第一章 8字模型与飞镖模型(初中数学)
- 格式:docx
- 大小:61.17 KB
- 文档页数:4
01
8字模型(1)角的8字模型
(2)边的8字模型
02
飞镖模型(1)角的飞镖模型
(2)边的的飞镖模型
03
角平分线模型(1)角平分线上的点向两边做垂线
(2)构造对称全等
(3)角平分线+垂线构造等腰三角形(4)角平分线+平行线
04
截长补短模型
05
三垂直全等模型
06
将军饮马模型(1)定直线与两定点
(2)角与定点
(3)两定点与一定长
07 手拉手模型
08 半角模型
09
中点模型
(1)倍长中线与类中线
(2)知等腰三角形底边中点考虑三线合一(3)知等腰三角形一边中点,考虑中位线定理
(4)知直角三边形斜边中点,构造斜边中线
10
圆中辅助线(1)联结半径构造等腰三角形
(2)构造直角三角形
11
相似模型(1)A、8模型
(2)共边共角型
(3)一线三角型
(4)倒数型
(5)与圆有关的简单相似(6)相似与旋转
12
辅助圆(1)共端点,等线段模型
(2)直角三角形共斜边模型
蚂蚁行程。
中考常用模型归纳和针对性训练:第一:八字模型与飞镖模型第二:角平分线四大模型第三:截长补短第四:手拉手模型第五:三垂直模型第六:将军饮马第七:蚂蚁行程第八:中点四大模型第九:半角模型第十:相似模型①A,8字模型②共边共角型③一线穿三角型④倒数型⑤与圆有关相似型⑥旋转与相似第十一:圆中辅助线11个章节:每个模型有分支讲解分支题型,资料丰富培优八下培优必备如果你喜欢,请转发文章并收藏,然后私聊我第一:八字模型与飞镖模型第二:角平分线四大模型第三:截长补短第四:手拉手模型第五:三垂直模型第六:将军饮马第七:蚂蚁行程第八:中点四大模型第九:半角模型第十:相似模型①A,8字模型②共边共角型③一线穿三角型④倒数型⑤与圆有关相似型⑥旋转与相似第十一:圆中辅助线11个章节:每个模型有分支讲解分支题型,资料丰富培优八下培优必备第一:八字模型与飞镖模型第二:角平分线四大模型第三:截长补短第四:手拉手模型第五:三垂直模型第六:将军饮马第七:蚂蚁行程第八:中点四大模型第九:半角模型第十:相似模型①A,8字模型②共边共角型③一线穿三角型④倒数型⑤与圆有关相似型⑥旋转与相似第十一:圆中辅助线11个章节:每个模型有分支讲解分支题型,资料丰富培优八下培优必备第一:八字模型与飞镖模型第二:角平分线四大模型第三:截长补短第四:手拉手模型第五:三垂直模型第六:将军饮马第七:蚂蚁行程第八:中点四大模型第九:半角模型第十:相似模型①A,8字模型②共边共角型③一线穿三角型④倒数型⑤与圆有关相似型⑥旋转与相似第十一:圆中辅助线11个章节:每个模型有分支讲解分支题型,资料丰富培优八下培优必备第一:八字模型与飞镖模型第二:角平分线四大模型第三:截长补短第四:手拉手模型第五:三垂直模型第六:将军饮马第七:蚂蚁行程第八:中点四大模型第九:半角模型第十:相似模型①A,8字模型②共边共角型③一线穿三角型④倒数型⑤与圆有关相似型⑥旋转与相似第十一:圆中辅助线11个章节:每个模型有分支讲解分支题型,资料丰富培优八下培优必备。
第一章 8字模型与飞镖模型模型1 角的“8”字模型 如图所示,AB 、CD 相交于点O , 连接AD 、BC 。
结论:∠A+∠D=∠B+∠C 。
模型分析8字模型往往在几何综合 题目中推导角度时用到。
模型实例观察下列图形,计算角度:(1)如图①,∠A+∠B+∠C+∠D+∠E= ; (2)如图②,∠A+∠B+∠C+∠D+∠E+∠F= 。
热搜精练1.(1)如图①,求∠CAD+∠B+∠C+∠D+∠E= ; (2)如图②,求∠CAD+∠B+∠ACE+∠D+∠E= 。
2.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= 。
OD C BA 图12图E AB C D E F DC B A O O 图12图E AB C D EDC B A H GE F DC BA模型2 角的飞镖模型 如图所示,有结论: ∠D=∠A+∠B+∠C 。
模型分析飞镖模型往往在几何综合 题目中推导角度时用到。
模型实例如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M 。
探究∠AMC 与∠B 、∠D 间的数量关系。
热搜精练 1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= ;2.如图,求∠A+∠B+∠C+∠D = 。
D CB A M DC B A O135E FD C BA 105OO120D C B A模型3 边的“8”字模型 如图所示,AC 、BD 相交于点O ,连接AD 、BC 。
结论:AC+BD>AD+BC 。
模型实例如图,四边形ABCD 的对角线AC 、BD 相交于点O 。
求证:(1)AB+BC+CD+AD>AC+BD ;(2)AB+BC+CD+AD<2AC+2BD.模型4 边的飞镖模型 如图所示有结论: AB+AC>BD+CD 。
O DCBA ODCB AO C B A模型实例如图,点O 为三角形内部一点。
求证:(1)2(AO+BO+CO )>AB+BC+AC ;(2)AB+BC+AC>AO+BO+CO.热搜精练1.如图,在△ABC 中,D 、E 在BC 边上,且BD=CE 。
8字模型与飞镖模型模型1:角的飞镖模型如图所示,有结论:∠D =∠A +∠B +∠C .C图①模型分析解法一:如图①,作射线AD .∵∠3是△ABD 的外角,∴∠3=∠B +∠1,∵∠4是△ACD 的外角,∴∠4=∠C +∠2∴∠BDC =∠3+∠4,∴∠BDC =∠B +∠1+∠2+∠C ,∴∠BDC =∠BAC +∠B +∠C解法二:如图②,连接BC .∵∠2+∠4+∠D =180°,∴∠D =180°-(∠2+∠4)∵∠1+∠2+∠3+∠4+∠A =180°,∴∠A +∠1+∠3=180°-(∠2+∠4) ∴∠D =∠A +∠1+∠3.(1)因为这个图形像飞镖,所以我们往往把这个模型称为飞镖模型. (2)飞镖模型在几何综合题目中推导角度时使用. 模型实例如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M ,探究∠AMC 与∠B 、∠D 间的数量关系.解答:利用角的飞镖模型如图所示,连接DM 并延长.∵∠3是△AMD 的外角,∴∠3=∠1+∠ADM , ∵∠4是△CMD 的外角,∴∠4=∠2+∠CDM ,∵∠AMC =∠3+∠4 ∴∠AMC =∠1+∠ADM +∠CDM +∠2,∴∠AMC =∠1+∠2+∠ADC .(角的飞镖模型)∵AM 、CM 分别平分∠DAB 和∠DCB ,∴12BAD ∠∠=,22BCD∠∠=, ∴22BAD BCDAMC ADC∠∠∠=++∠,∴()3602B ADC AMC ADC ︒-∠+∠∠=+∠(四边形内角和360°),∴3602B ADCAMC ︒-∠+∠∠=,∴2∠AMC +∠B -∠ADC =360°.练习:1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= .E【答案】230°提示:∠C+∠E+∠D=∠EOC=115º.(飞镖模型),∠A+∠B+∠F=∠BOF=115º.∠A+∠B+∠C+∠D+∠E+∠F=115º+115º=230º 2.如图,求∠A+∠B+∠C+∠D= .AA【答案】220°提示:如图所示,连接BD.∠AED=∠A+∠3+∠1,∠BFC=∠2+∠4+∠C ,∠A+∠ABF+∠C+∠CDE=∠A+∠3+∠1+∠2+∠4+∠C=∠AED+∠BFC=220º模型2 边的“8”字模型如图所示,AC、BD相交于点O,连接AD、BC.结论AC+BD>AD+BC.AC模型分析∵OA+OD>AD①, OB+OC>BC②,由①+②得: OA+OD+OB+OC>BC+AD 即:AC+BD>AD+BC.模型实例如图,四边形ABCD的对角线AC、BD相交于点O。
8字模型与飞镖模型模型1:角的8字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC . 结论:∠A +∠D =∠B +∠C .ODC BA模型分析 证法一:∵∠AOB 是△AOD 的外角,∴∠A +∠D =∠AOB .∵∠AOB 是△BOC 的外角, ∴∠B +∠C =∠AOB .∴∠A +∠D =∠B +∠C . 证法二:∵∠A +∠D +∠AOD =180°,∴∠A +∠D =180°-∠AOD .∵∠B +∠C +∠BOC =180°, ∴∠B +∠C =180°-∠BOC .又∵∠AOD =∠BOC ,∴∠A +∠D =∠B +∠C . (1)因为这个图形像数字8,所以我们往往把这个模型称为8字模型. (2)8字模型往往在几何综合题目中推导角度时用到.模型实例观察下列图形,计算角度:(1)如图①,∠A +∠B +∠C +∠D +∠E =________;图图①FD C BAE EBCDA图③21O AB图④G F 12AB E解法一:利用角的8字模型.如图③,连接CD .∵∠BOC 是△BOE 的外角, ∴∠B +∠E =∠BOC .∵∠BOC 是△COD 的外角,∴∠1+∠2=∠BOC .∴∠B +∠E =∠1+∠2.(角的8字模型),∴∠A +∠B +∠ACE +∠ADB +∠E =∠A +∠ACE +∠ADB +∠1+∠2=∠A +∠ACD +∠ADC =180°.解法二:如图④,利用三角形外角和定理.∵∠1是△FCE 的外角,∴∠1=∠C +∠E . ∵∠2是△GBD 的外角,∴∠2=∠B +∠D .∴∠A +∠B +∠C +∠D +∠E =∠A +∠1+∠2=180°.(2)如图②,∠A +∠B +∠C +∠D +∠E +∠F =________.图②FDCBAE312图⑤P O QA BFC D图⑥21EDCFOBA(2)解法一:如图⑤,利用角的8字模型.∵∠AOP 是△AOB 的外角,∴∠A +∠B =∠AOP .∵∠AOP 是△OPQ 的外角,∴∠1+∠3=∠AOP .∴∠A +∠B =∠1+∠3.①(角的8字模型),同理可证:∠C +∠D =∠1+∠2.② ,∠E +∠F =∠2+∠3.③ 由①+②+③得:∠A +∠B +∠C +∠D +∠E +∠F =2(∠1+∠2+∠3)=360°. 解法二:利用角的8字模型.如图⑥,连接DE .∵∠AOE 是△AOB 的外角, ∴∠A +∠B =∠AOE .∵∠AOE 是△OED 的外角,∴∠1+∠2=∠AOE . ∴∠A +∠B =∠1+∠2.(角的8字模型)∴∠A +∠B +∠C +∠ADC +∠FEB +∠F =∠1+∠2+∠C +∠ADC +∠FEB +∠F =360°.(四边形内角和为360°) 练习:1.(1)如图①,求:∠CAD +∠B +∠C +∠D +∠E = ;图图①OOEEDDCCBBAA解:如图,∵∠1=∠B+∠D ,∠2=∠C+∠CAD , ∴∠CAD+∠B+∠C+∠D+∠E=∠1+∠2+∠E=180°. 故答案为:180° 解法二:(2)如图②,求:∠CAD +∠B +∠ACE +∠D +∠E = .图②OEDCBA解:由三角形的外角性质,知∠BAC=∠E+∠ACE ,∠EAD=∠B+∠D ,又∵∠BAC+∠CAD+∠EAD=180°,∴∠CAD +∠B +∠ACE +∠D +∠E =180°解法二:2.