高性能烧结钕铁硼磁体的研究与开发(一)
- 格式:pdf
- 大小:371.93 KB
- 文档页数:5
烧结高性能钕铁硼永磁材料制备工艺的研究马红雷;孔祥伟【摘要】钕铁硼为第三代永磁材料,应用广泛.阐述了传统的钕铁硼永磁体的制造工艺方法,提出制备钕铁硼材料的新技术.重点讨论了采用速凝厚片工艺、氢爆工艺、并结合添加抗氧化剂、润滑剂、Ho元素和Dy元素等工艺方法,制备高性能的烧结钕铁硼永磁材料,分析制备工艺对永磁体显微组织结构和磁性能的影响.【期刊名称】《电镀与精饰》【年(卷),期】2016(038)011【总页数】6页(P15-19,28)【关键词】钕铁硼永磁体;制备工艺;稀土;磁性能【作者】马红雷;孔祥伟【作者单位】河南能源化工集团永城职业学院矿业工程系,河南永城476600;河南能源化工集团永城职业学院矿业工程系,河南永城476600【正文语种】中文【中图分类】TF125.8钕铁硼是第三代永磁材料,它是以Nd2Fe14B化合物为基体,含有少量富硼相、富钕相以及少量杂质(α-Fe、氯化物、空洞)的永磁材料,主要成分为稀土钕(Nd)、铁(Fe)、硼(B)。
[1-8]钕铁硼永磁材料的试样和产品性能均为永磁材料中最高的,其机械强度也比其它永磁材料高很多,其应用领域和发展前景非常可观。
[1-7] 我国是钕铁硼永磁体的产量大国,但不是强国,因为国内多数钕铁硼永磁体生产企业的设备陈旧、工艺技术落后等原因,生产的产品在性能和稳定性方面落后于发达国家,致使国产的永磁产品一直不能进入钕铁硼永磁体的主流应用领域[1-4]。
基于这种情况,本文在分析总结了制备永磁体过程中采用速凝厚片工艺、氢爆工艺、并结合添加抗氧化剂、润滑剂、Ho元素和Dy元素等工艺对永磁体显微组织结构、磁性能影响的基础上,制备了价格低、性能高的烧结钕铁硼永磁材料。
1.1 实验设备FMI-I-500R真空熔炼铸片炉;YS200型氢碎炉;400AFM-R型气流磨;LDJ320/1500-300YS冷等静压机;VS-200RPA烧结炉;JSM5910型电子扫描电镜(日本);NIM-10000型磁特性测量仪(中国计量科学研究院);普通电子秤,钢筋切断机,抛光机。
烧结钕铁硼永磁材料
烧结钕铁硼永磁材料是一种重要的永磁材料,具有优异的磁性能和广泛的应用
前景。
它由钕铁硼微粉和一定量的添加剂经过混合、压制、烧结等工艺制成,具有高能积、高矫顽力和良好的抗腐蚀性能。
本文将从材料组成、制备工艺、磁性能和应用领域等方面对烧结钕铁硼永磁材料进行详细介绍。
烧结钕铁硼永磁材料的主要组成是钕铁硼微粉和添加剂。
钕铁硼微粉是该材料
的主要成分,其磁性能决定了烧结钕铁硼永磁材料的性能优劣。
添加剂的种类和含量对材料的磁性能、力学性能和耐腐蚀性能等都有重要影响,因此在制备过程中需要严格控制添加剂的种类和含量。
制备工艺是影响烧结钕铁硼永磁材料性能的重要因素之一。
制备工艺包括原料
的选择和处理、混合、压制、烧结等多个环节。
其中,烧结是制备过程中最关键的环节,直接影响着材料的磁性能和力学性能。
因此,优化烧结工艺对提高烧结钕铁硼永磁材料的性能至关重要。
烧结钕铁硼永磁材料具有优异的磁性能,包括高能积、高矫顽力、良好的抗磨
损性能等。
这使得它在电机、仪器仪表、汽车、航空航天等领域有着广泛的应用。
