△ABC的面积.探究点3:利用勾股定理求最短距离例4如图是一个圆柱形油罐,要以A点环绕油罐建梯子,正好建在A点的正上方点B处,问梯子最短需多少米?(已知油罐的底面半径是2 m,高AB是5 m,π取3)例5如图,一个牧童在小河的南4 km的A处牧马,而他正位于他的小屋B的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?【方法总结】求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径.【针对训练】如图,一只蚂蚁从棱长为12cm的正方体纸盒的顶点A处,沿纸盒表面爬到点B处,已知BC=4 cm,则蚂蚁爬行的最短距离是多少?二、课堂小结当堂检测1.一个梯子(如图)靠在垂直于地面的墙上,顶端到地面的距离为2.8m,底端距离墙面2.1m,则这个梯子的长度为()A.2.1c mB.2.8c mC.3.5c mD.3.7c m第1题图第2题图第4题图2.如图,一支铅笔放在圆柱体笔筒中,上面露出一截,笔筒的内部底面直径是9c m,内壁高12c m,则这只铅笔的长度可能是()A.9c mB.12c mC.15c mD.18c m3.已知甲、乙两人在同一地点出发,甲往东走4 km,乙往南走了3 km,这时甲、乙两人相距km.4.如图,有一个三级台阶,它的每一级的长、宽和高分别是16,3,1,点A和点B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点,则最短路程是.5.如图,已知AB=13cm,AD=4cm,CD=3cm,BC=12cm,∠D=90°,求四边形ABCD 的面积.6.高速公路的同一侧有A,B两城镇,如图所示,它们到高速公路所在直线MN的距离分别为AA′=2km,BB′=4km,且A′B′=8km,要在高速公路上A′,B′之间建一个出口P,使A,B两城镇到P的距离之和最短,求这个最短路程.参考答案自主学习一、知识链接1. a²+b²=c²2.22b-c22a-c22ba+ 3.5 12合作探究一、探究过程探究点1:例1解:在△ADC中,∠ADC=90°,AC=15米,CD=12米,∴AD=9米.同理可得BD=9米,∴AB=9+9=18(米).即A、B之间的距离为18米.【针对训练】解:如图,设大树高为AB=10米,小树高为CD=4米,过C点作CE⊥AB于E,连接AC.∴EB=4米,EC=8米,AE=AB-EB=10-4=6(米).在Rt△AEC中,AC=2286+=10(米),故小鸟至少飞行10 米.探究点2:例2解:由题意可得RP=18海里,PQ=24海里,QR=30海里.∵182+242=302,∴△RPQ是直角三角形,∴∠RPQ=90°.∵“远航”号沿东北方向航行,∠QPN=45°,∴∠RPN=45°,∴“海天”号沿西北方向航行.例3解:∵AD=4,AB=3,BD=5,DC=13,BC=12,∴AB2+AD2=BD2,BD2+BC2=DC2,∴△ABD、△BDC是直角三角形,∠A=90°,∠DBC=90°,则这个零件符合要求. 【针对训练】解:∵S△ADC=,∴AC=5.∵AB2+CB2=42+32=25=AC2.∴△ABC是直角三角形,且∠ABC=90°.∴△ABC的面积=.探究点3:例4解:如图,∵油罐的底面半径是2m,∴油罐的底面周长为2π×2=4π≈12 m.又∵高AB为5m,即展开图中,BC=5m,∴AB=22512+≈13(m).故所建梯子最短约为13m.例5解:如图,作出A点关于MN的对称点A′,连接A′B交MN于点P,则从A沿AP 到P再沿PB到B,所走路程最短,此时AP+BP=A′B.在Rt△A′DB中,由勾股定理得A′B=22DB+DA′=17(km).答:他要完成这件事情所走的最短路程是17 km.【针对训练】解:蚂蚁爬行的最短路径展开图如图所示:易得AB==20cm,∴蚂蚁爬行的最短路程是20cm.当堂检测1.D2.D3.54.205.解:连接AC.∵AD=4cm,CD=3cm,∠ADC=90°,∴AC===5(cm).∴S△ACD=CD•AD=6(cm2).在△ABC中,∵52+122=132,即AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴S△ABC=AC•BC=30(cm2).∴S四边形ABCD=S△ABC﹣S△ACD=30﹣6=24(cm2).6.解:如图,作A点关于直线MN的对称点C,再连接CB,交直线MN于点P,则此时AP+PB 最小,为CB的长.过点B作BD⊥CA交CA的延长线于点D.∵AA′=2km,BB′=4km,A′B′=8km,∴A′C=2km,A′D=4km,BD=8km,则CD=6km,在Rt△CDB中,CB ==10(km),即最短距离为10km.~。
14.2 勾股定理的应用(附答案)
专题 最短路径的探究
1. 编制一个底面周长为a 、高为b 的圆柱形花柱架,需用沿圆柱表面绕织一周的竹条若干根,如图中的A 1C 1B 1,A 2C 2B 2,…则每一根这样的竹条的长度最少是______________
2. 请阅读下列材料:
问题:如图(2),一圆柱的底面半径为5 dm ,高为BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到点C 的最短路线.小明设计了两条路线:
路线1:侧面展开图中的线段AC.如下图(2)所示:
设路线1的长度为1l ,则2222222
12525)5(5ππ+=+=+==AC AB AC l 路线2:高线AB + 底面直径BC.如上图(1)所示:
设路线2的长度为2l ,则225)105()(2222=+=+=AC AB l . 0)8(25200252252525222
221>-=-=-+=-πππl l
∴2221l l >
∴21l l >.
所以要选择路线2较短.
(1)小明对上述结论有些疑惑,于是他把条件
改成:“圆柱的底面半径为1dm ,高AB 为5dm ”
继续按前面的路线进行计算。
请你帮小明完成
下面的计算:
比较两个正数的大小,有时用它们的
平方来比较更方便
路线1:==221AC l ___________________;
路线2:=+=222)(AC AB l __________.
∵2221_____l l ,
∴21_____l l ( 填>或<).
所以应选择路线____________(填1或2)较短.
(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r,高为h 时,应如何选择上面的两条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短.。