焚烧烟气量计算方式
- 格式:xls
- 大小:47.50 KB
- 文档页数:6
生活垃圾焚烧发电工艺设计计算书生活垃圾焚烧发电应用于环境保护领域,实现城市生活垃圾的无害化、减量化、减容化和资源化、智能化处理,达到节能减排之目的。
在生活垃圾焚烧发电工艺设计流程中首先进行垃圾焚烧发电炉排炉工艺设计参数的计算,为后续设计提供参数依据。
一、生活垃圾焚烧炉排炉工艺设计参数的计算1、待处理生活垃圾的性质1.1待处理生活垃圾主要组成成分表1:待处理生活垃圾的性质表2:待处理生活垃圾可燃物的元素分析(应用基)%表3:要求设计主要参数1.2 根据垃圾元素成分计算垃圾低位热值:LHV=81C+246H+26S-26O-6W (Kcal/Kg)=81*20.6+246*0.9+26*0.12-26*0.12-6*47.4=1388(Kcal/Kg)*4.18=5800(KJ/Kg)。
1.3根据垃圾元素成分计算垃圾高位热值:HHV={LHV+600*(W+9H)}*4.18={1388+600(0.474+9*0.009)}*4.18=7193.78(KJ/Kg)。
2、处理垃圾的规模及能力焚烧炉3台: 每台炉日处理垃圾350t;处理垃圾量: 1000t/24h=41.67(t/h);炉系数:(8760-8000)/8000=0.095;实际每小时处理生产能力:41.67*(1+0.095)=45.6(t/h);全年处理量: 45.6*8000=36.5*104t;故:每台炉每小时处理垃圾量:350/24*1.05=15.3(t/h)。
3、设计参数计算:3.1垃圾仓的设计和布置已知设计中焚烧炉长度L=75.5米,宽D=18.5米,取垃圾仓内壁与炉长度对齐,T=5d,垃圾的堆积密度取0.35t/m3求:垃圾的容积工程公式:V=a*T式中: V----垃圾仓容积m3;a--- 容量系数,一般为1.2~1.5,考虑到由于垃圾仓存在孔角,吊车性能和翻仓程度以及有效量的缺陷,导致垃圾仓可利用的有效容积小于几何容积;T--- 存放时间,d;根据经验得出适合燃烧存放天数,它随地区及季节稍有变化;V=a*T=1.2*5*1000/0.35=17142.86(m3 )。
垃圾焚烧发电工艺设计参数的计算方法浙江旺能环保股份有限公司作者:周玉彩摘要:本文介绍了垃圾焚烧发电炉排炉、汽轮机组工艺设计的参数计算方法。
关键词:参数、垃圾、焚烧、炉排、汽轮机组。
前言:生活垃圾焚烧发电应用于环境保护领域,实现城市生活垃圾的无害化、减量化、减容化和资源化、智能化处理,达到节能减排之目的。
在生活垃圾焚烧发电工艺设计流程中首先进行垃圾焚烧发电炉排炉工艺设计参数的计算,为后续设计提供参数依据。
一、生活垃圾焚烧炉排炉工艺设计参数的计算1、待处理生活垃圾的性质1.1待处理生活垃圾主要组成成分表1:待处理生活垃圾的性质表2:待处理生活垃圾可燃物的元素分析(应用基)%表3:要求设计主要参数1.2 根据垃圾元素成分计算垃圾低位热值:LHV=81C+246H+26S-26O-6W (Kcal/Kg)=81*20.6+246*0.9+26*0.12-26*0.12-6*47.4=1388(Kcal/Kg)*4.18=5800(KJ/Kg)。
1.3根据垃圾元素成分计算垃圾高位热值:HHV={LHV+600*(W+9H)}*4.18={1388+600(0.474+9*0.009)}*4.18=7193.78(KJ/Kg)。
2、处理垃圾的规模及能力焚烧炉3台: 每台炉日处理垃圾350t;处理垃圾量: 1000t/24h=41.67(t/h);炉系数:(8760-8000)/8000=0.095;实际每小时处理生产能力:41.67*(1+0.095)=45.6(t/h);全年处理量: 45.6*8000=36.5*104t;故:每台炉每小时处理垃圾量:350/24*1.05=15.3(t/h)。