在电机领域,烧结钕铁硼永磁材料可以大大提高电机的功率密度和效率,使得电机在小型化、轻量化方面有了更大的突破。
在航空航天领域,烧结钕铁硼永磁材料的高矫顽力和抗磨损性能使得它成为航空发动机中的理想材料。
综上所述,烧结钕铁硼永磁材料具有重要的应用价值和广阔的市场前景。
通过
优化材料组成、制备工艺和应用技术,可以进一步提高烧结钕铁硼永磁材料的性能,拓展其在更多领域的应用,推动永磁材料技术的发展和进步。
烧结钕铁硼永磁材料烧结钕铁硼(NdFeB)永磁材料是一种重要的稀土永磁材料,具有高磁能积、高矫顽力、良好的抗腐蚀性和优异的机械性能,被广泛应用于电机、传感器、声学器件等领域。
本文将对烧结钕铁硼永磁材料的制备工艺、性能特点及应用领域进行介绍。
烧结钕铁硼永磁材料的制备工艺主要包括原料配比、混合研磨、成型压制、烧结等步骤。
首先,将氧化铁、钕铁合金粉末和硼酸盐按一定的化学计量比混合均匀,然后进行球磨或气流粉碎,以提高粉末的活性和均匀度。
接下来,将混合粉末通过模具成型,并在一定的温度和压力下进行烧结,使其晶粒长大并形成致密的结构。
最后,通过热处理和表面处理等工艺,得到具有一定形状和性能要求的烧结钕铁硼永磁材料。
烧结钕铁硼永磁材料具有高磁能积、高矫顽力、良好的抗腐蚀性和优异的机械性能。
其中,高磁能积是指在单位体积内所储存的磁能量,是衡量永磁材料性能优劣的重要指标,烧结钕铁硼永磁材料的高磁能积使其在小型化和轻量化设备中得到广泛应用。
高矫顽力则表明材料在外加磁场作用下不易磁化和去磁化,具有良好的稳定性。
此外,烧结钕铁硼永磁材料还具有良好的抗腐蚀性和优异的机械性能,能够满足不同应用场合的要求。
烧结钕铁硼永磁材料被广泛应用于电机、传感器、声学器件等领域。
在电机领域,烧结钕铁硼永磁材料可以制成各种形状和规格的永磁体,用于直流电机、步进电机、无刷直流电机等,广泛应用于家用电器、汽车、航空航天等领域。
在传感器领域,烧结钕铁硼永磁材料可以制成微型传感器,用于测量和控制系统中,具有灵敏度高、稳定性好的特点。
在声学器件领域,烧结钕铁硼永磁材料可以制成扬声器、耳机等产品,具有高音质和高灵敏度。
总之,烧结钕铁硼永磁材料具有制备工艺简单、性能优异、应用广泛的特点,是一种重要的永磁材料。
随着科学技术的不断发展,烧结钕铁硼永磁材料在新能源、新材料等领域的应用前景将更加广阔。
钕铁硼永磁材料的研究进展及共28页文档钕铁硼(NdFeB)永磁材料是目前商业化程度最高的永磁材料之一,具有优异的磁性能和广泛的应用前景。
钕铁硼磁体以其高矫顽力、高磁能积和良好的抗腐蚀性能而备受关注。
以下是钕铁硼永磁材料研究的一些最新进展。
首先,钕铁硼磁体组织和显微结构的控制是提高其性能的重要途径之一、通过调控氧含量、烧结温度和烧结时间等参数,可以控制钕铁硼磁体的晶粒长大和晶界微观结构,从而获得更高的磁性能。
此外,引入适量的添加剂,如镁、铝、硅等,也能够改善钕铁硼磁体的微观结构和磁性能。
其次,纳米结构在钕铁硼永磁材料研究中也占据重要的位置。
纳米颗粒的制备方法包括溶胶凝胶法、化学沉淀法、球磨法等。
纳米颗粒具有较高的自旋翻转能量和较低的磁晶各向异性,能够显著提高材料的矫顽力和磁能积。
因此,钕铁硼纳米材料在高性能磁体、磁力传感器和磁记录器等领域有着广阔的应用前景。
此外,磁化逆冲过程和磁化机制的研究也是钕铁硼永磁材料研究的热点之一、通过磁化逆冲过程的研究,可以深入了解材料的磁化行为和磁性能退化机制,并为提高钕铁硼磁体的温度稳定性和抗辐照性能提供参考。
