材料力学习题册答案-第13章-能量法
- 格式:doc
- 大小:819.04 KB
- 文档页数:8
第一章 绪论一、是非判断题1.1 ( × );1.2 ( × );1.3 ( × );1.4 ( ∨ );1.5 ( ∨ );1.6 ( ∨ ) 1.7 ( ∨ );1.8 ( × );1.9 ( × );1.10 ( ∨ );1.11 ( ∨ )1.12 ( ∨ );1.13 ( × );1.14 ( ∨ );1.15 ( ∨ ) ;1.16 ( × )二、填空题1.1 杆件 变形 , 应力,应变 。
1.2 外力的合力作用线通过杆轴线 , 沿杆轴线伸长或缩短 。
1.3 受一对等值,反向,作沿剪切面发生相对错动 , 沿剪切面发生相对错动 。
1.4 外力偶作用面垂直杆轴线 。
任意二横截面发生绕杆轴线的相对转动 。
1.5 外力作用线垂直杆轴线,外力偶作用面通过杆轴线 , 梁轴线由直线变为曲线 。
1.6 包含两种或两种以上基本变形的组合 。
1.7 强度 , 刚度 , 稳定性 。
1.8 强度 , 刚度 , 稳定性 。
1.9 连续性 , 均匀性 , 各向同性 。
1.10 连续性假设 。
应力 、 应变 变形等 。
1.11 拉伸 , 压缩 , 弯曲 。
1.12 2α ; α-β ; 0 。
三、选择题1.1 1 。
1.2 C 。
1.3 C 。
四、计算题1.10=A X ∑=0X FF S =⇒∑=0Y 0=-F Y A F Y A =⇒∑=0A M 0=--FL M FL M -=⇒y x解:1. 求A 端的反力: 2. 求1-1截面的内力: ∑=0Y 0=F F S-∑=01C M 02=--/FL M 2/FL M -=⇒X A M1.2第二章 拉伸、压缩与剪切一、是非判断题2.1 ( × );2.2 ( ×);2.3 ( × );2.4. ( ×);2.5 ( × );2.6 ( × ) 2.7 ( × );2.9 ( × );2.10 ( × );2.11( × );2.12( ∨ )二、填空题2.1 2.22.3 最大工作应力σmax 不超过许用应力[σ] , 强度校核 ; 截面设计 ; 确定许可载荷 。
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
第十三章 能量法13-2 图示变宽度平板,承受轴向载荷F 作用。
已知板件厚度为δ,长度为l ,左、右端的截面宽度分别为b 1与b 2,材料的弹性模量为E ,试用能量法计算板件的轴向变形。
题13-2图解:对于变截面拉压板件,应变能的表达式为x x b E F x x EA F V lld )(2d )(202N02N⎰⎰==δε(a)由图可知,截面x 的宽度为x lb b b x b 121)(-+= 代入式(a ),并考虑到F F =N ,于是得121221212 0 ln )(2d 21b b b b E δlF x x l b b b δF E V lε-=⎪⎭⎫ ⎝⎛-+=⎰设板的轴向变形为∆l ,则根据能量守恒定律可知, 12122ln )(22Δb b b b E δl F l F -= 由此得1212ln )(Δb b b b E δFll -=13-4图示结构,承受铅垂载荷F 作用。
已知杆BC 与DG 为刚性杆,杆1与2为弹性杆,且各横截面的拉压刚度均为EA ,试用能量法计算节点D 的铅垂位移。
题13-4图解: 1. 轴力计算未知支反力四个,未知轴力两个,即未知力共六个,而独立或有效平衡方程也为六个,故为一静定问题。
设杆1与杆2均受拉,则刚性杆BC 与DG 的受力如图b 所示。