3、设计参数计算:3.1垃圾仓的设计和布置已知设计中焚烧炉长度L=75.5米,宽D=18.5米,取垃圾仓内壁与炉长度对齐,T=5d,垃圾的堆积密度取0.35t/m3求:垃圾的容积工程公式:V=a*T式中: V----垃圾仓容积m3;a--- 容量系数,一般为1.2~1.5,考虑到由于垃圾仓存在孔角,吊车性能和翻仓程度以及有效量的缺陷,导致垃圾仓可利用的有效容积小于几何容积;T--- 存放时间,d;根据经验得出适合燃烧存放天数,它随地区及季节稍有变化;V=a*T=1.2*5*1000/0.35=17142.86(m3 )。
式中: V----垃圾仓容积m3;a--- 容量系数,一般为1.2~1.5,考虑到由于垃圾仓存在孔角,吊车性能和翻仓程度以及有效量的缺陷,导致垃圾仓可利用的有效容积小于几何容积;T--- 存放时间,d;根据经验得出适合燃烧存放天数,它随地区及季节稍有变化;V=a*T=1.2*5*1000/0.35=17142.86(m3 )。
故:垃圾仓的容积设计取18000(m3)。
垃圾仓的深度为HmHm=L*D/V=18000/75.5*18.5=12.88(m)。
故:垃圾池全封闭结构,长75.5米,宽18.5米,总深度以6米卸料平台为基准负13米。
3.2焚烧炉的选择与计算(1)焚烧炉的加料漏斗焚烧炉的加料漏斗挂在加料漏斗层,通过垃圾吊车将间接垃圾供料变为均匀加料,漏斗的容积要能满足“1h”内最大焚烧量。
垃圾通过竖溜槽送到给料机,垃圾竖溜槽可通过液压传动闸板关闭,竖溜槽的尺寸选择要满足溜槽中火焰密封闭合,给料机根据要求向焚烧炉配送垃圾,每台炉安装配合给料机传动用液压汽缸,液压设备由每台炉生产线控制中心控制。
料斗的容积VDV D =G/24*Kx/ρL式中: VD---料斗的容积(m3);G--- 每台炉日处理垃圾的量,(t/h);Kx---可靠系数,考虑吊车在炉焚烧垃圾的速度等因素,一般取1.5;ρL---垃圾容量,一般0.3~0.6 (t/m3)取0.45(t/m3);VD=15.3t/h*1.5/0.45 =51( m3)。
故:加料漏斗容积按51m3设计并且斗口尺寸应大于吊车抓斗直径的1.5倍。
(2)燃烧空气量及一次、二次助燃空气量的计算①以单位重量燃烧所需空气量以容积计算a、理论空气量由公式:L=(8.89C+26.7H+3.33S-3.33O)*10-2(Nm3/kg);把表2待处理垃圾各元素的含量值代入上式:L=(8.89*20.6+26.7*0.9+3.33*0.12-3.33*8.53)*10-2=1.8(Nm3/kg )。
焚烧产生烟气量的计算及组成
发布日期:2012-06-06 浏览次数:15
一、烟气产生量假定废物以理论空气量完全燃烧时的燃烧烟气量称为理论烟气产生量。
如果废物组成已知,以C、H、N、O、S
【湖北环保产业网】
一、烟气产生量
假定废物以理论空气量完全燃烧时的燃烧烟气量称为理论烟气产生量。
如果废物组成已知,以C、H、N、O、S、Cl、W表示单位废物中碳、氢、氮、氧、硫、比,氯和水分的质量比,则理论燃烧湿基烟气量为:
2 .烟气组成
固体或液体废物燃烧烟气组成,可依下表所示方法计算。
表焚烧干、湿烟气百分组成计算表
组成
体积百分组成质量百分组成湿烟气干烟气湿烟气干烟气
CO2 1.867C/G 1.867C/G’ 3.67C/G 3.67C/G’SO20.7S/G0.7S/G’2S/G2S/G’
HC l 0.631Cl/G
0.631Cl/G
’
1.03Cl/
G
1.03Cl/G’
O20.21(m-1)A0
/G
0.21(m-1)A0
/G’
0.23(m-
1)A0/G
0.23(m-1)A0/G’
N2(0.8N+0.79
mA0)/G
(0.8N+0.79
mA0)/G’
(N+0.77
mA0)/G
(N+0.77mA0)/G’
H2O (11.2H’+1
.244W)/G
(9H’+W)/G。