此外,开展对单晶和多晶钕铁硼磁体在不同磁场和温度下的磁化机制研究,对于解决钕铁硼磁体在实际应用中的损耗问题也具有重要意义。
最后,环境友好型钕铁硼磁体的研究也备受关注。
由于传统的钕铁硼磁体中添加了大量的稀土元素和有毒元素,对环境造成了严重的污染。
因此,研究人员致力于开发环境友好型钕铁硼磁体,通过优化晶界和添加替代元素,实现钕铁硼磁体的非稀土化和降低有毒元素的含量。
综上所述,钕铁硼永磁材料的研究在制备工艺、材料结构、磁性能和环境友好性等方面都有了长足的进展。
随着对材料微观结构和磁化机制的深入研究,钕铁硼磁体的性能将进一步提高,应用领域也将进一步扩展。
钕铁硼磁体晶体扩散制备方法的研发全文共四篇示例,供读者参考第一篇示例:钕铁硼磁体是一种具有优异磁性性能的稀土永磁材料,具有磁能积高、矫顽力强、抗腐蚀性好等优点,广泛应用于电机、传感器、声学器件等领域。
由于其具有颗粒结构,晶体不稳定,易受影响而导致磁性能下降,因此钕铁硼磁体必须经过特殊的处理方法来提高晶体结构的稳定性和磁性能。
在当前的研究中,晶体扩散制备方法成为了研究的热点之一。
该方法通过在晶体表面形成一层薄膜,使晶体表面的缺陷得到修复,从而提高晶体的稳定性和磁性能。
本文将详细介绍钕铁硼磁体晶体扩散制备方法的研究现状及发展趋势。
一、钕铁硼磁体晶体扩散制备方法的研究现状1. 离子注入技术离子注入技术是一种常用的晶体扩散制备方法,通过在晶体表面注入离子,使晶体表面形成一层薄膜,修复表面缺陷,改善晶体的稳定性和磁性能。
离子注入技术可以精确定位注入,控制注入深度和浓度,使得晶体表面的处理更加精细化,具有较高的制备精度和效率。
2. 溅射法溅射法是一种使用惰性气体离子轰击晶体表面,使晶体表面原子发生位移、扩散、重组,形成一层薄膜的方法。
该方法能够在晶体表面形成均匀、致密的涂层,提高晶体的稳定性和磁性能。
溅射法需要专门的设备和条件,成本较高,操作复杂。
3. 化学气相沉积法化学气相沉积法是一种利用热化学反应在晶体表面生成一层化学气相沉积物的方法。
该方法能够在晶体表面形成高度纯净、均匀的薄膜,修复晶体表面缺陷,提高晶体的稳定性和磁性能。
化学气相沉积法具有制备过程简单、成本低廉的优点,是一种较为常用的晶体扩散制备方法。
1. 精细化制备技术随着科技的不断发展,晶体扩散制备方法也在不断创新。
未来的研究将重点关注晶体表面处理的精细化制备技术,通过提高制备精度、控制晶体表面结构,进一步提高钕铁硼磁体的稳定性和磁性能。
2. 多功能性涂层未来的研究将致力于开发多功能性涂层,通过在晶体表面形成具有特定功能的涂层,如抗磨损、抗腐蚀、导热性等,进一步提高钕铁硼磁体的性能和稳定性。
烧结高性能稀土钕铁硼磁体制备工艺分析发布时间:2021-03-17T02:25:00.395Z 来源:《中国科技人才》2021年第4期作者:张楠[导读] 现今,国外制造商具有生产N50,N52和N55品牌产品的能力,而我国的主要产品仍是N45以下的低档产品,产品的一致性和稳定性方面还存在很多问题。
甘肃稀土新材料股份有限公司甘肃白银 730922摘要:以钕铁硼(Nd-Fe-B)而言,其为第三代稀土永磁材料,存在着体积小,重量轻,磁通密度高,温度系数高和动态恢复特性好的特点。