如图,求:∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H = .HGFEDCBA解:∵∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H=∠2,∴∠G+∠D+∠F+∠C+∠E+∠H=∠3+∠4+∠2, ∵∠B+∠2+∠1=180°,∠3+∠5+∠A=180°,∴∠A+∠B+∠2+∠4+∠3=360°, ∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360° 解法二:模型2:角的飞镖模型如图所示,有结论:∠D =∠A +∠B +∠C .ADC图①4321AD 4321AD模型分析解法一:如图①,作射线AD .∵∠3是△ABD 的外角,∴∠3=∠B +∠1,∵∠4是△ACD 的外角,∴∠4=∠C +∠2 ∴∠BDC =∠3+∠4,∴∠BDC =∠B +∠1+∠2+∠C ,∴∠BDC =∠BAC +∠B +∠C 解法二:如图②,连接BC .∵∠2+∠4+∠D =180°,∴∠D =180°-(∠2+∠4)∵∠1+∠2+∠3+∠4+∠A =180°,∴∠A +∠1+∠3=180°-(∠2+∠4) ∴∠D =∠A +∠1+∠3.(1)因为这个图形像飞镖,所以我们往往把这个模型称为飞镖模型. (2)飞镖模型在几何综合题目中推导角度时使用. 模型实例如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M ,探究∠AMC 与∠B 、∠D 间的数量关系.解答:利用角的飞镖模型如图所示,连接DM 并延长.∵∠3是△AMD 的外角,∴∠3=∠1+∠ADM , ∵∠4是△CMD 的外角,∴∠4=∠2+∠CDM ,∵∠AMC =∠3+∠4∴∠AMC =∠1+∠ADM +∠CDM +∠2,∴∠AMC =∠1+∠2+∠ADC .(角的飞镖模型)∵AM 、CM 分别平分∠DAB 和∠DCB ,∴12BAD ∠∠=,22BCD∠∠=, ∴22BAD BCDAMC ADC ∠∠∠=++∠,∴()3602B ADC AMC ADC ︒-∠+∠∠=+∠(四边形内角和360°),∴3602B ADCAMC ︒-∠+∠∠=,∴2∠AMC +∠B -∠ADC =360°.练习:1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= .DE【答案】230°提示:∠C+∠E+∠D=∠EOC=115º.(飞镖模型),∠A+∠B+∠F=∠BOF=115º.∠A+∠B+∠C+∠D+∠E+∠F=115º+115º=230º 2.如图,求∠A+∠B+∠C+∠D= .AA【答案】220°提示:如图所示,连接BD.∠AED=∠A+∠3+∠1,∠BFC=∠2+∠4+∠C ,∠A+∠ABF+∠C+∠CDE=∠A+∠3+∠1+∠2+∠4+∠C=∠AED+∠BFC=220º模型3 边的“8”字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC .结论AC+BD>AD+BC.CAD模型分析∵OA+OD>AD ①, OB+OC>BC ②, 由①+②得: OA+OD+OB+OC>BC+AD 即:AC+BD>AD+BC.模型实例如图,四边形ABCD 的对角线AC 、BD 相交于点O 。
8字模型与飞镖模型模型1:角的8字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC . 结论:∠A +∠D =∠B +∠C .ODC BA模型分析 证法一:∵∠AOB 是△AOD 的外角,∴∠A +∠D =∠AOB .∵∠AOB 是△BOC 的外角, ∴∠B +∠C =∠AOB .∴∠A +∠D =∠B +∠C . 证法二:∵∠A +∠D +∠AOD =180°,∴∠A +∠D =180°-∠AOD .∵∠B +∠C +∠BOC =180°, ∴∠B +∠C =180°-∠BOC .又∵∠AOD =∠BOC ,∴∠A +∠D =∠B +∠C . (1)因为这个图形像数字8,所以我们往往把这个模型称为8字模型. (2)8字模型往往在几何综合题目中推导角度时用到.模型实例观察下列图形,计算角度:(1)如图①,∠A +∠B +∠C +∠D +∠E =________;图图①FD C BAE EBCDA图③21O AB图④G F 12AB E解法一:利用角的8字模型.如图③,连接CD .∵∠BOC 是△BOE 的外角, ∴∠B +∠E =∠BOC .∵∠BOC 是△COD 的外角,∴∠1+∠2=∠BOC . ∴∠B +∠E =∠1+∠2.(角的8字模型),∴∠A +∠B +∠ACE +∠ADB +∠E=∠A +∠ACE +∠ADB +∠1+∠2=∠A +∠ACD +∠ADC =180°.解法二:如图④,利用三角形外角和定理.∵∠1是△FCE 的外角,∴∠1=∠C +∠E .∵∠2是△GBD 的外角,∴∠2=∠B +∠D .∴∠A +∠B +∠C +∠D +∠E =∠A +∠1+∠2=180°.(2)如图②,∠A +∠B +∠C +∠D +∠E +∠F =________.图②FDCBAE312图⑤P O QA BEFC D图⑥21EDCFOBA(2)解法一: 如图⑤,利用角的8字模型.∵∠AOP 是△AOB 的外角,∴∠A +∠B =∠AOP . ∵∠AOP 是△OPQ 的外角,∴∠1+∠3=∠AOP .∴∠A +∠B =∠1+∠3.①(角的8字模型),同理可证:∠C +∠D =∠1+∠2.② ,∠E +∠F =∠2+∠3.③由①+②+③得:∠A +∠B +∠C +∠D +∠E +∠F =2(∠1+∠2+∠3)=360°.解法二:利用角的8字模型.如图⑥,连接DE .∵∠AOE 是△AOB 的外角, ∴∠A +∠B =∠AOE .∵∠AOE 是△OED 的外角,∴∠1+∠2=∠AOE . ∴∠A +∠B =∠1+∠2.(角的8字模型)∴∠A +∠B +∠C +∠ADC +∠FEB +∠F =∠1+∠2+∠C +∠ADC +∠FEB +∠F=360°.(四边形内角和为360°) 练习:1.(1)如图①,求:∠CAD +∠B +∠C +∠D +∠E = ;图图①OOEEDDCCBBAA解:如图,∵∠1=∠B+∠D ,∠2=∠C+∠CAD ,∴∠CAD+∠B+∠C+∠D+∠E=∠1+∠2+∠E=180°. 故答案为:180° 解法二:(2)如图②,求:∠CAD +∠B +∠ACE +∠D +∠E = .图②OEDCBA解:由三角形的外角性质,知∠BAC=∠E+∠ACE,∠EAD=∠B+∠D,又∵∠BAC+∠CAD+∠EAD=180°,∴∠CAD +∠B +∠ACE +∠D +∠E=180° 解法二:2.如图,求:∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H = .HGFEDCBA解:∵∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H=∠2,∴∠G+∠D+∠F+∠C+∠E+∠H=∠3+∠4+∠2,∵∠B+∠2+∠1=180°,∠3+∠5+∠A=180°,∴∠A+∠B+∠2+∠4+∠3=360°, ∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°解法二:模型2:角的飞镖模型如图所示,有结论:∠D =∠A +∠B +∠C .C图①图②模型分析解法一:如图①,作射线AD .∵∠3是△ABD 的外角,∴∠3=∠B +∠1,∵∠4是△ACD 的外角,∴∠4=∠C +∠2∴∠BDC =∠3+∠4,∴∠BDC =∠B +∠1+∠2+∠C ,∴∠BDC =∠BAC +∠B +∠C解法二:如图②,连接BC .∵∠2+∠4+∠D =180°,∴∠D =180°-(∠2+∠4)∵∠1+∠2+∠3+∠4+∠A =180°,∴∠A +∠1+∠3=180°-(∠2+∠4) ∴∠D =∠A +∠1+∠3.(1)因为这个图形像飞镖,所以我们往往把这个模型称为飞镖模型. (2)飞镖模型在几何综合题目中推导角度时使用. 模型实例如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M ,探究∠AMC 与∠B 、∠D 间的数量关系.解答:利用角的飞镖模型如图所示,连接DM 并延长.∵∠3是△AMD 的外角,∴∠3=∠1+∠ADM , ∵∠4是△CMD 的外角,∴∠4=∠2+∠CDM ,∵∠AMC =∠3+∠4 ∴∠AMC =∠1+∠ADM +∠CDM +∠2,∴∠AMC =∠1+∠2+∠ADC .(角的飞镖模型)∵AM 、CM 分别平分∠DAB 和∠DCB ,∴12BAD ∠∠=,22BCD∠∠=, ∴22BAD BCDAMC ADC ∠∠∠=++∠,∴()3602B ADC AMC ADC ︒-∠+∠∠=+∠(四边形内角和360°),∴3602B ADCAMC ︒-∠+∠∠=,∴2∠AMC +∠B -∠ADC =360°.练习:1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= .DE【答案】230°提示:∠C+∠E+∠D=∠EOC=115º.(飞镖模型),∠A+∠B+∠F=∠BOF=115º.∠A+∠B+∠C+∠D+∠E+∠F=115º+115º=230º 2.如图,求∠A+∠B+∠C+∠D= .AA【答案】220°提示:如图所示,连接BD.∠AED=∠A+∠3+∠1,∠BFC=∠2+∠4+∠C ,∠A+∠ABF+∠C+∠CDE=∠A+∠3+∠1+∠2+∠4+∠C=∠AED+∠BFC=220º模型3 边的“8”字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC .结论AC+BD>AD+BC .BCA模型分析∵OA+OD>AD ①, OB+OC>BC ②, 由①+②得: OA+OD+OB+OC>BC+AD 即:AC+BD>AD+BC.模型实例如图,四边形ABCD 的对角线AC 、BD 相交于点O 。
