dsp初学者扫盲
- 格式:docx
- 大小:16.16 KB
- 文档页数:3
简单dsp设置方法简介数字信号处理(DSP)是指通过对信号进行数学运算和数字滤波等处理,改变信号的特性或提取信号中的有用信息的一种技术。
目前,DSP广泛应用于音频、图像、视频等领域。
本文将介绍一些简单的DSP 设置方法,帮助初学者更好地理解和使用DSP。
DSP 设置的基本步骤在开始介绍具体的DSP 设置方法之前,先了解一下DSP 设置的基本步骤:1. 设定DSP 硬件参数:包括采样率、量化位数、输入输出通道等,根据具体设备的功能进行设置。
2. 选择合适的DSP 算法:根据需要处理的信号类型和要实现的功能,选择适合的DSP 算法。
3. 设置算法参数:根据具体需求,设置相应的算法参数,如滤波器的截止频率、增益等。
4. 调试和优化:通过实时观察输出信号,并根据需要微调参数,直至满足预期要求。
DSP 设置方法1. 信号采样率设置选择合适的采样率对于DSP 处理非常重要。
通常情况下,采样率需要满足奈奎斯特采样定理,即采样率要大于信号中最高频率的两倍。
一般来说,音频信号的采样率为44.1kHz,视频信号的采样率为25Hz或30Hz。
2. 声音增强设置声音增强是DSP 中常见的应用之一,例如提高音量、音频均衡器等。
对于提高音量,可以通过调节增益参数实现。
对于音频均衡器,可以通过设置不同频段的增益来调节各频段的音量。
3. 滤波器设置滤波器是DSP 中常用的功能之一,它可以过滤掉不需要的频率分量或波形。
常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器等。
设置滤波器时需要注意截止频率和增益等参数的选择。
4. 噪声消除设置噪声消除是DSP 中常见的应用之一,它可以从输入信号中过滤掉噪声成分,使输出信号更加清晰。
常用的噪声消除方法包括降噪滤波器、自适应滤波器等。
设置噪声消除参数时需要注意选择合适的降噪程度和稳定性。
5. 实时音频处理设置实时音频处理是DSP 中非常常见的应用之一,例如实时音频特效、音频降噪等。
在进行实时音频处理时,需要注意控制延迟,否则会造成明显的声音延迟。
一、如何开始DSP的学习以下为各网友学习DSP的一些经验fxw451:大家先大体上看一遍书,把大体的知识了解一下。
其次就是看例子了,例子是关键,例子里有你学的所有的东西,这次你再拿出一本书来看,这次是有针对性的看,比如你做的spi的,你就直接看spi那张,一边看例子一边看书,这样你就可以把一些重要的寄存器给记住了。
对于初学者来说,一直好奇的就是ccs的使用,拿我第一次使用ccs来说,当我把ccs 和板子连载一起时,我相当高兴,成功感油然升起,接下来就是用ccs里的看自带的例子了,看完后你就会发现,这些是什么东东哦,什么都不会,这就对了,你要是看一开始看会了你就是神仙了,dsp不像单片机那么容易上手,所以你要花费点功夫吃透它,好东西不是那么容易就可以搞定的。
到了自己编程的时候了,这个时候不要要求自己能编一个什么样的程序,你要仿着例子里的东西全部搞定就可以了,这就是你编程的第一步,当然也是成功的一步,在这成功下,我相信你的积极性肯定被调到起来,对dsp越来越热爱了。
suary:1)把存储器映射结构搞清楚----说的具体点就是dsp内到底有那些存储器(ram,rom,flash,etc),这些存储器到底是如何分配的,这个可以参考相关的.cmd文件的写法,它定义了存储器映射和输入输出段的位置2)编译器的堆栈操作---有关这点我还是没有具体弄清楚,就是中断或是子程序调用时,系统自己的堆栈操作。
2407有一个8级硬件堆栈,而2812没有,这个区别比较大,所以在编一边针对堆栈操作的程序(eg. rtos)时就要特别注意了。
3) 中断系统----每个mcu的中断系统搞清楚了,会给编程带来很大的便利,所以一定要对所用的mcu的中断过程了解的清清楚楚。
4)数据结构---设计好的,适合的数据结构会使自己的程序编写变得结构清楚而且“容易”。
dsp31:我的经验是:DSP不管是软件和硬件开发一定要多思考,多比较。
软件人员一定要会调试和定位硬件电路的问题点。