它是迄今为止性价比最高的磁体,被称为“磁体之王”,广泛用于计算机行业和其他工业领域。
针对国产化设备制备高性能钕铁硼磁体产品一致性和稳定性不高这一行业焦点问题,以N52品牌磁体的生产过程为典型的测试示例,研究合金熔炼,氢破制粉,烧结和成型过程。
磁铁材料的关键控制参数会影响磁铁材料的微观结构和磁性能,总结其影响因素的一般规则,并对相关影响因素进行均衡的分析和讨论,然后提出总体思路和计划方案优化。
关键词:烧结高性能;钕铁硼磁;制备工艺1绪论现今,国外制造商具有生产N50,N52和N55品牌产品的能力,而我国的主要产品仍是N45以下的低档产品,产品的一致性和稳定性方面还存在很多问题。
为了解决这些问题,国内外许多学者进行了研究,并在切屑纺丝,氢气粉碎,气流粉碎和等静压等设备改进和技术创新方面取得了重大突破。
在上述研究的基础上,本文以国产设备为基础,通过新技术的应用和开发,制备出高性能的稀土永磁材料,从而提高了稀土资源的利用率,增加产品附加值,增强行业竞争力。
2试验方法2.1试验材料制备稀土永磁材料成分为:Pr Nd 30.7%(wt),B 0.97%(wt),Cu 0.15%(wt),Ga 0.20%(wt),Zr 0.10%(wt),Go 0.50%(wt),其余为高纯铁 Fe。
2.2试验工艺按比例称取原材料投入真空熔炼炉中进行熔炼,浇铸到冷却辊轮进行铸片。
烧结钕铁硼技术研发及产业化项目1.引言1.1 概述烧结钕铁硼是一种稀土永磁材料,具有高磁能积、高剩磁和高矫顽力等优良性能,广泛应用于电机、发电机、传感器等领域。
然而,烧结钕铁硼的技术研发和产业化项目一直备受关注。
本文将对烧结钕铁硼技术研发及产业化项目进行详细介绍和分析。
在磁性材料领域,烧结钕铁硼以其卓越的性能和广泛的应用范围而闻名。
其具有极高的磁能积,可以产生强大的磁场,在电机和发电机等领域有着重要的应用。
此外,烧结钕铁硼还具有高剩磁和高矫顽力的特点,可以存储更多的磁能,并能够在外部磁场的作用下保持较稳定的磁性。
为了进一步提高烧结钕铁硼的性能和应用范围,许多科研机构和企业已经展开了广泛的技术研发工作。
通过改进材料的配方、优化烧结工艺和加强材料的微观结构控制,研发人员致力于提高烧结钕铁硼的磁性能和稳定性,以适应各种特定的应用需求。
与此同时,烧结钕铁硼技术的产业化项目也得到了广泛的关注和支持。
在产业化过程中,研发人员不仅需要满足产品的高性能和高质量需求,还需要考虑成本控制和大规模生产的难题。
因此,研发人员需要与生产企业密切合作,加强技术转化和工程化应用,以实现烧结钕铁硼技术的商业化和市场化。
本文将对烧结钕铁硼技术的研发和产业化项目进行综合阐述。
首先,我们将介绍烧结钕铁硼技术的基本原理和特点,以及目前研发所取得的成果。
然后,我们将重点关注烧结钕铁硼技术的产业化项目,从技术转化到工程应用,从成本控制到市场开拓,全面探讨烧结钕铁硼技术的商业化路径和发展趋势。
通过对烧结钕铁硼技术研发及产业化项目的深入探讨,我们可以更好地理解其在科技创新和产业发展中的重要性和潜力。
同时,我们也可以为相关研究人员和企业提供有益的参考和指导,促进烧结钕铁硼技术的进一步发展和应用。
在未来的发展中,烧结钕铁硼技术有望在各个领域发挥更重要的作用,为社会经济的可持续发展做出更大的贡献。