目录1. 8字模型与飞镖模型2.手拉手全等模型3.三垂直全等模型4.角平分线平行线模型5. 角平分线+两垂线段模型6.等腰三角形的存在性问题7.A型、8型相似模型8.一线三等角相似模型8字模型与飞镖模型资料编号:202109012143关键词 8字模型 飞镖模型8字模型如图所示,AC 、BD 相交于点O ,连结AD 、BC ,则有C BD A ∠+∠=∠+∠.OACBD因为这个图形像数字8,所以我们把这个模型称为8字模型. 8字模型的证明:证法一:∵D A AOB ∠+∠=∠ C B AOB ∠+∠=∠ ∴C B D A ∠+∠=∠+∠.(三角形的一个外角等于与它不相邻的两个内角之和) 证法二:∵︒=∠+∠+∠180AOD D A ︒=∠+∠+∠180BOC C B ∴AOD D A ∠-︒=∠+∠180 BOC C B ∠-︒=∠+∠180 ∵BOC AOD ∠=∠ ∴C B D A ∠+∠=∠+∠.点评 8字模型的结论常被用来求角度或证明两个角相等,多出现在几何综合题中.有些复杂的几何问题,应用8字模型的结论,往往会出奇制胜,达到意想不到的效果(见后面的例题).如图所示,有结论:DBABCD∠+∠+∠=∠.因为这个图形像飞镖,所以我们把这个模型称为飞镖模型. 飞镖模型常被用来推导几何图形中角之间的等量关系.AB CD飞镖模型的证明:证法一:延长BC,交AD于点E,如下图所示.∵BADBCD∠+∠=∠∠+∠=∠1,1∴DBABCD∠+∠+∠=∠.证法二:作射线AC,如下图所示.∵DB∠+∠=∠∠+∠=∠42,31∴DB∠+∠+∠+∠=∠+∠4321∴DBBADBCD∠+∠+∠=∠.FBECADAEAE例1. 如图所示,求证:︒=∠+∠+∠+∠+∠180E D C B A .B EC AD证法一:(飞镖模型)设BD 与CE 相交于点F ,如图所示. ∵︒=∠+∠+∠180BFE E B CFD BFE ∠=∠ ∴︒=∠+∠+∠180CFD E B ∵D C A CFD ∠+∠+∠=∠ ∴︒=∠+∠+∠+∠+∠180E D C B A . 证法二:(8字模型) 连结CD ,如图所示,则有21∠+∠=∠+∠E B∵︒=∠+∠+∠180ADC ACD A∴︒=∠+∠+∠+∠+∠18021ADB ACE A ∴︒=∠+∠+∠+∠+∠180E ADB ACE B A . 证法三:(利用三角形内角和定理与外角和定理) ∵︒=∠+∠+∠18021ADB EC ∠+∠=∠∠+∠=∠21 ∴︒=∠+∠+∠+∠+∠180ED C B A .BECDA例2. 如图所示,=∠+∠+∠+∠+∠+∠F E D C B A _________.F CBEAD解法一:(利用8字模型) ∵32∠+∠=∠+∠B A3121∠+∠=∠+∠∠+∠=∠+∠F E D C∴=∠+∠+∠+∠+∠+∠F E D C B A()3212∠+∠+∠∵︒=∠+∠+∠180321∴︒=∠+∠+∠+∠+∠+∠360F E D C B A . 解法二:(利用三角形内角和定理与外角和定理) ∵B A ∠+∠=∠1DC FE ∠+∠=∠∠+∠=∠32∴=∠+∠+∠321F E D C B A ∠+∠+∠+∠+∠+∠ ∵︒=∠+∠+∠360321∴︒=∠+∠+∠+∠+∠+∠360F E D C B A .例3. 如图所示,=∠+∠+∠+∠+∠E D C B CAD _________.解:(利用飞镖模型)设BD 与CE 相交于点F ,如图所示.FBECD A∵︒=∠+∠+∠180BFE E B ∴︒=∠+∠+∠180CFD E B ∵D C CAD CFD ∠+∠+∠=∠ ∴︒=∠+∠+∠+∠+∠180E D C B CAD .例4. 如图,△ABC 和△DCE 均是等腰三角形,CE CD CB CA ==,,=∠BCADCE ∠.(1)求证:AE BD =;(2)若︒=∠70BAC ,求BPE ∠的度数.NMPDABCE(1)证明:∵=∠BCA DCE ∠ ∴ACD DCE ACD BCA ∠+∠=∠+∠ ∴ACE BCD ∠=∠ 在△BCD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD ACE BCD CA CB ∴△BCD ≌△ACE (SAS ) ∴AE BD =; (2)解:方法一:∵△BCD ≌△ACE∴21∠=∠ ∵CB CA =∴︒=∠=∠70ABC BAC ∵PBA PAB BPE ∠+∠=∠ ∴PBA BAC BPE ∠+∠+∠=∠2︒=︒+︒=∠+︒=∠+∠+︒=140707070170ABC PBA方法二:∵︒=∠=70,BAC CB CA ∴︒=∠=∠70ABC BAC ∵︒=∠+∠+∠180ABC BAC ACB ∴︒=︒-︒-︒=∠407070180ACB ∵△BCD ≌△ACE ∴21∠=∠∵APB ACB ∠+∠=∠+∠21 ∴︒=∠=∠40APB ACB ∵︒=∠+∠180APB BPE ∴︒=︒-︒=∠14040180BPE .点评 方法二用到了“8”字模型的结论,如下图所示.例5. 如图所示,△ABC 和△ADE 都是等腰 直角三角形,BD 与CE 相交于点M ,BD 与AC 交于点N .求证:(1)CE BD =;(2)CE BD ⊥.证明:(1)∵△ABC 和△ADE 都是等腰直角三角形 ∴AE AD AC AB ==,︒=∠=∠90DAE BAC∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ) ∴CE BD =;(2)∵△ABD ≌△ACE ∴21∠=∠∵BAC BMC ∠+∠=∠+∠12(8字模型) ∴︒=∠=∠90BAC BMC ∴CE BD ⊥.例6.(1)问题发现 如图1,△ABC 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连结BE .填空: ①AEB ∠的度数为_________;②线段AD 、BE 之间的数量关系为_________;(2)拓展探究如图2,△ABC 和△DCE 均为等腰直角三角形,︒=∠=∠90DCE ACB ,点A 、D 、E 在同一直线上,CM 为△DCE 的高,连结BE ,请写出AEB ∠的度数及线段CM 、AE 、BE 之间的数量关系,并说明理由.图 1ECAB D图 2MEBCAD解:(1)①︒60; ②BE AD =;提示: ∵△ABC 和△DCE 均为等边三角形 ∴CE CD CB CA ==,︒=∠=∠60DCE ACB∴BCD DCE BCD ACB ∠-∠=∠-∠ ∴BCE ACD ∠=∠ 在△ACD 和△BCE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD BCE ACD CB CA ∴△ACD ≌△BCE (SAS ) (属于“手拉手”全等模型) ∴21,∠=∠=BE AD ∵12∠+∠=∠+∠ACB AEB (属于“8”字模型) ∴︒=∠=∠60ACB AEB . (2)解:︒=∠90AEB ,CM BE AE 2=-; 理由如下:∵︒=∠=∠90DCE ACB∴BCD DCE BCD ACB ∠-∠=∠-∠∴BCE ACD ∠=∠∵△ABC 和△DCE 均为等腰直角三角形 ∴CE CD CB CA ==, 在△ACD 和△BCE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD BCE ACD CB CA ∴△ACD ≌△BCE (SAS )……………………………………7分 ∴21,∠=∠=BE AD ∵12∠+∠=∠+∠ACB AEB ∴︒=∠=∠90ACB AEB……………………………………8分 ∵DE CM CE CD ⊥=, ∴CM 平分DCE ∠∴︒=∠=∠=∠=∠45ECM DCM CED CDE ∴EM DM CM == ∴CM DE 2= ∵AD AE DE -= ∴CM BE AE 2=-.手拉手全等模型资料编号:202108292312关键词 手拉手全等模型 三角形全等手拉手全等模型介绍手拉手全等模型常见的有三种图形形式:两个等腰直角三角形组成的手拉手全等模型、两个等边三角形组成的手拉手全等模型以及两个普通等腰三角形组成的手拉手全等模型.必须说明的是,组成手拉手全等模型的两个等腰三角形,共用顶角的顶点(即两个顶角的顶点重合),且两个等腰三角形的顶角相等.如图1、图2、图3所示,如果把大等腰三角形的腰长看作大手,小等腰三角形的腰长看作小手,两个等腰三角形共用顶角的顶点,类似大手拉着小手,所以把这种模型称为手拉手模型(手拉手模型还有手拉手相似模型).图中两个等腰三角形的相对位置发生变化时,始终存在一对全等三角形. 手拉手模型常和旋转结合,作为几何综合题出现.图 1图 2图 3在图1、图2、图3中,△ABC 和△ADE 均为等腰三角形,AE AD AC AB ==,,且DAE BAC ∠=∠,连结BD 、CE ,则△ABD ≌△ACE . 结论证明:(以图1为例) ∵DAE BAC ∠=∠∴CAD DAE CAD BAC ∠-∠=∠-∠ ∴CAE BAD ∠=∠在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ). 结论证明:(以图2为例) ∵DAE BAC ∠=∠∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ).点评 手拉手全等模型的依据都是SAS. 重要推论推论1 如图所示,△ABC 和△ADE 均为等腰直角三角形,︒=∠=∠90DAE BAC ,连结BD 、CE ,则有: (1)△ABD ≌△ACE ; (2)CE BD CE BD ⊥=,.推论1证明:(1)∵︒=∠=∠90DAE BAC ∴CAD DAE CAD BAC ∠-∠=∠-∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ); (2)∵△ABD ≌△ACE ∴21,∠=∠=CE BD延长BD 交CE 于点F ,如图所示. ∵BCF DBC BFE ∠+∠=∠ ∴ACB DBC BFE ∠+∠+∠=∠2︒=∠+∠=∠+∠+∠=901ACB ABC ACBDBC∴CE BD ⊥.推论2 如图所示,△ABD 和△BCE 均为等边三角形,点A 、B 、C 在同一直线上,连结AE 、CD ,则有:FGHEDACB(1)△ABE ≌△DBC ; (2)DC AE =; (3)︒=∠60DHA ; (4)△ABG ≌△DBF ; (5)△BEG ≌△BCF ; (6)连结GF ,则AC GF //; (7)连结HB ,则HB 平分AHC ∠.推论2证明:(1)∵△ABD 和△BCE 均为等边三角形 ∴BC BE DB AB ==,,︒=∠=∠60CBE ABDFGHEDCAB∵点A 、B 、C 在同一直线上 ∴︒=∠=∠120DBC ABE 在△ABE 和△DBC 中∵⎪⎩⎪⎨⎧=∠=∠=BC BE DBC ABE DB AB ∴△ABE ≌△DBC ;(2)由(1)可知:△ABE ≌△DBC ∴DC AE =;(3)∵△ABE ≌△DBC ∴21∠=∠∵12∠+∠=∠+∠ABD DHA ∴︒=∠=∠60ABD DHA ; (“8”字模型)(4)∵︒=∠=∠60CBE ABD ∴︒=︒-︒-︒=∠606060180DBF ∴DBF ABG ∠=∠ 在△ABG 和△DBF 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠DBF ABG DB AB 21 ∴△ABG ≌△DBF (ASA ); (5)∵△ABG ≌△DBF ∴BF BG =由前面可知:︒=∠=∠60CBF EBG 在△BEG 和△BCF 中∵⎪⎩⎪⎨⎧=∠=∠=BC BE CBF EBG BF BG ∴△BEG ≌△BCF (SAS );(6)连结GF ,如图所示.∵BF BG =,︒=∠60FBG ∴△BFG 为等边三角形 ∴︒=∠=∠60ABD BGF ∴AC GF //;(7)连结HB ,如图所示,作DC BN AE BM ⊥⊥,.∵△ABE ≌△DBC ∴DBC ABE S S ∆∆=,DC AE = ∴BN DC BM AE ⋅=⋅2121 ∴BN BM =∵DC BN AE BM ⊥⊥,,BN BM = ∴点B 在AHC ∠的平分线上 ∴HB 平分AHC ∠.