焚烧理论计算书焚烧平衡计算在本项目中,所有设备的规格型号和尺寸大小均以第2节中提供的数据为准。
其中,回转窑焚烧温度需大于850℃,而二燃室焚烧温度则需大于1100℃。
锅炉参数方面,蒸汽压力为1.0Mpa,蒸汽温度为183℃,烟气出口温度为550℃。
给水温度按104℃计算,排污率为5%。
急冷塔参数方面,烟气进口温度为550℃,烟气出口温度为200℃,使用喷水降温。
1.1 工艺参数计算1.1.1 焚烧需要的理论空气量和燃烧产物计算废物完全焚烧需要的理论空气量和燃烧产物计算可通过反应方程式得出。
在完全焚烧的情况下,反应方程式如下:C + O2 = CO24H + O2 = 2H2O2N = N2S + O2 = SO22Cl = Cl22Cl2 + 2H2O = 4HCl + O2H2O = H2O理论空气量可通过元素气量计算得出,其中C、H、O、N的理论空气量分别为2.280Nm3/kg、1.267Nm3/kg、-0.167Nm3/kg、1.801Nm3/kg。
CO2、H2O、N2、SO2、HCl的理论燃烧产物分别为0.479Nm3/kg、0.532Nm3/kg、1.801Nm3/kg、0.092kg/kg、0.025kg/kg。
飞灰、灰渣、S、Cl、F、A、W的理论燃烧产物分别为0.117kg/kg、-0.023kg/kg、0.000kg/kg、3.474kg/kg、0.092kg/kg、0.025kg/kg、0.019kg/kg、0.024kg/kg、0.216kg/kg、-0.009kg/kg、-0.018kg/kg、0.000kg/kg、0.401kg/kg、0.000kg/kg、2.759kg/kg、0.479Nm3/kg、0.924Nm3/kg、0.025Nm3/kg、0.019Nm3/kg、0.024Nm3/kg、0.216Nm3/kg。
在标准状态下,完全燃烧需要的理论空气量为3.5Nm3/kg,完全燃烧后的烟气量为4.2Nm3/kg。
生活垃圾焚烧系统焚烧炉的设计计算1.1 焚烧炉的设计初始参数(1) 日处理量:150 t/d =6.25 t/h =6250 kg/h (2) 燃烧室热负荷: 4(815)10⨯~3/()kcal m h ⋅,故本设计中取燃烧室热负荷为41210⨯3/()kcal m h ⋅。
(3) 生活垃圾元素分析,如表1.1所示。
表1.1 垃圾元素分析(%)项目 数值 项目 数值C19.75 H 1.56N 0.48 S 0.28 O 9.61 Cl 0.23 A 12.4 W 56(4) 垃圾焚烧炉设计规范,如表1.2所示。
表1.2 焚烧炉设计参数1.2 焚烧炉基本参数的确定(1) 炉温的确定炉温代表垃圾的焚烧温度,合适的焚烧温度能使垃圾中有害组分在高温下氧化、分解,适当提高焚烧温度可抑制黑烟的产生,但过高的焚烧温度会增加垃圾中金属的挥发量和NOx 物的生成量,因此不能随意提高焚烧温度。
根据垃圾的物料组成和对有害物的有效去除选择垃圾的焚烧温度:一般垃圾焚烧温度:850~ 1 000 ℃含氰化物垃圾:850~ 900 ℃ 含氯化物垃圾:800~ 850 ℃去除二恶英的焚烧温度:≥925 ℃上述焚烧温度多通过增设二燃室引入一燃室富含可燃气的烟气进行二次燃烧后取得,初步认为: 垃圾发热量低于5500 KJ/kg 时,如不附加燃料将难以达到1000 ℃炉温。
二燃室内烟气流速取4~6 m/s ,在保证烟气流速≥2 s 的条件下确定二燃室高度或长度。
本设计中二燃室的烟气流速取5 m/s ,烟气停留时间为2 s 。
(2) 空气过剩系数的确定由于垃圾组分的特殊性必须采用高的空气过剩系数才有可能实现完全燃烧。
另外,焚烧炉内除应保持合适的焚烧温度、良好的搅拌混合程度、足够的烟气停留时间(所谓三T )外,确保烟气中含有6%~12%氧含量对抑制二恶英的生成十分重要。
基于上述诸多原因,通过采取过剩50%~90%的空气量,即空气过剩系数 1.311.5α=~。