DSP该怎么学习?大家好,我是新新,研究生,而且是二年级的,在九月初依据老师的要求学习2812,现在马上就一个月了,却感觉无所适从,不知道该从那里下手!我的专业是信号处理,但是现在没办法只能坚持学习2812.当然很希望把它学得很精通我按照师兄的说法先看TI的例程,可是虽然基本看懂了,却不知道看它到底有什么用途. 老师说用示波器查看波形,我却不知道该看哪个管角的波形.觉得很郁闷学习2812,究竟该如何入门?我也是二年级时才开始学DSP的,当时比较着急,因为也感觉什么都不会,不知道从哪里下手。
还好的是我们一个同年级的也有同学在做2812,所以向他请教请教,有个人指点一下,比一个人琢磨效率会高很多。
我一开始也是看书,我觉得不错的有两本,一本是《DSP原理与开发》,除了有详细的理论说明之外,还会在每个章节之后配上一个例程,缺点就是错误也不少,估计时间太仓促,校对没做好。
另一本书是清华大学出版社的《TMS320C28X系列DSP的CPU与外设》,是从TI的英文的技术手册翻译过来的,分上、下两册,可以作为工具书,很实用,缺点是没有例子。
书看了一两遍,觉得还是一头雾水,就索性开始练习自己写写程序,刚开始都不知道怎么建PROJECT,后来问了同学,然后再看TI的例程,仿照它的程序框架,我还是比较喜欢这种框架的。
边看例程,边对着书,看得主要是如何初始化,需要对每个外设进行哪些寄存器的初始化,寄存器为什么这样设置,程序如何进中断,如何出中断等等。
边看书边做实验,效率会高很多,也就能慢慢理解了。
开始的时候,建议看最简单的例程,对外设一个一个的进行消化。
如果你都不知道看波形的时候该看哪个脚的话,说明两个问题,一是你可能程序还没看明白,都不知道是在EV中的哪些定时器或比较器产生波形,另一个可能就是你对板子不够熟悉,不知道对应的是哪个引脚。
前者需要你再看看程序,把它搞清楚了,是用到了哪个定时器,定时器的哪个比较单元,以什么样的方式产生PWM波,周期是多少,占空比是多少等等。
1.DSP选型:主要考虑处理速度、功耗、程序存储器和数据存储器的容量、片内的资源,如定时器的数量、I/O 口数量、中断数量、DMA通道数等。
DSP的主要供应商有TI,ADI,Motorola,Lucent和Zilog等,其中TI占有最大的市场份额。
选择DSP可以根据以下几方面决定:1)速度:DSP速度一般用MIPS或FLOPS表示,即百万次/秒钟。
根据您对处理速度的要求选择适合的器件。
一般选择处理速度不要过高,速度高的DSP,系统实现也较困难。
2)精度:DSP芯片分为定点、浮点处理器,对于运算精度要求很高的处理,可选择浮点处理器。
定点处理器也可完成浮点运算,但精度和速度会有影响。
3)寻址空间:不同系列DSP程序、数据、I/O 空间大小不一,与普通MCU不同,DSP在一个指令周期内能完成多个操作,所以DSP的指令效率很高,程序空间一般不会有问题,关键是数据空间是否满足。
数据空间的大小可以通过DMA的帮助,借助程序空间扩大。
4)成本:一般定点DSP的成本会比浮点DSP的要低,速度也较快。
要获得低成本的DSP系统,尽量用定点算法,用定点DSP。
5)实现方便:浮点DSP的结构实现DSP系统较容易,不用考虑寻址空间的问题,指令对C语言支持的效率也较高。
6)内部部件:根据应用要求,选择具有特殊部件的DSP。
如:C2000适合于电机控制;OMAP适合于多媒体等。
1)C5000系列(定点、低功耗):C54X,C54XX,C55X相比其它系列的主要特点是低功耗,所以最适合个人与便携式上网以及无线通信应用,如手机、PDA、GPS等应用。
处理速度在80MIPS--400MIPS之间。
C54XX和C55XX一般只具有McBSP同步串口、HPI并行接口、定时器、DMA等外设。
值得注意的是C55XX提供了EMIF外部存储器扩展接口,可以直接使用SDRAM,而C54XX则不能直接使用。
两个系列的数字IO 都只有两条。
2)C2000系列(定点、控制器):C20X,F20X,F24X,F24XX ,C28x该系芯片具有大量外设资源,如:A/D、定时器、各种串口(同步和异步),WATCHDOG、CAN总线/PWM 发生器、数字IO 脚等。
DSP_入门教程DSP(Digital Signal Processing)是数字信号处理的缩写,它是利用数字技术对信号进行处理的一种方法。