点评 要求学生能从复杂的几何图形中辨识出手拉手全等模型,并能用SAS 证明两个三角形全等.模型举例例1. 如图,在△ABC 和△ADE 中,AE AD AC AB DAE BAC ==︒=∠=∠,,90,点C 、D 、E 在同一条直线上,连结BD . 求证:(1)△ABD ≌△ACE ;(2)试猜想BD 、CE 有何关系,并证明.ECAB D分析:由条件可知△ABC 和△ADE 均为等腰直角三角形,所以该图形中存在手拉手全等模型,手拉手全等模型的依据都是SAS . 证明:(1)∵︒=∠=∠90DAE BAC ∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ); (2)CE BD CE BD ⊥=,. 理由如下:∵△ABD ≌△ACE ∴E CE BD ∠=∠=1, ∵︒=∠=90,DAE AE AD ∴︒=∠=∠45E ADE ∴︒=∠451C ∴︒=︒+︒=∠+∠=∠9045451ADE BDE ∴CE BD ⊥.例2. 如图,△OAB 和△OCD 都是等边三角形,连结AC 、BD 相交于点E . (1)求证:①△OAC ≌△OBD ;②︒=∠60AEB ; (2)连结OE ,OE 是否平分AED ∠?请说明理由.EDOABC(1)证明:①∵△OAB 和△OCD 都是等边三角形 ∴OD OC OB OA ==,︒=∠=∠60COD AOB∴BOC COD BOC AOB ∠+∠=∠+∠ ∴BOD AOC ∠=∠ 在△OAC 和△OBD 中∵⎪⎩⎪⎨⎧=∠=∠=OD OC BOD AOC OB OA ∴△OAC ≌△OBD (SAS ); ②∵△OAC ≌△OBD ∴21∠=∠∵︒=∠+∠+∠180ABE EAB AEB ∴︒=∠+∠+∠+∠1802ABO EAB AEB ∴︒=∠+∠+∠+∠1801ABO EAB AEB ∴()︒=∠+∠+∠+∠1801ABO EAB AEB∴︒=∠+∠+∠180ABO OAB AEB ∴OAB ABO AEB ∠-∠-︒=∠180︒=︒-︒-︒=606060180C(2)OE 平分AED ∠. 理由如下:作BD ON AC OM ⊥⊥, ∵△OAC ≌△OBD ∴OBD OAC S S ∆∆=,BD AC = ∴ON BD OM AC ⋅=⋅2121 ∴ON OM =∵BD ON AC OM ⊥⊥,,ON OM = ∴OE 平分AED ∠.(到角两边距离相等的点在角的平分线上)例3. 如图所示,△ABC 和△ADE 都是等腰直角三角形,BD 与CE 相交于点M ,BD 与AC 交于点N .求证:(1)CE BD =;(2)CE BD ⊥. 证明:(1)∵△ABC 和△ADE 都是等腰直角三角形∴AE AD AC AB ==,︒=∠=∠90DAE BAC∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ) ∴CE BD =;(2)∵△ABD ≌△ACE ∴21∠=∠∵BAC BMC ∠+∠=∠+∠12 ∴︒=∠=∠90BAC BMC ∴CE BD ⊥.例4. 如图,在线段AE 的同侧作等边△ABC 和等边△CDE (︒<∠120ACE ),点P 与点M 分别是线段BE 和AD 的中点. 求证:△CPM 是等边三角形.PMDBA EC分析:本题图形中包含手拉手全等模型,我们可以证明△ACD 和△BCE 全等.另外,关于等边三角形的判定,可先证明三角形是等腰三角形,再证明三角形有一个角等于︒60.证明:∵△ABC 和△CDE 都是等边三角形 ∴CE CD BC AC ==,,︒=∠=∠60DCE ACB ∴ACE DCE ACE ACB ∠+∠=∠+∠∴ACD BCE ∠=∠ 在△ACD 和△BCE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD BCE ACD BC AC ∴△ACD ≌△BCE (SAS ) ∴BE AD =∠=∠,21∵点P 与点M 分别是线段BE 和AD 的中点 ∴AM BP =在△ACM 和△BCP 中∵⎪⎩⎪⎨⎧=∠=∠=BP AM BC AC 21 ∴△ACM ≌△BCP (SAS ) ∴CP CM =,43∠=∠∴︒=∠=∠+∠=∠+∠=∠6043ACB ACP ACP PCM ∵CP CM =,︒=∠60PCM ∴△CPM 是等边三角形.三垂直全等模型资料编号:202108282255关键词 三垂直全等模型 一线三等角全等模型 三角形全等三垂直全等模型介绍如图1、图2、图3所示,为三种常见的三垂直全等模型.图 1图 2图 3如图1所示,BC AC BC AC DE AE DE BD =⊥⊥⊥,,,. 结论:△BCD ≌△CAE .结论的证明:∵DE AE DE BD ⊥⊥, ∴︒=∠=∠90E D ,︒=∠+∠90BCD B ∵BC AC ⊥ ∴︒=∠+∠901BCD ∴1∠=∠B在△BCD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA BC E D B 1 ∴△BCD ≌△CAE (AAS ).重要推论推论1 如图1所示,BC AC BC AC DE AE DE BD =⊥⊥⊥,,,,则有:BD AE DE +=;图 1证明:由前面可知:△BCD ≌△CAE ∴BD CE AE CD ==, ∵CE CD DE += ∴BD AE DE +=.推论2 如图2所示,BC AC BC AC CD BD CD AE =⊥⊥⊥,,,,则有:BD AE DE -=.图 2证明:∵CD BD CD AE ⊥⊥, ∴︒=∠=∠9021,︒=∠+∠90BCD B ∵BC AC ⊥ ∴︒=∠+∠903BCD ∴3∠=∠B在△BCD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA BC B 213 ∴△BCD ≌△CAE (AAS ) ∴AE CD CE BD ==, ∵CE CD DE -= ∴BD AE DE -=.说明 三垂直全等模型是一种常见的几何模型,同学们要记住这种几何模型的图形特征和题目特点,以后遇到这种模型常常要证明两个三角形全等. 模型举例例1. 如图,直线l 上有三个正方形c b a ,,,若c a ,的面积分别是5和11,则b 的面积是_________.l cba IH JFEBADCGlcba IHJFEBADCG分析 三垂直全等模型作为一种重要且常见的几何模型,要求同学们能从复杂的几何图形中辨识出这种模型,若能找出这种模型,往往要证明两个三角形全等,从而解决相关的问题.解析:根据“三垂直全等模型”,本题易证:△BCG ≌△GJF . ∴JF CG =由题意可得:11,522====JF S BC S c a ∴112=CG在Rt △BCG 中,由勾股定理得:16115222=+=+==CG BC BG S b .∴b 的面积是16.例2. 如图1所示,已知在△ABC 中,︒=∠90BAC ,AC AB =,点P 为BC 上一动点(CP BP <),分别过点B 、C 作AP BE ⊥于点E ,AP CF ⊥于点F . (1)求证:BE CF EF -=;(2)如图2,若点P 为BC 延长线上一点,其他条件不变,则线段BE 、CF 、EF 是否存在某种确定的数量关系?画图并直接写出你的结论.图 1图 2PCBA(1)证明:∵AP BE ⊥,AP CF ⊥ ∴︒=∠=∠901E ,︒=∠+∠903CAE ∵︒=∠90BAC ∴︒=∠+∠902CAE ∴32∠=∠在△ABE 和△CAF 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA AB E 321 ∴△ABE ≌△CAF (AAS ) ∴CF AE AF BE ==, ∵AF AE EF -= ∴BE CF EF -=;(2)如图3所示.图 3BECFEF+=.提示:关键在于证明△ABE≌△CAF.例3.如图,在△ABC中,BCACACB=︒=∠,90,直线MN经过点C,且MNAD⊥于D,MNBE⊥于E.(1)当直线绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②BEADDE+=;(2)当直线MN绕点C旋转到图2的位置时,求证:BEADDE-=;(3)当直线MN绕点C旋转到图3的位置时,请直接写出DE、AD、BE之间的数量关系.图 1图 2图 3图 1(1)证明:①∵MNAD⊥,MNBE⊥∴︒=∠=∠9021∵︒=∠90ACB ∴︒=∠+∠904ACD ∵︒=∠+∠903ACD ∴43∠=∠在△ADC 和△CEB 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CB AC 4321 ∴△ADC ≌△CEB (AAS ); ②∵△ADC ≌△CEB ∴BE CD CE AD ==, ∵CD CE DE += ∴BE AD DE +=;图 2(2)∵MN AD ⊥,MN BE ⊥ ∴︒=∠=∠90CEB ADC ∵︒=∠90ACB ∴︒=∠+∠902ACD ∵︒=∠+∠901ACD ∴21∠=∠在△ADC 和△CEB 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CB AC CEB ADC 21 ∴△ADC ≌△CEB (AAS )∴BE CD CE AD ==, ∵CD CE DE -= ∴BE AD DE -=; (3)AD BE DE -=.提示:仍然是证明△ADC ≌△CEB .图 3例4.(1)如图1所示,已知在△ABC 中,AC AB BAC =︒=∠,90,直线m 经过点A ,m BD ⊥于点D ,m CE ⊥于点E ,求证:CE BD DE +=;(2)如图2,将(1)中的条件改为:在△ABC 中,AC AB =,D 、A 、E 三点都在直线m 上,且有α=∠=∠=∠BAC AEC BDA ,其中α为任意锐角或钝角,请问结论CE BD DE +=是否成立?若成立,请你给出证明;若不成立,请说明理由.m 图 1EDCBA m图 2ECD A B(1)证明:∵m BD ⊥,m CE ⊥ ∴︒=∠=∠9021 ∴︒=∠+∠903BAD ∵︒=∠90BAC ∴︒=∠+∠904BAD ∴43∠=∠在△ABD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA AB 4321 ∴△ABD ≌△CAE (AAS ) ∴CE AD AE BD ==, ∵AE AD DE += ∴BD CE DE +=;(2)成立. 理由如下:∵︒=∠+∠+∠1801BAD BDA ∴α-︒=∠+∠1801BAD ∵︒=∠+∠+∠1802BAD BAC ∴α-︒=∠+∠1802BAD ∴21∠=∠在△ABD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA AB AEC BDA 21∴△ABD≌△CAE(AAS)∴AE=,AD=CEBD∵AE=ADDE+∴BD=.DE+CE点评第二问所涉及到的几何模型为“一线三等角全等模型”,而我们在前面花大篇幅所介绍的“三垂直全等模型”属于“一线三等角全等模型”的特殊情况.BEFDBCA角平分线平行线模型资料编号:202108310011关键词 角平分线 平行线 等腰三角形角平分线平行线模型介绍如图所示,OM 平分AOB ∠,点P 是OM 上一点,过点P 作OB PC //,交OA 于点C ,则△POC 是等腰三角形. 