武汉大学电动力学 刘觉平第2章习题答案
- 格式:pdf
- 大小:435.42 KB
- 文档页数:47
习题一1. 计算下列情况的Einstein-de Broglie 波长,指出哪种过程要用量子力学处理:(1)能量为0.025eV 的慢中子24n 1.6710g m -=⨯()被铀吸收;(2)能量为5MeV 的α粒子穿过原子246.6410g m α-=⨯();(3)飞行速度为100m /s 质量40g 为的子弹的运动。
解:(1)由242220m c p c E +=注意到:22481851.6710310 1.503109.3810n m c g m s J Mev ---=⨯⨯⨯⋅=⨯=⨯>>0.025ev 所以202k p E m =利用Einstein-de Broglie 关系: hp λ=得: 0.181nm λ=而吸收过程中作用距离(即核半径)约为飞米量级,比0.181nm 小,因此要用量子力学处理。
(2)由242220m c p c E +=注意到:2855.97610 3.7310m c J Mev α-=⨯=⨯>> 6.4fm λ= 得h εν=利用Einstein-de Broglie 关系hp λ=得: 6.4fm λ=这比原子半径小的多,因此不需用量子力学处理。
(3)显然子弹不是相对论的,故可利用p mv =。
代入Einstein-de Broglie 关系hp λ=得:341.6510m λ-=⨯,这比子弹的运动尺度小的多,不需用量子力学处理。
2. 两个光子在一定条件下可以转化为正、负电子对.如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少?解:若会发生这种转化,由能量守恒的限制,两个光子的能量必须要大于正负电子对的静能即202 1.022e E m c Mev ==。
光子能量h εν=,得到min 2.42fm λ=。
3. 考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕。
利用检测器能定出电子撞击屏幕的位置。
习题二1.将一个位于真空中的带电导体球切成两半,求它们之间的排斥力.设球的半径为0R ,球的电势为0V .答案: .ˆ2200z e V F πε= 解:0004R q V πε=,0004V R q πε=,.00R V εσ=z z eV e R F ˆ2ˆ22002002πεπεσ=⋅= 2.内外半径分别为a 和b 的无限长圆柱形电容器,单位长度荷电为f λ,板间填充电导率为σ的非磁性物质.⑴证明在介质中任何一点传导电流与位移电流严格抵消.因此内部无磁场.⑵求f λ随时间的衰减规律.⑶求与轴相距为r 的地方的能量耗散功率密度.⑷求长度为l 的一段介质总的能量耗散功率,并证明它等于这段的静电能减少率. ⑵;0tf eεσλλ-=⑶22⎪⎪⎭⎫⎝⎛r f πελσ;⑷.ln 222a bl f πελσ 解:⑴r f e r D ˆ2πλ= ,.ˆ2r fe rD E πελε==.ˆ2r f f e r E J πεσλσ== .ˆ21r fD e tr t D J ∂∂=∂∂=λπ对两式求散度,并且由f D ρ=⋅∇ ,0=∂∂+⋅∇tJ ff ρ得f f tλεσλ-=∂∂,所以 0=∂∂+tDJ f 。
因为介质是非磁性的,即H Bμ=,故任意一点,任意时刻有 000=⎪⎪⎭⎫⎝⎛∂∂+=⨯∇=⨯∇t D J H B fμμ⑵由f f tλεσλ-=∂∂,解这个微分方程得 ()tf e t εσλλ-=0⑶()222/r E E J p f f πελσσ==⋅=⑷长度为l 的一段介质耗散的功率为.ln 222222a b l rldr r f baf πελσππελσ=⎪⎪⎭⎫⎝⎛⎰ 能量密度()22/,21r tw D E w f πελσ-=∂∂⋅= 长度为l 的一段介质内能量减少率为.ln 2222ab l rldr t wf baπελσπ⎰=∂∂-3.一很长的直圆筒,半径为R ,表面上带有一层均匀电荷,电荷量的面密度为σ.在外力矩的作用下,从0=t 时刻开始,以匀角加速度α绕它的几何轴转动,如图所示.⑴试求筒内的磁感应强度B;⑵试求筒内接近内表面处的电场强度E和玻印廷矢量S ;⑶试证明:进入这圆筒长为l 一段的S 的通量为⎪⎪⎭⎫⎝⎛2022B l R dt d μπ. 答案: ⑴ωσμR B 0=;⑵ωασμe eRr E r ˆˆ210⨯= ;r e r R S ˆ212320ασμ-= .解:⑴单位面电流ωσσπR lTRl i ==2 ωσμμR ei B z 00ˆ== ⑵在圆筒的横截面内,以轴线为心,r 为半径作一圆,通过这圆面积的磁通量为ωσμπR r S d B s02=⋅=Φ⎰由法拉第定律,得 .21210dtd Rr dt d r E ωσμπ-=Φ-=因为 t αω=所以ασμrR E 021-= 考虑到方向,则有z r e erR E ˆˆ210⨯=ασμ 在筒内接近表面处,z r e eR E ˆˆ2120⨯=ασμ 该处的能流密度为()()z z r R R R e R e eR H E S ˆˆˆ2120ωσασμ⨯⨯=⨯= r et R ˆ212320ασμ-= 负号表明,S 垂直于筒表面指向筒内。
