Opacity generalised to transition systems
- 格式:pdf
- 大小:157.95 KB
- 文档页数:14
OpacityGeneralisedtoTransitionSystems
JeremyW.Bryans1,MaciejKoutny1,LaurentMazar´e2,andPeterY.A.Ryan1
1SchoolofComputingScience,UniversityofNewcastle,NewcastleuponTyne,NE17RU,UnitedKingdom2LaboratoireVERIMAG;2,av.deVignates,Gi`eres,France
Abstract.Recently,opacityhasprovedtobeapromisingtechniquefordescribingsecurityproperties.MuchoftheworkhasbeencouchedintermsofPetrinets.Here,weextendthenotionofopacitytothemodeloflabelledtransitionsystemsandgeneraliseopacityinordertobet-terrepresentconceptsfromtheworkoninformationflow.Inparticular,weestablishlinksbetweenopacityandtheinformationflowconceptsofanonymityandnon-interferencesuchasnon-inference.Wealsoinvesti-gatewaysofverifyingopacitywhenworkingwithPetrinets.Ourworkisillustratedbyanexamplemodellingrequirementsuponasimplevotingsystem.Keywords:opacity,non-deducibility,anonymity,non-interference,Petrinets,observablebehaviour,labelledtransitionsystems.
Introduction
Thenotionofsecrecyhasbeenformulatedinvariouswaysinthecomputer
securityliterature.However,twoviewsofsecurityhavebeendevelopedover
theyearsbytwoseparatecommunities.Thefirstonestartsfromthenotion
ofinformationflow,describingtheknowledgeanintrudercouldgaininterms
ofpropertiessuchasnon-deducibilityornon-interference.Thesecondviewwas
initiatedbyDolevandYao’sworkandfocussedinitiallyonsecurityprotocols[7].
Theideahereistodescribeproperlythecapabilityoftheintruder.Somevariants
ofsecrecyappeared,suchasstrongsecrecy,givingmoreexpressivitythanthe
classicalsecrecypropertybutstilllackingtheexpressivityofinformationflow
concepts.
Recently,opacityhasprovedtobeapromisingtechniquefordescribingse-
curityproperties.MuchoftheworkhasbeencouchedintermsofPetrinets.
Inthispaper,weextendthenotionofopacitytothemoregeneralframework
oflabelledtransitionsystems.Whenusingopacitywehavefine-grainedcontrol
overtheobservationcapabilitiesoftheplayers,andweshowonewaythatthese
capabilitiesmaybeencoded.Theessentialideaisthatapredicateisopaqueifan
observerofthesystemwillneverbeabletoestablishthetruthofthatpredicate.
Inthefirstsection,afterrecallingsomebasicdefinitions,wepresentagen-
eralisationofopacity,andshowhowthisspecialisesintothethreepreviously
definedvariants.InSection2,weshowhowopacityisrelatedtopreviouswork
insecurity.InSection3,weconsiderthequestionofopacitychecking.After
restrictingourselvestoPetrinets,wegivesomedecidabilityandundecidability
properties.Asopacityisundecidableassoonasweconsidersystemswithinfinite
numberofstates,wepresentanapproximationtechniquewhichmayprovidea2J.W.Bryans,M.Koutny,L.Mazar´eandP.Y.A.Ryan
wayofmodelcheckingeveninsuchcases.Finally,inSection4,weconsidera
votingscheme,andshowhowtheapproximationtechniquemightbeused.All
theproofsareavailablein[6].
1BasicDefinitions
ThesetoffinitesequencesoverasetAwillbedenotedbyA∗,andtheempty
sequenceby.Thelengthofafinitesequenceλwillbedenotedbylen(λ),and
itsprojectionontoasetB⊆Abyλ|B.
Definition1Alabelledtransitionsystem(LTS)isatupleΠ=(S,L,∆,S0),
whereSisthe(potentiallyinfinite)setofstates,Listhe(potentiallyinfinite)
setoflabels,∆⊆S×L×Sisthetransitionrelation,andS0isthenonempty
(finite)setofinitialstates.WeconsideronlydeterministicLTSs,andsoforany
transitions(s,l,s),(s,l,s)∈∆,itisthecasethats=s1.
ArunofΠisapair(s0,λ),wheres0∈S0andλ=l1...lnisafinitesequenceof
labelssuchthattherearestatess1,...,snsatisfying(si−1,li,si),fori=1,...,n.
Wewilldenotethestatesnbys0⊕λ,andcallitreachablefroms.
Thesetofallrunsisdenotedbyrun(Π),andthelanguagegeneratedbyΠis
definedasL(Π)={λ|∃s0∈S0:(s0,λ)∈run(Π)}.
LetΠ=(S,L,∆,S0)beanLTSfixedfortherestofthissection,andΘbe
asetofelementscalledobservables.Wewillnowaimatmodellingthedifferent
capabilitiesforobservingthesystemmodelledbyΠ.First,weintroduceageneral
observationfunctionandthen,specialiseittoreflectlimitedinformationabout
runsavailabletoanobserver.
Definition2Anyfunctionobs:run(Π)→Θ∗isanobservationfunction.It
iscalledlabel-basedand:static/dynamic/orwellian/m-orwellian(m≥1)if
respectivelythefollowinghold(belowλ=l1...ln):
–static:thereisamappingobs:L→Θ∪{}suchthatforeveryrun(s,λ)
ofΠ,obs(s,λ)=obs(l1)...obs(ln).
–dynamic:thereisamappingobs:L×L∗→Θ∪{}suchthatforeveryrun
(s,λ)ofΠ,obs(s,λ)=obs(l1,)obs(l2,l1)...obs(ln,l1...ln−1).
–orwellian:thereisamappingobs:L×L∗→Θ∪{}suchthatforevery
run(s,λ)ofΠ,obs(s,λ)=obs(l1,λ)...obs(ln,λ).
–m-orwellian:thereisamappingobs:L×L∗→Θ∪{}suchthatfor
everyrun(s,λ)ofΠ,obs(s,λ)=obs(l1,κ1)...obs(ln,κn),wherefori=
1,...,n,κi=lmax{1,i−m+1}lmax{1,i−m+1}+1...lmin{n,i+m−1}.
Ineachoftheabovefourcases,wewilloftenuseobs(λ)todenoteobs(s,λ)
whichispossibleasobs(s,λ)doesnotdependons.
Notethatallowingobstoreturnallowsonetomodelinvisibleactions.The
differentkindsofobservablefunctionsreflectdifferentcomputationalpowerof
theobservers.Staticfunctionscorrespondtoanobserverwhichalwaysinterprets
1AnondeterministicLTScanbetransformedintoadeterministiconethrougharelabelingthatassignsauniquelabeltoeachtransition.