下图就是角平分线平行线模型.MOBACP模型证明:∵OM 平分AOB ∠ ∴21∠=∠ ∵OB PC // ∴31∠=∠ ∴32∠=∠ ∴CP CO =∴△POC 是等腰三角形.点评 在角平分线的条件下,常过角平分线上一点作一边的平行线,构造等腰三角形. 重要推论推论1 如图所示,在△ABC 中,ABC ∠、ACB ∠ 的平分线交于点D ,过点D 作BC EF //,交AB 于 点E ,交AC 于点F ,则有: (1)FC FD ED EB ==,; (2)CF BE EF +=; (3)AC AB C AEF +=∆.推论1证明: (1)∵BD 平分ABC ∠ ∴21∠=∠ ∵BC EF // ∴31∠=∠ ∴32∠=∠ ∴EB ED = 同理可证:FC FD =; (2)∵DF DE EF += ∴CF BE EF +=;(3)∵AF EF AE C AEF ++=∆ ∴AF DF DE AE C AEF +++=∆ AF CF BE AE +++= AC AB +=.推论2 如图所示,四边形ABCD 为平行四边形,把△BCD 沿对角线BD 折叠,得到△D BC ','BC 交AD 于点E ,则△BDE 为等腰三角形.EC'DBCA说明:由折叠可知:BD C CBD '∠=∠,即BD 平分BC C ',所以上图中包含角平分线平行线模型.推论2证明:由折叠可知:21∠=∠∵四边形ABCD 为平行四边形 ∴BC AD // ∴31∠=∠ ∴32∠=∠∴EDEB=∴△BDE为等腰三角形.模型举例例1.如图,把一张长方形的纸片ABCD沿BD对折,使点C落在点E处,BE与AD 相交于点O.(1)由折叠可知△BCD≌△BED,除此之外,图中还存在其他的全等三角形,请写出一组全等三角形:________________;(2)图中有等腰三角形吗?请你找出来:__________;(3)若8AB,求OB的长度.,6==BC解:(1)△ABD≌△EDB;(或△ABD≌△CDB或△AOB≌△EOD)(2)△BOD;提示:如图上所示,由折叠可知:=∠1∠2∵BCAD//(为什么?)∴3=∠1∠∴3∠2∠=∴OD OB =,即△BOD 为等腰三角形. (3)由(2)可知:OD OB =. 设x OD OB ==,则x OA -=8 ∵四边形ABCD 为长方形 ∴︒=∠90A在Rt △AOB 中,由勾股定理得:222OB AB OA =+∴()22268x x =+-解之得:425=x ∴425=OB . 例2. 如图,点O 是△ABC 的边AC 上一个动点,过点O 作直线BC MN //.直线MN 交ACB ∠的平分线于点E ,交ACB ∠的外角平分线于点F . (1)求证:OF OE =;(2)若6,8==CF CE ,求OC 的长.DNMEF BCAO(1)证明:∵CE 平分ACB ∠ ∴21∠=∠ ∵BC MN // ∴32∠=∠ ∴31∠=∠ ∴OC OE = 同理可证:OC OF = ∴OF OE =;(2)解:∵CF 平分ACD ∠ ∴ACD ∠=∠215 ∵51∠+∠=∠ECF ∴ACD ACB ECF ∠+∠=∠2121 ()︒=︒⨯=∠+∠=901802121ACD ACB在Rt △ECF 中,由勾股定理得:10682222=+=+=CF CE EF由(1)可知:521==EF OC . 例3. 如图,在△ABC 中,AD 平分BAC ∠,点E 、F 分别在BD 、AD 上,AB EF //,且CD DE =. 求证:AC EF =.EDBCAF证明:作AB CG //交AD 的延长线于点G . ∴G ∠=∠1 ∵AD 平分BAC ∠ ∴21∠=∠ ∴G ∠=∠2 ∴GC AC = ∵AB EF // ∴31∠=∠ ∴G ∠=∠3在△EDF 和△CDG 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠DC DE G 543 ∴△EDF ≌△CDG (AAS ) ∴CG EF = ∴AC EF =. 例4. 解答下列问题:(1)如图1所示,在△ABC 中,BC EF //,点D 在EF 上,BD 、CD 分别平分ACB ABC ∠∠、,写出线段EF 与BE 、CF 的数量关系;(2)如图2所示,BD 平分ABC ∠,CD 平分外角ACG ∠,BC DE //交AB 于点E ,交AC 于点F ,写出线段EF 与BE 、CF 的数量关系,并说明理由;(3)如图3所示,BD 、CD 为外角BCN CBM ∠∠、的平分线,BC DE //交AB 的延长线于点E .交AC 的延长线于点N ,直接写出线段EF 与BE 、CF 的数量关系.图 1EFDBCAG图 2FEDBC AMN图 3F EDBCA(1)∵BD 平分ABC ∠ ∴21∠=∠ ∵BC EF // ∴31∠=∠ ∴32∠=∠ ∴EB ED = 同理可证:FC FD =; ∵DF DE EF += ∴CF BE EF +=; (2)CF BE EF -=. 理由如下:∵BD 平分ABC ∠ ∴21∠=∠ ∵BC DE //∴31∠=∠ ∴32∠=∠ ∴EB ED = 同理可证:FC FD =; ∵DF DE EF -= ∴CF BE EF -=; (3)CF BE EF +=.例5. 如图,在梯形ABCD 中,BC AD //,点E 在CD 上,且AE 平分BAD ∠,BE 平分ABC ∠.求证:BC AB AD -=.EB CAD证明:延长AE 交BC 的延长线于点F . ∵AE 平分BAD ∠ ∴21∠=∠ ∵BC AD // ∴F ∠=∠2 ∴F ∠=∠1 ∴BF BA =∵BF BA =,BE 平分ABC ∠ ∴FE AE =在△ADE 和△FCE 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠FEC AED FE AE F 2F∴△ADE ≌△FCE (ASA ) ∴FC AD = ∵BC BF FC -= ∴BC AB AD -=.点评 利用右图所示的辅助线也能证明问题.角平分线+两垂线段模型资料编号:202112022157关键词 角平分线性质定理 等腰三角形 三角形全等 辅助线 垂线段 模型介绍 角平分线+两垂线段模型如图1,点P 是AOB ∠的平分线上一点,过点P 作OB PE OA PD ⊥⊥,,由角平分线的性质定理则有PE PD =.这就是角平分线+两垂线模型.这种模型蕴含了边相等、角相等和三角形全等,还可以构造出等腰三角形.在图1中,若连结DE ,则得到等腰三角形PDE 和等腰三角形DOE .图 1模型推论(1)PED PDE ∠=∠; (2)Rt △POD ≌Rt △POE ; (3)OE OD =.证明:(1)∵OP 平分AOB ∠,OB PE OA PD ⊥⊥, ∴PE PD = ∴PED PDE ∠=∠; (2)∵OB PE OA PD ⊥⊥, ∴△POD 和△POE 都是直角三角形 在Rt △POD 和Rt △POE 中∵⎩⎨⎧==PE PD OP OP∴Rt △POD ≌Rt △POE (HL );(3)由(2)可知: Rt △POD ≌Rt △POE ∴OE OD =.模型应用例1. 如图2所示,在△ABC 中,︒=∠90C ,AD 平分CAB ∠,若4,6==BD BC ,那么点D 到直线AB 的距离是__________.图 2图 3分析 本题条件中有角平分线,有角平分线上一点到一边的垂线段(距离),唯独缺少该点到另一边的垂线段(距离),若作出该垂线段,则可构造出角平分线+两垂线段模型. 解:作AB DE ⊥,则线段DE 的长度即为点D 到直线AB 的距离. ∵AD 平分CAB ∠,AB DE AC DC ⊥⊥, ∴DC DE = ∵4,6==BD BC∴246=-=-=BD BC DC ∴2=DE∴点D 到直线AB 的距离是2.例2. 如图4所示,在△ABC 中,︒=∠︒=∠70,50C B ,AD 是△ABC 的角平分线,AB DE ⊥于点E .(1)求EDA ∠的度数;(2)若3,8,10===DE AC AB ,求ABC S ∆.图 4图 5分析 对于(1),可根据直角三角形的两个锐角互余解决问题;对于(2),可构造角平分线+两垂线段模型求出AC 边上的高DF ,从而求出△ACD 的面积,继而求出△ABC 的面积. 解:(1)∵︒=∠︒=∠70,50C B∴︒=︒-︒-︒=∠-∠-︒=∠607050180180C B CAB ∵AD 平分CAB ∠ ∴︒=∠=∠30211CAB ∵AB DE ⊥ ∴︒=∠+∠901EDA∴︒=︒-︒=∠-︒=∠603090190EDA ; (2)作AC DF ⊥.∵AD 平分CAB ∠,AB DE ⊥,AC DF ⊥ ∴3==DF DE∴DF AC DE AB S S S ACD ABD ABC ⋅+⋅=+=∆∆∆2121 382131021⨯⨯+⨯⨯=27=.例3. 如图6所示,在△ABC 中,︒=∠90C ,AD 是BAC ∠的平分线,AB DE ⊥,DF BD =,求证: (1)EB CF =; (2)EB AF AB 2+=.图 6图 7分析 根据条件知图6中存在角平分线+两垂线段模型,故有DE DC =,这就为Rt △DCF 和Rt △DEB 全等提供了条件.证明:(1)∵AD 平分BAC ∠,AB DE ⊥,AC DC ⊥(︒=∠90C ) ∴DE DC =在Rt △DCF 和Rt △DEB 中∵⎩⎨⎧==DE DC DB DF∴Rt △DCF ≌Rt △DEB (HL ) ∴EB CF =;(2)在Rt △ACD 和Rt △AED 中∵⎩⎨⎧==DE DC AD AD∴Rt △ACD ≌Rt △AED (HL ) ∴AE AC = ∵EB AE AB +=∴EB AF EB EB AF EB CF AF EB AC AB 2+=++=++=+=.例4. 如图8所示,在四边形ABCD 中,BD DC AD AB BC ,,=>平分ABC ∠. 求证:︒=∠+∠180BCD BAD .图 8ABC D图 9E分析 本题难度较高,要证明︒=∠+∠180BCD BAD ,可证明BCD ∠等于BAD ∠的邻补角,而证明两个角相等,可通过证明两个角所在的三角形全等完成,必要时需要添加辅助线来构造全等三角形.题中已有角平分线的条件,过角平分线上的点向角的两边作垂线段,即作出角平分线+两垂线段模型,即可构造出全等三角形. 证明:过点D 作BC DE ⊥,BA DF ⊥,交BA 的延长线于点F . ∵BD 平分ABC ∠,BC DE ⊥,BA DF ⊥ ∴DF DE =在Rt △DCE 和Rt △DAF 中∵⎩⎨⎧==DF DE DA DC∴Rt △DCE ≌Rt △DAF (HL ) ∴1∠=∠C ,即1∠=∠BCD ∵︒=∠+∠1801BAD ∴︒=∠+∠180BCD BAD .例5. 如图10所示,AD 平分BAC ∠,DE 所在直线是BC 的垂直平分线,E 为垂足,过点D 作AC DN AB DM ⊥⊥,.