在现代工程中,DSP技术广泛应用于各种领域,如音频处理、图像处理、通信系统等。
下面将为大家介绍DSP的基本概念和入门教程。
首先,我们来了解一下什么是数字信号处理(DSP)。
数字信号是指连续信号经过采样和量化处理后得到的离散数值序列,而数字信号处理就是在这个离散序列上进行一系列数学运算和算法处理的过程。
DSP可以通过数字滤波、傅里叶变换、时域分析等方法对信号进行处理,使其具备滤波、降噪、压缩等功能。
要学习DSP,首先需要了解一些基本概念。
首先是采样和量化。
采样是指将连续信号在时间上进行离散化,即以一定的时间间隔对信号进行观测,得到一系列的采样值。
量化是指将采样得到的连续幅度值转换为离散幅度值的过程。
采样和量化是将连续信号转换为离散信号的关键步骤。
接下来是数字滤波。
数字滤波是指在离散时域或频域上进行滤波操作。
常见的数字滤波器有低通滤波器、高通滤波器、带通滤波器等。
数字滤波可以用于信号去噪、提取感兴趣的频率成分、改善信号质量等。
另外,我们还需要了解一些基本的数学运算和算法。
傅里叶变换是一种重要的信号处理方法,可以将时域信号转换为频域信号,从而分析信号的频谱特性。
在DSP中,快速傅里叶变换(FFT)是一种常用的算法,可用于高效计算傅里叶变换。
此外,数字信号处理还涉及到一些常见的算法,如卷积、相关、自相关、互相关等。
这些算法可以用于信号的滤波、特征提取、模式识别等任务。
要学习DSP,可以首先通过学习相关的数学知识打好基础。
掌握离散数学、线性代数、复变函数等基本概念,对于理解和应用DSP技术非常重要。
其次,可以学习一些基本的DSP算法和工具。
如学习使用MATLAB软件进行信号处理,掌握常用的DSP函数和工具箱,进行信号的滤波、频谱分析等操作。
另外,可以学习一些经典的DSP案例和应用。
DSP入门(献给初学者)DSP的特点对于没有使用过DSP的初学者来说,第一个困惑就是DSP其他的嵌入式处理器究竟有什么不同,它和单片机,ARM有什么区别。
事实上,DSP也是一种嵌入式处理器,它完全可以完成单片机的功能。
唯一的重要的区别在于DSP支持单时钟周期的“乘-加”运算。
这几乎是所有厂家的DSP芯片的一个共有特征。
几乎所有的DSP处理器的指令集中都会有一条MAC指令,这条指令可以把两个操作数从RAM 中取出相乘,然后加到一个累加器中,所有这些操作都在一个时钟周期内完成。
拥有这样一条指令的处理器就具备了DSP功能具有这条指令就称之为数字信号处理器的原因在于,所有的数字信号处理算法中最为常见的算术操作就是“乘-加”。
这是因为数字信号处理中大量使用了内积,或称“点积”的运算。
无论是FIR滤波,FFT,信号相关,数字混频,下变频。
所有这些数字信号处理的运算经常是将输入信号与一个系数表或者与一个本地参考信号相乘然后积分(累加),这就表现为将两个向量(或称序列)进行点积,在编程上就变成将输入的采样放在一个循环buffer里,本地的系数表或参考信号也放在一个buffer里,然后使用两个指针指向这两个buffer。
这样就可以在一个loop里面使用一个MAC指令将二者进行点积运算。
这样的点积运算对与处理器来说是最快的,因为仅需一个始终周期就可以完成一次乘加。
了解DSP的这一特点后,当我们设计一个嵌入式系统时,首先要考虑处理器所实现的算法中是否有点积运算,即是否要经常进行两个数组的乘加,(记住数字滤波,相关等都表现为两个数组的点积)如果有的话,每秒要做多少次,这样就能够决定是否采用DSP,采用多高性能的DSP了。
浮点与定点浮点与定点也是经常是初学者困惑的问题,在选择DSP器件的时候,是采用浮点还是采用定点,如果用定点是16位还是32位?其实这个问题和你的算法所要求的信号的动态范围有关。
定点的计算不过是把一个数据当作整数来处理,通常AD采样来的都是整数,这个数相对于真实的模拟信号有一个刻度因子,大家都知道用一个16位的AD去采样一个0到5V的信号,那么AD输出的整数除以2^16再乘以5V就是对应的电压。
DSP入门前的背景知识数字信号处理(DigitalSignal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。
在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。