回转窑和二燃室设计值计算依据:烟气量和燃料消耗量方法:试算法 思路:按热容积负荷设计值范围取值,求出有效体积,得到烟气流速并校核;若烟气流速不合理,再假定热容积负荷,直至得到合理的烟气流速。
1. 回转窑设计值 V=Vq Q B d • -------张林《危险废物焚烧处置的理论和实践》 V:窑体有效容积,m 3B : 危废处置量, kg/hQ d : 物料低位发热量, kJ/kgq V :容积热负荷, kJ/kg ·h根据回转窑设计手册,q v 一般取值在(25- 45) x 104 kJ/kg ·h ---高明智《炼化油泥回转窑焚烧工艺设计》先假设q v =40 x 104 kJ/kg ·h :则回转窑有效容积V=hm kJ kg kJ h kg •⨯⨯⨯34/1040/12540%80/1000=25m 3 取安全系数: V=3302.125m =⨯按长径比L/D=4计算,πr 2 x L=V ,则r=,L=校核回转窑内烟气停留时间: 由化工环保手册P488 例题:V=3600273)273(⨯+T Gt G: 烟气量, Nm 3/hV :燃烧室有效容积, m 3T :燃烧室温度, ºCt: 烟气停留时间,s公式转换:t=)273(3600273T G V +⨯⨯ G 在excel 计算表中已求得为kg=5450m 3/h则t=)850273(5450303600273+⨯⨯⨯= s 由停留时间计算烟气流速vV=tL 则烟气流速v== m/s 。
根据张绍坤《回转窑处理危险废物的工程设计》,回转窑烟气流速应在s ,停留时间约为2s ;而张林的《危险废物焚烧处置的理论和实践》中烟气流速仅为s 、停留时间达到。
综合以上,目前保留该烟气流速和停留时间。
以上体积、半径等均按假设的热负荷容积计。
综上:容积负荷为假设的值q v =40 x 104 kJ/kg ·h ,回转窑 设计值 单位内径m 高度m 烟气停留时间s2. 二燃室设计值。
生活垃圾焚烧系统焚烧炉的设计计算1.1 焚烧炉的设计初始参数(1) 日处理量:150 t/d =6.25 t/h =6250 kg/h (2) 燃烧室热负荷: 4(815)10⨯~3/()kcal m h ⋅,故本设计中取燃烧室热负荷为41210⨯3/()kcal m h ⋅。
(3) 生活垃圾元素分析,如表1.1所示。
表1.1 垃圾元素分析(%)项目 数值 项目 数值C19.75 H 1.56N 0.48 S 0.28 O 9.61 Cl 0.23 A 12.4 W 56(4) 垃圾焚烧炉设计规范,如表1.2所示。
表1.2 焚烧炉设计参数1.2 焚烧炉基本参数的确定(1) 炉温的确定炉温代表垃圾的焚烧温度,合适的焚烧温度能使垃圾中有害组分在高温下氧化、分解,适当提高焚烧温度可抑制黑烟的产生,但过高的焚烧温度会增加垃圾中金属的挥发量和NOx 物的生成量,因此不能随意提高焚烧温度。
根据垃圾的物料组成和对有害物的有效去除选择垃圾的焚烧温度:一般垃圾焚烧温度:850~ 1 000 ℃含氰化物垃圾:850~ 900 ℃ 含氯化物垃圾:800~ 850 ℃去除二恶英的焚烧温度:≥925 ℃上述焚烧温度多通过增设二燃室引入一燃室富含可燃气的烟气进行二次燃烧后取得,初步认为: 垃圾发热量低于5500 KJ/kg 时,如不附加燃料将难以达到1000 ℃炉温。
二燃室内烟气流速取4~6 m/s ,在保证烟气流速≥2 s 的条件下确定二燃室高度或长度。
本设计中二燃室的烟气流速取5 m/s ,烟气停留时间为2 s 。
(2) 空气过剩系数的确定由于垃圾组分的特殊性必须采用高的空气过剩系数才有可能实现完全燃烧。
另外,焚烧炉内除应保持合适的焚烧温度、良好的搅拌混合程度、足够的烟气停留时间(所谓三T )外,确保烟气中含有6%~12%氧含量对抑制二恶英的生成十分重要。
基于上述诸多原因,通过采取过剩50%~90%的空气量,即空气过剩系数 1.311.5α=~。