求证:(1)CN BM =; (2)()AC AB AM +=21. 图 10图 11分析 对于(1),我们能想到的最直接的方法是全等法,那就是证明BM 和CN 所在的三角形全等即可,图中只需连结DB 、DC ,就可以构造出全等三角形;对于(2),直接下手证明会比较困难,于是我们把等式转化为AM AC AB 2=+,证明这个等式成立即可,当然,第(1)问的结论会为我们提供重要的条件. 证明:(1)连结DB 、DC ,如图11所示. ∵DE 垂直平分BC ∴DC DB =∵AD 平分BAC ∠,AC DN AB DM ⊥⊥, ∴DN DM =在Rt △DBM 和Rt △DCN 中∵⎩⎨⎧==DNDM DC DB ∴Rt △DBM ≌Rt △DCN (HL )∴CN BM =;(2)在Rt △ADM 和Rt △ADN 中∵⎩⎨⎧==DN DM AD AD∴Rt △ADM ≌Rt △AND (HL ) ∴AN AM =∵CN AN BM AM AC AB -++=+ ∴AM AN AM AC AB 2=+=+ ∴()AC AB AM +=21.等腰三角形的存在性问题资料编号:202111182021关键词 等腰三角形 分类讨论 尺规作图 垂直平分线在八年级数学中,学完了等腰三角形的性质和判定后,我们会遇到等腰三角形的存在性问题,这类问题往往需要学生根据情况分类讨论,确定等腰三角形的各种存在形态,然后根据每种形态解决相关问题.然而我看到的是,学生不能考虑到每一种可能的形态,从而造成漏解.究其原因,我想是学生分类讨论思想方法欠缺,不会借助于圆和线段垂直平分线的性质辅助解决问题造成的.下面,我将教会大家如何借助于圆的知识和线段垂直平分线的性质,将等腰三角形的各种存在性(形态)“一网打尽”.如图1所示,已知线段AB ,现确定一点C ,使△ABC 为等腰三角形.图 1AB由于没有指明线段AB 是腰长还是底边长,所以我们需要分为两种情况进行讨论:(1)当AB 为等腰三角形的腰长时:①以点A 为圆心,AB 的长为半径画圆,则圆上任一异于直线AB 与圆的交点的点都可以作为点C ,如图2所示;图 2B图 3②以点B 为圆心,AB 的长为半径画圆,则圆上任一异于直线AB 与圆的交点的点都可以作为点C ,如图3所示;(2)当AB为等腰三角形的底边长时,根据线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,利用尺规作图作出线段AB的垂直平分线l,垂足为点D,则垂直平分线l上任一异于点D的点都可以作为点C,如图4所示.B图 4使△ABC为等腰三角形.下面讨论已知线段AB和直线m,在直线m上确定一点C,B Array m图 5由于没有指明线段AB是腰长还是底边长,所以我们需要分为两种情况进行讨论: (1)当AB为等腰三角形的腰长时:①以点A为圆心,AB的长为半径画圆(或圆弧),则圆(或圆弧)与直线m的交点即为点C,注意交点的个数可能不唯一,不要漏掉其中任何一个交点,造成漏解,如图6所示;m图 6②以点B 为圆心,AB 的长为半径画圆(或圆弧),则圆(或圆弧)与直线m 的交点即为点C ,注意交点的个数可能不唯一,不要漏掉其中任何一个交点,造成漏解,如图7所示;m图 7(2)当AB 为等腰三角形的底边长时,根据线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,利用尺规作图作出线段AB 的垂直平分线l ,直线l 与直线m 的交点即为点C ,如图8所示.m图 8我们知道,角平分线和平行线组合在一起,即构成角平分线+平行线模型,这种模型中就存在等腰三角形,如图9所示.B图 9若要在OB边上确定一点D,使得△COD为等腰三角形,根据角平分线+平行线模型的特征,我们过点C作OA边的平行线,该平行线与OB边的交点,即为其中一个点D的位置,如图10所示,该点D也是线段OC的垂直平分线与OB边的交点,只不过作平行线更容易找出该点.B图 10其余各点D的确定如图(11)、(12)所示,你是否知道这些点是怎样确定出来的吗?B图 11图 12以上共有3个点D,使得△COD为等腰三角形.解决等腰三角形的存在性问题,一般分为三步:分类、画图、计算.当然,随着学习的深入,以后我们还会遇到因动点而产生的等腰三角形问题,让我们拭目以待.应用例1.如图所示,在正方形网格中,网格线的交点称为格点.已知A、B是两个格点,若点C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有__________个.第 6 题图图 1图 2答案 8解析 本题考查等腰三角形的存在性问题.分别以点A 、B 为圆心,以AB 的长为半径作圆,如图1所示,则可以找到这样的点C 有4个.这两种情况下,△ABC 是以AB 为腰长的等腰三角形.若AB 为底边长,则作出AB 的垂直平分线,如图2所示,可以找到这样的点C 有4个.综上所述,符合条件的点C 有8个.例2. 如图所示,︒=∠60AOB ,OC 平分AOB ∠,如果射线OA 上的点E 满足△OCE是等腰三角形,那么OEC ∠的度数为__________.解:∵OC 平分AOB ∠,∴︒=∠=∠3021AOB AOC 分为三种情况:①当CE CO =时,如图1所示,∴︒=∠=∠30EOC OEC ;图 1图 2②当OE OC =时,如图2所示. ∵OE OC = ∴OCE OEC ∠=∠ ∴︒=︒-︒=∠75230180OEC ; ③当EC EO =时,如图3所示.图 3(说明:此时,点E 在线段OC 的垂直平分线上或OB CE //) ∵EC EO =∴︒=∠=∠30ECO EOC∴︒=︒-︒-︒=∠1203030180OEC .综上所述,OEC ∠的度数为︒30或︒120或︒75.点评 在讨论一个三角形为等腰三角形时,常常需要分为三种情况进行讨论.。
初中几何典型解题模型中考看数学,数学看几何.在中考科目中,数学最能体现差距;在数学中,几何是拉开数学的重中之重。
《初中几何典型解题模型》希望帮助同学们解决“几何”这一痛点难点.学习几何,如果采用题海战术,忽视技巧和方法总结,往往事倍功半,收效甚微.本书在分析海量中考几何试题的基础上,总结解题方法与技巧,整理出中考中最高频的十二类几何模型,为每个模型打造“模型分析+典型例题+练习巩固”三部分内容:模型分析——认识经典模型、识别模型,给出经典模型对应的结论,提供解析与证明.典型例题——精选经典例题,匹配经典模型,利用模型进行实战应用练习——依托题库大数据,经典模型高度匹配练习,每一道练习都是经典题,是模型实例黄金搭档.本书定位于成绩中等及偏上学生,在高度、深度和难度上都接近中考,帮助同学们解决中考常见难点,有效提高做题效率。
目录第一章8字模型与飞标模型【模型1:角的8字模型】【模型2:角的飞镖模型】【模型3:边的8字模型】【模型4:边的飞镖模型】第二章角平分线四大模型【模型1:角平分线上的点向两边做垂线】【模型2:截取构造对称全等】【模型3:角平分线+垂线构造等腰三角形】【模型4:角平分线+平行线构造等腰三角形】第三章截长补短模型【模型:截长补短模型】第四章手拉手模型【模型:手拉手模型】第五章三垂直全等模型【模型:三垂直全等模型】第六章将军饮马模型【模型1:定直线与两定点】【模型2:角与定点】【模型3:两定点一定长】第七章蚂蚁行程模型【模型:角的飞镖模型】第八章中点四大模型【模型1:倍长中线或与中线有关的线段构造全等三角形】【模型2:等腰三角形底边中点与顶角连接用“三线合一”】【模型3:倍长中线或与中线有关的线段构造全等三角形】【模型4:已知直角三角形斜边中点,考虑构造斜边中线】第九章半角模型【模型:半角模型】第十章相似模型【模型1:A、8模型】【模型2:共边共角型】【模型3:一线三等模型】【模型4:倒数型】【模型5:与圆有关的简单相似】【模型6:相似与旋转】第十一章圆中的辅助线【模型1:连半径构造等腰三角形】【模型2:构造直角三角形】【模型3:与圆的切线有关的辅助线】第十二章辅助圆【模型1:共端点、等线段模型】【模型2:直角三角形共斜边模型】附:巩固练习解析说明:本文档为《初中数学典型题思路分析》书的附赠资料之一。
模型介绍模型一:飞镖模型(1)角的飞镖模型结论:CB A BDC ∠+∠+∠=∠解答:①方法一:延长BD 交AC 于点E 得证②方法二:延长CD 交AB 于点F 得证③方法三:延长AD 到在其延长方向上任取一点为点G 得证总结:利用三角形外角的性质证明(2)边的飞镖模型结论:CDBD AC AB +>+解答:延长BD 交AC 于点E +三角形三边关系+同号不等式大的放左边,小的放在右边得证模型二:8在模型(1)角的8字模型结论:DC B A ∠+∠=∠+∠解答:①方法一:三角形内角和得证②方法二:三角形外角BOD ∠的性质得证总结:①利用三角形内角和等于180证明推出②利用三角形外角的性质证明大招飞镖模型和8字模型(2)边的8字模型结论:BCAD CD AB +<+解答:三角形三边关系+同号不等式得证总结:①三角形两边之和大于第三边例题精讲考点一:飞镖模型【例1】.如图,∠A =70°,∠B =40°,∠C =20°,则∠BOC=_______解:延长BO ,交AC 于点D ,∵∠BOC =∠C +∠ODC ,∠ODC =∠A +∠B ,∠A =70°,∠B =40°,∠C =20°,∴∠BOC =∠C +∠A +∠B=20°+70°+40°=130°.变式训练【变式1-1】.如图,∠ABD 、∠ACD 的角平分线交于点P ,若∠A =55°,∠D =15°,则∠P 的度数为()A.15°B.20°C.25°D.30°解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=(∠A﹣∠D),∵∠A=55°,∠D=15°,∴∠P=(55°﹣15°)=20°.故选:B.【变式1-2】.在△ABC中,∠ABC与∠ACB的平分线交于点I,∠ABC+∠ACB=100°,则∠BIC的度数为()A.80°B.50°C.100°D.130°解(1)∵∠ABC与∠ACB的平分线交于点I,∴∠BCI=∠ACB,∠CBI=∠ABC,∴∠BIC=180°﹣∠BCI﹣∠CBI=180°﹣100°=130°;故选:D.【变式1-3】.如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F的度数.解:如图,根据三角形的外角性质,∠1=∠A+∠C,∠2=∠B+∠D,∵∠BOF=120°,∴∠3=180°﹣120°=60°,根据三角形内角和定理,∠E+∠1=180°﹣60°=120°,∠F+∠2=180°﹣60°=120°,所以,∠1+∠2+∠E+∠F=120°+120°=240°,即∠A+∠B+∠C+∠D+∠E+∠F=240°.【变式1-4】.如图所示,已知P是△ABC内一点,试说明PA+PB+PC>(AB+BC+AC).证明:在△ABP中:AP+BP>AB.同理:BP+PC>BC,AP+PC>AC.以上三式分别相加得到:2(PA+PB+PC)>AB+BC+AC,即PA+PB+PC>(AB+BC+AC).考点二:8字模型【例2】.