由平衡方程 02 ,0N2N1=⋅+⋅=∑a F a F M B 022 ,0N2N1=⋅-⋅-⋅=∑a F a F a F M G得34N1F F =, 32N2FF -= 2. 铅垂位移计算 结构的应变能为EA l F EA l F EA l F EA l F V ε9103234222222222N 21N =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=+= 设节点D 的铅垂位移∆Dy 与载荷F 同向,因此,载荷F 所作的功为2DyF ΔW =根据能量守恒定律,于是有EAlF F ΔDy 91022= 由此得节点D 的铅垂位移为()↓=920EAFlΔDy 13-5 图a 所示圆柱形大螺距弹簧,承受轴向拉力F 作用。
班级学号姓名
1图示桁架各杆的材料相同,截面面积相等。
试求在F力作用下,桁架的应变能。
2计算图示各杆的应变能。
班级学号姓名
3用互等定理求解题。
试求图示各梁的截面B的挠度和转角,EI为常数。
4图示刚架的各杆的EI皆相等,试求截面A,B的位移和截面C的转角。
班级学号姓名
5图示桁架各杆的材料相同,截面面积相等。
在载荷F作用下,试求节点B与D间的相对位移。
6图示桁架各杆的材料相同,截面面积相等。
试求节点C处的水平位移和垂直位移。
班级学号姓名
7刚架各部分的EI相等,试求在图示一对F力作用下,A,B两点之间的相对位移,A,B两截面的相对转角。
班级学号姓名
8等截面曲杆如图所示。
试求截面B的垂直位移和水平位移以及截面B的转角。
9等截面曲杆BC的轴线为四分之三的圆周。
若AB杆可视为刚性杆,试求在F力作用下,截面B的水平位移及垂直位移。
班级学号姓名
10在图示曲拐的端点C上作用集中力F。
设曲拐两段材料相同且均为同一直径的圆截面杆,试求C点的垂直位移。
11正方形刚架各部分的EI相等,GIt也相等。
E处有一切口。
在一对垂直于刚架平面的水平力F作用下,试求切口两侧的相对水平位移δ。
班级学号姓名
12轴线为水平平面内四分之一圆周的曲杆如图所示,在自由端B作用垂直载荷F。
设EI和GIp已知,试求截面B在垂直方向的位移。
13平均半径为R的细圆环,截面为圆形,其直径为d。
F力垂直于圆环中线所在的平面。
试求两个F力作用点的相对线位移。
第 十三 章 能 量 法一、选择题1.一圆轴在图1所示两种受扭情况下,其( A )。
A 应变能相同,自由端扭转角不同;B 应变能不同,自由端扭转角相同;C 应变能和自由端扭转角均相同;D 应变能和自由端扭转角均不同。
(图1)2.图2所示悬臂梁,当单独作用力F 时,截面B 的转角为θ,若先加力偶M ,后加F ,则在加F 的过程中,力偶M ( C )。
A 不做功; B 做正功;C 做负功,其值为θM ;D 做负功,其值为θM 21。
3.图2所示悬臂梁,加载次序有下述三种方式:第一种为F 、M 同时按比例施加;第二种为先加F ,后加M ;第三种为先加M ,后加F 。
在线弹性范围内,它们的变形能应为( D )。
A 第一种大; B 第二种大; C 第三种大; D 一样大。
4.图3所示等截面直杆,受一对大小相等,方向相反的力F 作用。
若已知杆的拉压刚度为,材料的泊松比为μ,则由功的互等定理可知,该杆的轴向变形为EAFlμ,l 为杆件长度。
(提示:在杆的轴向施加另一组拉力F 。
) A 0; BEAFb; a2MMaMCEAFb ; D 无法确定。
F MABCbFF(图2) (图3)二、计算题1.图示静定桁架,各杆的拉压刚度均为相等。
试求节点C 的水平位移。
aaPCBAD解:解法1-功能原理,因为要求的水平位移与P 力方向一致,所以可以用这种方法。
由静力学知识可简单地求出各杆的内力,如下表所示。
()()EAaP EAPa EA Pa P C 22222212222++=∆可得出:()EAPaC122+=∆ 解法2-卡氏定理或莫尔积分,这两种方法一致了。
在C 点施加水平单位力,则各杆的内力如下表所示。
杆i NiNi l i i i l N N ⋅⋅ P 1 a Pa P1 a PaaP 2-2-a 2 Pa 220 0 a1EAPa)222(+则C 点水平位移为:()EAPaC 122+=∆2.图示刚架,已知各段的拉压刚度均为,抗弯刚度均为。
第 十三 章 能 量 法
一、选择题