数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。
数字信号处理是围绕着数字信号处理的理论、实现和应用等几个方面发展起来的。
数字信号处理在理论上的发展推动了数字信号处理应用的发展。
反过来,数字信号处理的应用又促进了数字信号处理理论的提高。
而数字信号处理的实现则是理论和应用之间的桥梁。
数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。
例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。
近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。
可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。
数字信号处理的实现方法一般有以下几种:(1) 在通用的计算机(如PC机)上用软件(如Fortran、C语言)实现;(2) 在通用计算机系统中加上专用的加速处理机实现;(3) 用通用的单片机(如MCS-51、96系列等)实现,这种方法可用于一些不太复杂的数字信号处理,如数字控制等;(4) 用通用的可编程DSP芯片实现。
与单片机相比,DSP芯片具有更加适合于数字信号处理的软件和硬件资源,可用于复杂的数字信号处理算法;(5) 用专用的DSP芯片实现。
在一些特殊的场合,要求的信号处理速度极高,用通用DSP芯片很难实现,例如专用于 FFT、数字滤波、卷积、相关等算法的DSP芯片,这种芯片将相应的信号处理算法在芯片内部用硬件实现,无需进行编程。
dsp入门需要注意的事项在作硬件之前,需要看的资料有:1.芯片数据手册,描述该器件的引脚信号、片上资源、电气指标和机械特性(如封装等),在做硬件前必看(TMS320F281x数据手册SPRS174J)2.某一系列DSP的CPU和指令集用户指南,描述该系列DSP的CPU结构、内部寄存器、寻址方式等(TMS320F28x系列DSP的CPU和指令集用户指南SPRU430D)3.某一系列DSP片上外设用户指南,一般有很多本,用什么外设看相应的用户指南即可。
在作软件之前,需要看的资料有:1. 汇编语言工具(TMS320F28x Assembly Language Tools User’s Guide,SPRU513),描述汇编语言的基本格式、汇编器伪指令、汇编器参数、链接器和其他实用程序等,在做汇编程序开发前,首先看明白该书的第二章(描述Coff 格式,是汇编语言的基础),该书的其他内容,可以在使用中再来查阅。
2.汇编指令集(TMS320F28x DSP CPU and Instruction Set Reference Guide (Rev.D),SPRU430D),在做汇编程序前,首先要看明白寻址方式(第5章,C28xAddressing Modes),具体的指令(第6章,C28x Assembly LanguageInstructions)在编程时查阅。
3.优化C编译器(TMS320F28x Optimizing C/C++ Compiler User’s Guide,SPRU514),在做C程序前,首先要看明白C的运行环境(第7章,run-time environment),其他内容编程时查阅。
4.更高级的编程方法,还有很多资料,如DSP/BIOS、函数库等,均有相应的优化指南,用到时再去查看。
调试时,需要看的资料有:1.Code Composer Studio Getting Started Guide (Rev. D)2.Code Composer Studio User's Guide (Rev. B)转载请注明出自DSP交流网 DSP学习第一论坛 DSP技术应用与推广平台 DSP开发服务平台 /bbs/,本贴地址:/bbs /viewthread.php?tid=82111.关闭DSP--blog's Blog高速数字信号处理器是当前信息产业的热点技术之一,采用最先进的DSP无疑会使所开发的产品具有更强的市场竞争力。
DSP必看
DSP入门必看(非常好的DSP扫盲文章)
DSP入门必看(非常好的DSP扫盲文章)(ZZ)(7)
如何设置硬件断点?