1.2 文章结构文章结构部分主要描述了整篇文章的分章节内容和组织结构。
2020年第8期一、研究背景烧结钕铁硼永磁材料是当前磁性能最高、应用最广的一类永磁材料[1]。
然而普通烧结钕铁硼永磁材料的矫顽力相对较低,不能满足永磁电机、高灵敏度传感器等领域的应用需求。
添加重稀土Dy 元素是当前获得高矫顽力烧结钕铁硼材料的主要方法,有关研究表明:无论是合金熔炼时直接添加金属Dy [2],还是通过双合金的形式添加富Dy 的辅合金粉末[3-5],在经过高温熔炼或高温烧结时,Dy 元素会进入主相晶粒内部,形成饱和磁化强度较低的(NdDy)2Fe 14B 相,导致磁体剩磁的显著降低。
本文利用扩散热处理工艺,在相对较低的温度下将Dy 元素引入磁体内部,在提高磁体矫顽力的同时,磁体的剩磁几乎不受影响。
二、实验方法将烧结致密的烧结钕铁硼磁体样品分为两组,一组进行不同温度、不同时间的扩散热处理(埋在DyHx 粉末中热处理),另一组不进行扩散,只进行与前一组温度和时间相同的热处理。
研究了扩散热处理时间对磁体磁性能的影响,利用XRD 测试了扩散热处理前后磁体物相组成的变化,利用SEM 观察了扩散热处理后磁体内部Dy 元素的分布。
三、研究结果表1给出了真空热处理和DyHx 扩散热处理后磁体的磁性能。
由表1可以看出,相比真空热处理磁体,扩散热处理磁体的矫顽力cj 提高了1.85kOe ,增幅为14.2%,剩磁r 降低了0.05kGs ,降幅<0.5%,最大磁能积()max 基本不变。
热处理工艺为900℃×4h+500℃×4h 。
根据热力学理论,温度越高,原子热运动越剧烈,原子扩散速度越快。
图1给出了在不同温度下扩散热处理后磁体的退磁曲线。
由图1可以看出,相比烧结态样品,所有温度的扩散热处理都提高了磁体的矫顽力,而且随烧结钕铁硼磁体扩散热处理工艺与性能研究文/刘友好查善顺(安徽大地熊新材料股份有限公司)摘要:将烧结钕铁硼磁体埋入DyHx 粉末中进行扩散热处理,研究了扩散热理对磁体磁性能、微观结构、物相组成和耐温性的影响。
钕铁硼永磁材料的性能及研究进展胡文艳【摘要】钕铁硼磁体被称为第3代稀土永磁材料,烧结钕铁硼磁体是目前综合磁性能最高的永磁材料.概述了钕铁硼永磁材料的研究进展和应用领域,介绍了钕铁硼磁体的性能及先进制备工艺,指出了目前国内钕铁硼磁体存在的主要问题及今后的研究方向.%As the third generation of rare earth permanent magnet material, the sintered NdFeB magnets possess the best integrated magnetic properties by now. The research progress and application fields of the NdFeB magnets are reviewed. The property and advanced production technologies of NdFeB magnets are introduced. The present problems existing in NdFeB magnet research in China and its research direction are pointed out.【期刊名称】《现代电子技术》【年(卷),期】2012(035)002【总页数】3页(P151-152,155)【关键词】稀土永磁材料;钕铁硼;磁性能;制备工艺【作者】胡文艳【作者单位】电子科技大学物理电子学院国家863计划强辐射实验室,四川成都610054【正文语种】中文【中图分类】TN919-340 引言永磁材料是一种重要的基础功能材料,它的基本功能是提供稳定持久的磁通量,不需要消耗电能,是节约能源的重要手段之一。