如图,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=解:由三角形外角的性质得:∠3=∠A+∠E,∠2=∠F+∠D,∵∠1+∠2+∠3=180°,∠1=60°,∴∠2+∠3=120°,即:∠A+∠E+∠F+∠D=120°,∵∠B+∠C=120°,∴∠A+∠B+∠C+∠D+∠E+∠F=240°.变式训练【变式2-1】.如图,∠A+∠B+∠C+∠D+∠E+∠F=360°.解:在△ACE中:∠A+∠C+∠E=180°,在△BDF中:∠B+∠D+∠F=180°,则:∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360.【变式2-2】.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是360度.解:延长FE交AB于M,设FE交CD于N,∵∠CNE=∠D+∠DEF,∠FMB=∠F+∠A,又∵∠C+∠B+∠CNE+∠FMB=360°,∴∠C+∠B+∠D+∠DEF+∠F+∠A=360°,即∠A+∠B+∠C+∠D+∠DEF+∠F=360°,故答案为:360.【变式2-3】.如图,∠A+∠B+∠C+∠D+∠E+∠F=360°.解:∵∠1=∠A+∠B,∠2=∠C+∠D,又∵∠1+∠2+∠E+∠F=360°∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360.实战演练【变式2-4】.一副三角板如图摆放,其中一块三角板的直角边EF 落在另一块三角板的斜边AC 上,边BC 与DF 交于点O ,则∠BOD 的度数是105°.解:△COF 中,∵∠CFO =45°,∠FCO =30°,∴∠COF =180°﹣∠CFO ﹣∠FCO =180°﹣45°﹣30°=105°,∵∠COF =∠BOD ,∴∠BOD=105°,故答案为:105°.1.如图,已知AB ⊥BD ,AC ⊥,∠A =35°,则∠D 的度数为()A .35°B .45°C .55°D .65°解:因为∠AEB 与∠DEC 是一组对顶角,所以∠AEB =∠DEC .在△ABO 中AB ⊥BD ,∠A =35°,所以∠AEB =65°.在△DCO 中AC ⊥CD ,∠DEC =65°,所以∠D =35°.故选:A .2.如图,∠A +∠B +∠C +∠D +∠E 的度数为()A.120°B.150°C.180°D.200°解:如图可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠E+∠C,在△BDG中,∵∠B+∠D+∠4=180°,∴∠B+∠E+∠A+∠D+∠C=180°.故选:C.3.如图,在△ABC中,M,N分别是边AB,BC上的点,将△BMN沿MN折叠;使点B落在点B'处,若∠B=35°,∠BNM=28°,则∠AMB'的度数为()A.30°B.37°C.54°D.63°解:∵△BMN沿MN折叠,使点B落在点B'处,∴△BMN≌△B'MN,∴∠BMN=∠B'MN,∵∠B=35°,∠BNM=28°,∴∠BMN=180°﹣35°﹣28°=117°,∠AMN=35°+28°=63°,∴∠AMB'=∠B'MN﹣∠AMN=117°﹣63°=54°,故选:C.4.如图,将分别含有30°、45°角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65°,则图中角α的度数为140°.解:如图,∵∠B=30°,∠DCB=65°,∴∠DFB=∠B+∠DCB=30°+65°=95°,∴∠α=∠D+∠DFB=45°+95°=140°,故答案为:140°.5.已知如图,BQ平分∠ABP,CQ平分∠ACP,∠BAC=α,∠BPC=β,则∠BQC=(α+β).(用α,β表示)解:连接BC,∵BQ平分∠ABP,CQ平分∠ACP,∴∠3=ABP,∠4=ACP,∵∠1+∠2=180°﹣β,2(∠3+∠4)+(∠1+∠2)=180°﹣α,∴∠3+∠4=(β﹣α),∵∠BQC=180°﹣(∠1+∠2)﹣(∠3+∠4)=180°﹣(180°﹣β)﹣(β﹣α),即:∠BQC=(α+β).故答案为:(α+β).6.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠H=540度.解:如图,连接CH,由三角形的内角和定理得,∠A+∠B=∠1+∠2,由多边形的内角和公式得,∠1+∠2+∠C+∠D+∠E+∠F+∠H=(5﹣2)•180°=540°,所以,∠A+∠B+∠C+∠D+∠E+∠F+∠H=540°.故答案为:540.7.如图,求∠A+∠B+∠C+∠D+∠E+∠F=230°.解:∵∠1=∠A+∠B,∠2=∠D+∠E,又∵∠1+∠F=115°,∠2+∠C=115°,∴∠A+∠B+∠C+∠D+∠E+∠=115°+115°=230°.故答案为:230°.8.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数为解:连KF,GI,如图,∵7边形ABCDEFK的内角和=(7﹣2)×180°=900°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠K=900°﹣(∠1+∠2),即∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,∵∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)=900°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K=1080°.故选:C.9.如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应减少(填“增加”或“减少”)10度.解:连接CF,并延长至点M,如图所示.在△ABC中,∠A=50°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣50°﹣60°=70°,∴∠DCE=∠ACB=70°.∵∠DFM=∠DCF+∠D,∠EFM=∠ECF+∠E,∴∠EFD=∠DCF+∠ECF+∠D+∠E=∠DCE+∠D+∠E,即110°=70°+∠D+30°,∴∠D=10°,∴20°﹣10°=10°,∴图中∠D应减少(填“增加”或“减少”)10度.故答案为:减少;10.10.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I的值.解:如图所示,分别延长BC、IH交EF于点M、N,由三角形的外角的性质可知:∠C+∠D=∠1,∠G+∠H=∠2,∠4=∠1+∠B=∠C+∠D+∠B,∠3=∠2+∠F=∠G+∠H+∠F,∴∠3+∠4=∠5+∠HNM+∠5+∠CMN=180°+∠5,∵∠5=∠6=360°﹣∠A﹣∠B﹣∠I,∴∠C+∠D+∠B+∠G+∠H+∠F=180°+360°﹣∠A﹣∠B﹣∠I,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=180°+360°=540°11.如图,已知AB∥DE,∠ABC、∠CED的平分线交于点F.探究∠BFE与∠BCE之间的数量关系,并证明你的结论.解:过点C作直线MN∥AB,∵AB∥DE,MN∥AB,∴MN∥DE,∴∠DEC=∠ECN,∵AB∥DE,∴∠ABC=∠BCN,∴∠BCE=∠ABC+∠DEC,同理∠BFE=∠ABF+∠DEF,∵∠ABC、∠CED的平分线交于点F,∴∠ABC=2∠ABF,∠DEC=2∠DEF,∴∠BCE=2∠ABF+2∠DEF=2∠BFE.12.如图,DP平分∠ADC,PB平分∠ABC,求证:∠P=(∠A+∠C)证明:如右图所示,∵∠CMP=∠C+∠CDP=∠P+∠CBP,∠ANP=∠P+∠ADP=∠A+∠ABP,∴∠P+∠CBP+∠P+∠ADP=∠C+∠CDP+∠A+∠ABP,又∵DP、BP是∠ADC、∠ABC的角平分线,∴∠CDP=∠ADP,∠CBP=∠ABP,∴2∠P=∠C+∠A,∴∠P=(∠A+∠C).13.如图,在四边形ABCD中,AM、CM分别平分∠DAB和∠DCB,AM与CM交于M.探究∠AMC与∠B、∠D间的数量关系.解:∠AMC=180°﹣∠B+∠D,理由如下:∵AM、CM分别平分∠DAB和∠DCB,∴∠BAD=2∠BAM,∠BCD=2∠BCM,∵∠BAD+∠B+∠BCD+∠d=360°,∴∠BAM+∠BCM+∠B+∠D=180°,∴∠BAM+∠BCM=180°﹣∠B﹣∠D,∵∠B+∠AMC+∠BAM+∠BCM=∠B+∠AMC+180°﹣∠B﹣∠D=360°,∴∠AMC=360°﹣(180°﹣∠B﹣∠D)﹣∠B=180°﹣∠B+∠D.14.(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C.(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.解:(1)作射线AO,∵∠3是△ABO的外角,∴∠1+∠B=∠3,①∵∠4是△AOC的外角,∴∠2+∠C=∠4,②①+②得,∠1+∠B+∠2+∠C=∠3+∠4,即∠BOC=∠A+∠B+∠C;(2)连接AD,同(1)可得,∠F+∠2+∠3=∠DEF③,∠1+∠4+∠C=∠ABC④,③+④得,∠F+∠2+∠3+∠1+∠4+∠C=∠DEF+∠ABC=130°+100°=230°,即∠BAF+∠C+∠CDE+∠F=230°.15.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形“.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于点M、N.试解答下列问题:①仔细观察,在图2中有3个以线段AC为边的“8字形”;②若∠B=76°,∠C=80°,试求∠P的度数;③∠C和∠B为任意角时AP、DP分别是∠CAB、∠BDC的三等分线,写出∠P与∠C、∠B之间数量关系,并说明理由.解:①3;故答案为3.②证明:∵∠CAB和∠BDC的平分线AP和DP相交于点P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=80°,∠B=76°,∴∠P=(80°+76°)=78°;③∠P=(2∠C+∠B)或∠P=(∠C+2∠B).证明:设∠CAB=3α,∠BDC=3β,i)如图3,∠CAP:∠BAP=∠CDP:∠BDP=2:1,∴∠CAP=2α,∠BAP=α,∠BDP=β,∠CDP=2β,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=2β﹣2α,∠P﹣∠B=β﹣α,∴∠C﹣∠P=2∠P﹣2∠B,∴∠P=(∠C+2∠B),ii)如图4,∠CAP:∠BAP=∠CDP:∠BDP=1:2,∴∠CAP=α,∠BAP=2α,∠BDP=2β,∠CDP=β,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=β﹣α,∠P﹣∠B=2β﹣2α,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(2∠C+∠B),16.