1.一圆轴在图1所示两种受扭情况下,其( A )。
A 应变能相同,自由端扭转角不同;
B 应变能不同,自由端扭转角相
同;
C 应变能和自由端扭转角均相同;
D 应变能和自由端扭转角均不同。
(图1)
2.图2所示悬臂梁,当单独作用力F 时,截面B 的转角为θ,
若先加力偶M ,后加F ,则在加F 的过程中,力偶M ( C )。
A 不做功; B 做正功;
C 做负功,其值为θM ;
D 做负功,其值为θM 2
1。
3.图2所示悬臂梁,加载次序有下述三种方式:第一种为F 、
M 同时按比例施加;第二种为先加F ,后加M ;第三种为先
加M ,后加F 。
在线弹性范围内,它们的变形能应为( D )。
A 第一种大; B 第二种大; C 第三种大; D 一样大。
4.图3所示等截面直杆,受一对大小相等,方向相反的力F 作
用。
若已知杆的拉压刚度为,材料的泊松比为μ,则由功的互等定理可知,该杆的轴向变形为
EA
Fl
μ,l 为杆件长度。
(提示:
在杆的轴向施加另一组拉力F 。
)
A 0;
B EA
Fb ;
C
EA
Fb ; D 无法确定。
(图3)
二、计算题
1.图示静定桁架,各杆的拉压刚度均为相等。
试求节点C 的水
平位移。
解:解法1-功能原理,因为要求的水平位移与P 力方向一致,所以可以用这种方法。
由静力学知识可简单地求出各杆的内力,如下表所示。
(
)()
EA
a
P EA
Pa EA Pa P C 22222212
2
2
2
++=∆
可得出:()
EA
Pa
C
122+=
∆ 解法2-卡氏定理或莫尔积分,这两种方法一致了。
在C 点施加水平单位力,则各杆的内力如下表所示。
则C 点水平位移为:()
EA
Pa
C 122+=
∆
2.图示刚架,已知各段的拉压刚度均为,抗弯刚度均为。
试求
A 截面的铅直位移。
解:采用图乘法,如果不计轴向拉压,在A 点施加单位力,则刚架内力图和单位力图如图所示。
h Fl Fl l h Fl l l Fl EI A 233
1
3221+=⋅⋅+⋅⋅=
∆ 如果考虑轴力影响,则各杆的内力如下表所示。
EA Fh
dx EA F dx EA N N dx EA N N h h BC BC l
AB AB AN
=--+=+=∆⎰⎰⎰202010)1)((0
故A 点总的铅直位移为:
EA
Fh
EI h Fl Fl A ++=∆3323
3.试求图示悬臂梁B 截面的挠度和转角(梁的为已知常数)。
B
解:应用图乘法,在B 点分别加单位力和单位力偶。
它们的内力图如图所示。
⎪⎭⎫ ⎝⎛-=⎪⎭
⎫ ⎝⎛-⋅⋅
=∆4642
313
2
a l qa a l qa a EI B
6
12313
2qa qa a EI B =
⋅⋅=θ
4.图示刚架,已知与。
试用莫尔积分法或图乘法计算B 截面的
垂直位移和转角θB 。
解:应用图乘法,如果不计轴向拉压,在B 点分别加单位力和单位力偶。
它们的内力图如图所示。
852432314
22qa a a qa a qa a EI B =
⋅⋅+⋅⋅=∆
3
21212313
22qa a qa qa a EI B =
⋅⋅+⋅⋅=θ
如果考虑轴向拉压,解法同第2题,略。
5.如图所示刚架受一对平衡力F 作用,已知各段的相同且等于
常量,试用图乘法求两端A 、B 间的相对转角。
Fa
B
A
Fa
Fa
1
1
解:应用图乘法,在A 、B 点加一对单位力偶。
它们的内力图如图所示。
221212
1
Fa a Fa a Fa EI AB =⋅⋅+⋅⋅⋅=
θ
6.图示刚架,已知各段的抗弯刚度均为。
试计算B 截面的水平
位移和C 截面的转角。
P
A
Pl Pl-M
解:应用图乘法,在B 截面加一水平单位力,在C 截面加一单位力偶,它们的内力图如图所示。
()2331
232213221Ml Pl l l M Pl l l Pl l l Pl EI B -=⋅⋅-+⋅⋅+⋅⋅=∆ ()()l M Pl l M Pl EI AB
-=⋅⋅-=3
1
3221θ。