同时永磁材料使器械和设备结构简单,制造成本和维修保养成本降低[1]。
因此,永磁材料的应用面越来越广,应用量越来越大。
烧结钕铁硼可行性研究报告 (一)
烧结钕铁硼可行性研究报告
钕铁硼是一种非常稀有的磁性材料,其能够制造出高性能的永磁体,
因此在航空航天、电力、汽车等领域都有广泛应用。
对于永磁体来说,其制造工艺和材料非常关键,因此烧结钕铁硼成为了一种研究热点。
本文将从烧结钕铁硼的可行性出发进行深入研究。
首先我们需要了解烧结钕铁硼与其他永磁体材料的区别。
烧结钕铁硼
其主要成分为Pr+Nd+Fe+B,其有很高的磁性和热稳定性,而且具有高
的能量积和磁能积,因此具有较高的制造难度和极高的制造成本。
相
比之下,钕铁硼、钴铁等其它材料则逐渐被取代。
那么烧结钕铁硼的可行性在哪里呢?我们通过以下方面进行研究:
一、材料的可得性:钕铁硼作为一种稀有磁性材料,其价格非常昂贵。
因此我们需要考虑材料的可得性和价格因素。
目前许多国家都在積極
進行资源改善,烧结钕铁硼的可行性已经得到了验证。
二、烧结难度:烧结钕铁硼比其他永磁体材料烧结难度更大,但是烧
结钕铁硼材料经过改进后,其烧结难度已经大大降低,在实际生产中
已经得到更好的体现。
三、性能比较:钕铁硼材料的性能比其他材料更高,所以在实际应用
中被广泛使用。
因此烧结钕铁硼的比较性能还是比较突出的,其还可
以被改进,达到更高的性能。
综合来看,烧结钕铁硼作为一种新型材料,其可行性已经得到了证明。
虽然所需要的成本和技术比较高,但是其在磁性材料方面具有非常广泛的应用前景。
在未来的发展中,我们相信,钕铁硼烧结材料的研究和生产将会进一步改进,为我们的生产和生活提供更多新面貌。
高性能钕铁硼永磁材料钕铁硼(NdFeB)永磁材料是目前应用最为广泛的永磁材料之一,具有优异的磁学性能和机械性能,被广泛应用于电机、传感器、声学器件、磁力传动等领域。
其高性能主要体现在其较高的矫顽力、磁能积和磁化强度等方面。
本文将从钕铁硼永磁材料的组成、性能及应用等方面进行介绍。
1. 组成。
钕铁硼永磁材料主要由三种元素组成,钕(Nd)、铁(Fe)和硼(B)。
其中,钕元素为永磁材料提供了较高的磁化强度和磁能积,铁元素为其提供了较高的导磁率和矫顽力,而硼元素则起到了稳定晶格结构的作用。
这三种元素的合理比例和制备工艺对于钕铁硼永磁材料的性能具有至关重要的影响。
2. 性能。
钕铁硼永磁材料具有较高的矫顽力和磁能积,因此在实际应用中能够发挥出较强的磁性能。
其矫顽力高,意味着在外界磁场作用下不容易磁化,具有较好的抗磁腐蚀性能;而磁能积高则意味着单位体积内所储存的磁能较大,能够提供更强的磁力。
此外,钕铁硼永磁材料还具有较好的温度稳定性和机械性能,能够在较宽的温度范围内保持稳定的磁性能。
3. 应用。
由于钕铁硼永磁材料具有优异的磁学性能和机械性能,因此被广泛应用于各种领域。