第一章三維歐氏空間中的張量目录:习题1.1 正交坐标系的转动 (2)习题1.2 物理量在空间转动变换下的分类 (9)习题1.3 物理量在空间反演变换下的进一步分类 (10)习题1.4 张量代数 (15)习题1.5 张量分析 (21)习题1.6 Helmholtz定理 (35)习题1.7 正交曲线坐标系 (38)习题1.8 正交曲线坐标系中的微分运算 (42)习题1.11、 设三个矢量,,a b c 形成右(左)旋系,证明,当循环置换矢量,,a b c的次序,即当考察矢量,,(,,)b c a c a b时,右(左)旋系仍保持为右(左)旋系。
证明:()V a b c =⨯⋅,对于右旋系有V>0.当循环置换矢量,,a b c次序时, ()V b c a '=⨯⋅ =()0c a b V ⨯⋅=〉。
(*)所以,右旋系仍然保持为右旋系 同理可知左旋系情况也成立。
附:(*)证明。
由于张量方程成立与否与坐标无关,故可以选取直角坐标系,则结论是明显的。
2、 写出矢量诸分量在下列情况下的变换矩阵:当Cartesian 坐标系绕z 轴转动角度α时。
解:变换矩阵元表达式为 ij i j a e e '=⋅1112212213233233cos ,sin ,sin ,cos ,0,1a a a a a a a a αααα===-===== 故()cos sin 0sin cos 0001R ααααα⎛⎫⎪=- ⎪ ⎪⎝⎭3、 设坐标系绕z 轴转α角,再绕新的y 轴(即原来的y 轴在第一次转动后所处的位置)转β角,最后绕新的z 轴(即原来的z 轴经第一、二次转动后所处的位置)转γ角;这三个角称为Euler 角。
试用三个转动矩阵相乘的办法求矢量诸分量的在坐标轴转动时的变换矩阵。
解:我们将每次变换的坐标分别写成列向量,,,X X X X '''''', 则 ()()(),,z y z X R X X R X X R X αβγ'''''''''''''===∴()()()z y z X R R R X γβα''''''=绕y '-轴转β角相当于“先将坐标系的y '-轴转回至原来位置,再绕原来的y-轴(固定轴)转β角,最后将y-轴转至y '-轴的位置”。
第二章静电场1.一个半径为 R 的电介质球,极化强度为 PKr / r 2 ,电容率为。
( 1)计算约束电荷的体密度和面密度:( 2)计算自由电荷体密度;( 3)计算球外和球内的电势;( 4)求该带电介质球产生的静电场总能量。
解:( 1) p P K(r / r 2 )K [(1/ r 2 ) r r (1/ r 2 )]K / r 2pn ( P 2P 1 ) e rPr RK / R( 2) D 内0 E P P/()fD 内P /()K /(0 )r2( 3) E 内D 内 / P /()E 外 D 外f dVKR e r4 0 r 2 e r(20 )r外E 外 drKR(0 )rrRE 外 drK(ln R )内E 内 drrrR( 4) W1 1K 2R4 r 2 dr12K 2 R 24 r 2drD E dV222 R422 ()r 2( 0)r2 R(1)( K) 22.在平均外电场中置入半径为R 0 的导体球,试用分别变量法求以下两种状况的电势: ( 1)导体球上接有电池,使球与地保持电势差 0 ;( 2)导体球上带总电荷 Q解:( 1)该问题拥有轴对称性, 对称轴为经过球心沿外电场E 0 方向的轴线, 取该轴线为极轴,球心为原点成立球坐标系。
当 RR 0 时,电势知足拉普拉斯方程,通解为(a n R nb n 1 )P n (cos )n R n因为无量远处 E E 0 ,E 0 R cosE 0 RP 1 (cos )所以a 00 , a1E 0 , a n0, (n 2)当RR 0 时,所以E 0 R 0 P 1 (cos )b nP n (cos )n 1nR 0即: 0b 0 / R 0 0,b 1 / R 02 E 0 R 0所以b 0 R 0 (0 ), b 1 E 0 R 03, b n 0, (n 2)0 E 0 R cos R 0 (0 0 ) / RE 0 R 03 cos / R 2(RR 0 )(RR 0 )(2)设球体待定电势为0 ,同理可得0 E 0 R cosR 0 (0 0 ) / RE 0 R 03 cos / R 2(RR 0 )(RR 0 )当RR 0 时,由题意,金属球带电量Qn R RdS2Q(E 0 cosR 02E 0 cos ) R 0 sin d d4R 0 ()所以 (0 ) Q / 4R0 E 0 R cos Q / 4 0 R(E 0 R 03 / R 2 ) cos (RR 0 )Q / 4 0 R ( R R 0 )3. 平均介质球的中心置一点电荷Q f ,球的电容率为,球外为真空, 试用分别变量法求空间电势,把结果与使用高斯定理所得结果比较。