阅读材料,回答下列问题:【材料提出】“八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成.【探索研究】探索一:如图1,在八字型中,探索∠A、∠B、∠C、∠D之间的数量关系为∠A+∠B=∠C+∠D;探索二:如图2,若∠B=36°,∠D=14°,求∠P的度数为25°;探索三:如图3,CP、AG分别平分∠BCE、∠FAD,AG反向延长线交CP于点P,则∠P、∠B、∠D之间的数量关系为∠P=.【模型应用】应用一:如图4,延长BM、CN,交于点A,在四边形MNCB中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD的角平分线BP,CP相交于点P,则∠A=α+β﹣180°(用含有α和β的代数式表示),∠P=.(用含有α和β的代数式表示)应用二:如图5,在四边形MNCB中,设∠M=α,∠N=β,α+β<180°,四边形的内角∠MBC与外角∠NCD的角平分线所在的直线相交于点P,∠P=.(用含有α和β的代数式表示)【拓展延伸】拓展一:如图6,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为∠P=.(用x、y表示∠P)拓展二:如图7,AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论2∠P﹣∠B﹣∠D=180°.解:探索一:如图1,∵∠AOB+∠A+∠B=∠COD+∠C+∠D=180°,∠AOB=∠COD,∴∠A+∠B=∠C+∠D,故答案为∠A+∠B=∠C+∠D;探索二:如图2,∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,由(1)可得:∠1+∠B=∠3+∠P,∠2+∠P=∠4+∠D,∴∠B﹣∠P=∠P﹣∠D,即2∠P=∠B+∠D,∵∠B=36°,∠D=14°,∴∠P=25°,故答案为25°;探索三:由①∠D+2∠1=∠B+2∠3,由②2∠B+2∠3=2∠P+2∠1,①+②得:∠D+2∠B+2∠1+2∠3=∠B+2∠3+2∠P+2∠1∠D+2∠B=2∠P+∠B.∴∠P=.故答案为:∠P=.应用一:如图4,由题意知延长BM、CN,交于点A,∵∠M=α,∠N=β,α+β>180°,∴∠AMN=180°﹣α,∠ANM=180°﹣β,∴∠A=180°﹣(∠AMN+∠ANM)=180°﹣(180°﹣α+180°﹣β)=α+β﹣180°;∵BP、CP分别平分∠ABC、∠ACB,∴∠PBC=∠ABC,∠PCD=∠ACD,∵∠PCD=∠P+∠PBC,∴∠P=∠PCD﹣∠PBC=(∠ACD﹣∠ABC)=∠A=,故答案为:α+β﹣180°,;应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,∵∠M=α,∠N=β,α+β<180°,∴∠A=180°﹣α﹣β,∵BP平分∠MBC,CP平分∠NCR,∴BP平分∠ABT,CP平分∠ACB,由应用一得:∠P=∠A=,故答案为:;拓展一:如图6,由探索一可得:∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,∵∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,∴∠CDB﹣∠CAB=∠C﹣∠B=x﹣y,∠PAB=∠CAB,∠PDB=∠CDB,∴∠P+∠CAB=∠B+∠CDB,∠P+∠CDB=∠C+∠CAB,∴2∠P=∠C+∠B+(∠CDB﹣∠CAB)=x+y+(x﹣y)=,∴∠P=,故答案为:∠P=;拓展二:如图7,∵AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,∴∠PAD=∠BAD,∠PCD=90°+∠BCD,由探索一得:①∠B+∠BAD=∠D+∠BCD,②∠P+∠PAD=∠D+∠PCD,②×2,得:③2∠P+∠BAD=2∠D+180°+∠BCD,③﹣①,得:2∠P﹣∠B=∠D+180°,∴2∠P﹣∠B﹣∠D=180°,故答案为:2∠P﹣∠B﹣∠D=180°.。
1O DC B A 图12图E A B CD E F D CBAOO 图12图E AB C D E DC BA 第一章 8字模型与飞镖模型模型1 角的“8”字模型如图所示,AB 、CD 相交于点O , 连接AD 、BC 。
结论:∠A+∠D=∠B+∠C 。
模型分析 8字模型往往在几何综合 题目中推导角度时用到。
模型实例观察下列图形,计算角度:(1)如图①,∠A+∠B+∠C+∠D+∠E= ; (2)如图②,∠A+∠B+∠C+∠D+∠E+∠F= 。
热搜精练1.(1)如图①,求∠CAD+∠B+∠C+∠D+∠E= ; (2)如图②,求∠CAD+∠B+∠ACE+∠D+∠E= 。
2HG E F DCB AD C BA MD C B AO135EFDC BA2.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= 。
模型2 角的飞镖模型如图所示,有结论: ∠D=∠A+∠B+∠C 。
模型分析飞镖模型往往在几何综合 题目中推导角度时用到。
模型实例如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M 。
探究∠AMC 与∠B 、∠D 间的数量关系。
3105OO120D C B AO D CB A 热搜精练1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= ;2.如图,求∠A+∠B+∠C+∠D = 。
模型3 边的“8”字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC 。
结论:AC+BD>AD+BC 。
4O DCBAO CBAOCBA模型实例 如图,四边形ABCD 的对角线AC 、BD 相交于点O 。
求证:(1)AB+BC+CD+AD>AC+BD ;(2)AB+BC+CD+AD<2AC+2BD.模型4 边的飞镖模型如图所示有结论: AB+AC>BD+CD 。
模型实例如图,点O 为三角形内部一点。
5E DC B A 21P A BCP 图3A BC P图21图PB求证:(1)2(AO+BO+CO )>AB+BC+AC ;(2)AB+BC+AC>AO+BO+CO.热搜精练1.如图,在△ABC 中,D 、E 在BC 边上,且BD=CE 。
8字模型与飞镖模型8字型与飞镖型就是中考几何模型中常见得两种结构,熟悉这两种结构对于我们快速解题有着极其重要得帮助。
模型1:角得8字模型如图所示,A C、BD 相交于点O ,连接AD 、B C. 结论:∠A +∠D =∠B +∠C .模型分析 证法一:∵∠AOB 就是△AOD 得外角,∴∠A +∠D =∠AOB .∵∠AOB 就是△BOC 得外角, ∴∠B+∠C=∠AO B。
∴∠A +∠D =∠B +∠C。
证法二:∵∠A+∠D +∠AOD =180°,∴∠A +∠D =180°-∠AOD .∵∠B +∠C+∠BOC =180°, ∴∠B +∠C =180°-∠BO C.又∵∠AOD =∠BO C,∴∠A +∠D=∠B +∠C . (1)因为这个图形像数字8,所以我们往往把这个模型称为8字模型. (2)8字模型往往在几何综合题目中推导角度时用到. 模型实例观察下列图形,计算角度:(1)如图①,∠A +∠B +∠C +∠D +∠E =________;图图①FD C BAE EBCDA图③21O AB图④G F 12AB E解法一:利用角得8字模型.如图③,连接CD .∵∠BOC 就是△B OE 得外角, ∴∠B+∠E=∠B OC。
∵∠B OC 就是△C OD 得外角,∴∠1+∠2=∠BOC . ∴∠B +∠E =∠1+∠2.(角得8字模型),∴∠A +∠B +∠ACE +∠A DB +∠E =∠A +∠ACE +∠ADB +∠1+∠2=∠A +∠ACD +∠AD C=180°。
解法二:如图④,利用三角形外角与定理。
∵∠1就是△F CE 得外角,∴∠1=∠C +∠E .∵∠2就是△GBD 得外角,∴∠2=∠B +∠D .∴∠A+∠B +∠C +∠D +∠E =∠A +∠1+∠2=180°.(2)如图②,∠A +∠B +∠C +∠D+∠E+∠F=________。
O
D C B
A 图12图E A
B C D E F D
C B A O O 图12图E A
B C D E
D
C B A H G
E
F D
C B
A
第一章 8字模型与飞镖模型
模型1 角的“8”字模型 如图所示,AB 、CD 相交于点O , 连接AD 、BC 。
结论:∠A+∠D=∠B+∠C 。
模型分析
8字模型往往在几何综合 题目中推导角度时用到。
模型实例
观察下列图形,计算角度:
(1)如图①,∠A+∠B+∠C+∠D+∠E= ; (2)如图②,∠A+∠B+∠C+∠D+∠E+∠F= 。
热搜精练
1.(1)如图①,求∠CAD+∠B+∠C+∠D+∠E= ; (2)如图②,求∠CAD+∠B+∠ACE+∠D+∠E= 。
2.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= 。
D C B
A M D C
B A O
135E F
D C B
A 105O
O
120
D C B A 模型2 角的飞镖模型 如图所示,有结论: ∠D=∠A+∠B+∠C 。
模型分析
飞镖模型往往在几何综合 题目中推导角度时用到。
模型实例
如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M 。
探究∠AMC 与∠B 、∠D 间的数量关系。
热搜精练 1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= ;
2.如图,求∠A+∠B+∠C+∠D = 。
O D
C B
A O
D
C
B A
O C B A
模型3 边的“8”字模型
如图所示,AC 、BD 相交于点O ,连接AD 、BC 。
结论:AC+BD>AD+BC 。
模型实例
如图,四边形ABCD 的对角线AC 、BD 相交于点O 。
求证:(1)AB+BC+CD+AD>AC+BD ;
(2)AB+BC+CD+AD<2AC+2BD.
模型4 边的飞镖模型 如图所示有结论: AB+AC>BD+CD 。
O
C B A E
D C B A
21P A B
C
P 图3
A B
C P 图2
1
图P
B
模型实例
如图,点O 为三角形内部一点。
求证:(1)2(AO+BO+CO )>AB+BC+AC ;
(2)AB+BC+AC>AO+BO+CO.
热搜精练
1.如图,在△ABC 中,D 、E 在BC 边上,且BD=CE 。
求证:AB+AC>AD+AE 。
2.观察图形并探究下列各问题,写出你所观察得到的结论,并说明理由。
(1)如图①,△ABC 中,P 为边BC 上一点,请比较BP+PC 与AB+AC 的大小,并说明理由;
(2)如图②,将(1)中的点P 移至△ABC 内,请比较△BPC 的周长与△ABC 的周长的大小,并说明理由;
(3)图③将(2)中的点P 变为P 1、P 2,请比较四边形BP 1P 2C 的周长与△ABC 的周长的大小,并说明理由。