在电机领域,钕铁硼永磁材料能够提供更高的磁化强度和磁能积,使得电机具有更小的体积和更大的输出功率;在传感器领域,其高矫顽力和磁能积能够提高传感器的灵敏度和稳定性;在声学器件和磁力传动领域,钕铁硼永磁材料也能够发挥出其优异的性能,提高设备的性能和效率。
总结。
钕铁硼永磁材料作为一种高性能永磁材料,具有较高的磁化强度和磁能积,以及优异的温度稳定性和机械性能,被广泛应用于电机、传感器、声学器件、磁力传动等领域。
随着材料科学和工艺技术的不断进步,钕铁硼永磁材料的性能还将不断得到提升,为各种领域的应用提供更加可靠和高效的解决方案。
钕铁硼永磁材料的研究一、引言钕铁硼永磁材料是目前最先进的永磁材料之一,具有高能量密度、高磁性能和优良的稳定性等特点,广泛应用于电机、发电机、计算机等领域。
本文将对钕铁硼永磁材料的研究进行全面详细的介绍。
二、钕铁硼永磁材料的基本概念1. 钕铁硼永磁材料是由稀土元素钕(Nd)、过渡金属铁(Fe)和硼(B)组成的合金材料。
2. 钕铁硼永磁材料具有高能量密度、高矫顽力和良好的抗腐蚀性能。
3. 钕铁硼永磁材料可以制成各种形状,如块、片、环等。
三、钕铁硼永磁材料制备方法1. 粉末冶金法:将钕铁硼粉末混合后,在高温下进行压制和烧结。
2. 溶液法:将稀土元素溶解在溶剂中,加入过渡金属和硼化合物,然后进行沉淀、干燥和烧结等工艺步骤。
3. 气相反应法:将气态的钕、铁和硼元素在高温下反应生成钕铁硼永磁材料。
四、钕铁硼永磁材料的性能1. 高能量密度:钕铁硼永磁材料的最大能量积可达到400kJ/m³。
2. 高矫顽力:钕铁硼永磁材料的矫顽力可达到1500kA/m。
3. 良好的耐腐蚀性:钕铁硼永磁材料具有良好的抗腐蚀性,可以在恶劣环境中使用。
五、钕铁硼永磁材料的应用1. 电机领域:钕铁硼永磁材料可以用于制造高效率电机,如风力发电机、电动汽车驱动电机等。
2. 发电机领域:钕铁硼永磁材料可以用于制造高效率发电机,如直驱发电机等。
3. 计算机领域:钕铁硼永磁材料可以用于制造高性能硬盘。
六、钕铁硼永磁材料的发展趋势1. 提高磁性能:目前正在研究提高钕铁硼永磁材料的最大能量积和矫顽力等磁性能。
2. 降低成本:目前正在研究降低制备钕铁硼永磁材料的成本,如采用新型制备方法等。
3. 拓展应用领域:目前正在探索钕铁硼永磁材料在新领域中的应用,如医学、环保等。
七、结论随着科技的不断发展,钕铁硼永磁材料将会在更广泛的领域中得到应用。
未来,我们还需要不断地进行科学研究和创新,以进一步提高钕铁硼永磁材料的性能和拓展其应用领域。
《烧结钕铁硼磁体稀土资源的综合利用及热稳定性研究》篇一一、引言随着现代工业的快速发展,稀土元素在众多领域中发挥着越来越重要的作用。
其中,烧结钕铁硼磁体作为稀土永磁材料的重要代表,其性能的优劣直接关系到电子信息、新能源汽车、风电等领域的进步。
因此,对烧结钕铁硼磁体稀土资源的综合利用及热稳定性进行研究,不仅有助于提高其性能,也具有深远的实际意义。
二、烧结钕铁硼磁体的稀土资源综合利用1. 资源概述烧结钕铁硼磁体主要使用的稀土元素为钕和铁,以及少量的硼等元素。
这些元素主要从稀土矿石中提取,然后通过特定的工艺制成磁体。
在这个过程中,对稀土资源的综合利用显得尤为重要。
2. 综合利用策略(1)优化稀土元素配比:通过调整钕、铁等元素的配比,可以优化烧结钕铁硼磁体的性能。
例如,增加钕的含量可以提高磁体的矫顽力,而适量的铁则能提高磁体的饱和磁化强度。
(2)回收再利用:在磁体制备和使用的过程中,会产生一些废料和边角料。
这些废料经过回收和再处理,可以再次利用,不仅可以节约资源,还可以减少环境污染。
(3)深加工:通过深加工技术,可以将稀土元素应用于更多领域,提高其附加值。
例如,利用稀土元素的发光性能,制备高亮度的LED灯等。
三、热稳定性研究1. 热稳定性的重要性烧结钕铁硼磁体的热稳定性直接影响到其在实际应用中的性能表现。
热稳定性好的磁体在高温环境下仍能保持良好的磁性能,而热稳定性差的磁体则可能发生退磁、磁性丧失等现象。
2. 影响热稳定性的因素(1)合金成分:合金中各元素的配比和含量对热稳定性有重要影响。
例如,适量的硼可以增强合金的晶界强度,提高热稳定性。
(2)制备工艺:制备过程中的烧结温度、时间、气氛等都会影响磁体的热稳定性。
合理的工艺参数可以改善磁体的微观结构,从而提高其热稳定性。
(3)外部环境:外部环境如温度、湿度等也会对磁体的热稳定性产生影响。
例如,高温和高湿环境会加速磁体的老化,降低其热稳定性。
3. 提高热稳定性的措施(1)优化合金成分:通过调整合金中各元素的配比和含量,提高晶界强度和热稳定性。
河北工业大学硕士学位论文双合金法制备高性能烧结钕铁硼工艺研究姓名:张志清申请学位级别:硕士专业:材料工程指导教师:崔春翔;田藏韬20070501双合金法制备高性能烧结钕铁硼工艺研究摘要烧结NdFeB作为第三代稀土永磁材料,自1983年被发现以来,以其高性能(理论磁能积为64MGOe 、高性价比得到迅猛发展。
我国是稀土大国,稀土资源占世界储量的80%,这是我们发展稀土永磁材料的最大优势。
然而,我国大多数企业的生产技术水平远远落后于日本和欧美,产品档次也不高,在市场竞争中处于不利的地位,因此,提高烧结NdFeB磁体的性能档次,是许多烧结NdFeB生产企业必须面对的问题。
在公司现有设备条件下,如何使烧结NdFeB磁体性能达到最高,这是本课题研究的出发点。
本课题从 NdFeB 合金铸锭的组织分析入手,采用双合金工艺,制粉采用氢爆工艺,有效控制工艺参数,以获得磁性能最佳的烧结磁体。
对 NdFeB 合金铸锭的组织分析表明, 现有的冶炼设备生产的铸锭, 在稀土含量降低时,析出大量α-Fe。
铸锭中α-Fe相的存在,不仅减少了铸锭中Nd 2 Fe14B相生成数量,还对后续的制粉、成型工序产生不良影响,特别是严重危害烧结钕铁硼磁体的性能,具体表现在磁体的剩磁、磁能积没有因合金中稀土含量的减少而提高,磁体内禀矫顽力亦受到影响。
为此,采用真空高温退火的方式消除铸锭中α-Fe。
用退火后的铸锭直接制备烧结磁体,磁体的剩磁、磁能积显著提高,但内禀矫顽力比较低。
为此,采用双合金工艺提高磁体的矫顽力。
主合金成分接近Nd 2 Fe14B相,辅合金是富钕相。
主合金经高温退火消除α-Fe。
主、辅合金经氢爆破碎后,按一定的比例进行混合后, 气流磨制粉,磁场取向成型,烧结、回火,制成烧结磁体。
通过对氢爆工艺粉末及磁体组织的分析,采用氢爆破碎,有效改善粉末的性质,提高磁体性能。
对双合金磁体的烧结、回火工艺的研究,双合金磁体的烧结温度高于传统磁体的烧结温度,确定最佳的烧结温度为 1105℃,最佳回火温度为 520℃。