在profiler ->profile point -> break point
c54x的外部中断是电平响应还是沿响应?
是沿响应,准确的说,它要检测到100(一个clk的高和两个clk的低)的变化才可以。
参考程序,里面好象都要dISAble wachdog,不知道为什么?
watchdog是一个计数器,溢出时会复位你的DSP,不dISAble的话,你的系统会动不动就reset。
时钟电路选择原则
1,系统中要求多个不同频率的时钟信号时,首选可编程时钟芯片;
2,单一时钟信号时,选择晶体时钟电路;
3,多个同频时钟信号时,选择晶振;
4,尽量使用DSP片内的PLL,降低片外时钟频率,提高系统的稳定性;
5,C6000、C5510、C5409A、C5416、C5420、C5421和C5441等DSP片内无振荡电路,不能用晶体时钟电路;
6,VC5401、VC5402、VC5409和F281x等DSP时钟信号的电平为1.8V,建议采用晶体时钟电路
C程序的代码和数据如何定位
1,系统定义:
.cinit 存放C程序中的变量初值和常量;
.const 存放C程序中的字符常量、浮点常量和用const声明的常量;
.switch 存放C程序中switch语句的跳针表;
.text 存放C程序的代码;
.bss 为C程序中的全局和静态变量保留存储空间;
.far 为C程序中用far声明的全局和静态变量保留空间;
.stack 为C程序系统堆栈保留存储空间,用于保存返回地址、函数间的参数传递、存储局部变量和保存中间结果;
.sysmem 用于C程序中malloc、calloc和realloc函数动态分配存储空间
2,用户定义:
#pragma CODE_SECTION (symbol, "section name");
#pragma DATA_SECTION (symbol, "section name")
cmd文件
由3部分组成:
1)输入/输出定义:.obj文件:链接器要链接的目标文件;.lib文件:链接器要链接的库文件;.map文件:链接器生成的交叉索引文件;.out文件:链接器生成的可执行代码;链接器选项
2)MEMORY命令:描述系统实际的硬件资源
3)SECTIONS命令:描述“段”如何定位
为什么要设计CSL?
1,DSP片上外设种类及其应用日趋复杂
2,提供一组标准的方法用于访问和控制片上外设
3,免除用户编写配置和控制片上外设所必需的定义和代码
什么是CSL?
1,用于配置、控制和管理DSP数字信号处理片上外设
2,已为C6000和C5000系列DSP设计了各自的CSL库
3,CSL库函数大多数是用C语言编写的,并已对代码的大小和速度进行了优化
4,CSL库是可裁剪的:即只有被使用的CSL模块才会包含进应用程序中
5,CSL库是可扩展的:每个片上外设的API相互独立,增加新的API,对其他片上外设没有影响
CSL的特点
1,片上外设编程的标准协议:定义一组标准的APIs:函数、数据类型、宏;
2,对硬件进行抽象,提取符号化的片上外设描述:定义一组宏,用于访问和建立寄存器及其域值
3,基本的资源管理:对多资源的片上外设进行管理;
4,已集成到DSP/BIOS中:通过图形用户接口GUI对CSL进行配置;
5,使片上外设容易使用:缩短开发时间,增加可移植.
为什么需要电平变换?
1) DSP系统中难免存在5V/3.3V混合供电现象;
2)I/O为3.3V供电的DSP,其输入信号电平不允许超过电源电压3.3V;
3)5V器件输出信号高电平可达4.4V;
4)长时间超常工作会损坏DSP器件;
5)输出信号电平一般无需变换
电平变换的方法
1,总线收发器(Bus Transceiver):
常用器件:SN74LVTH245A(8位)、SN74LVTH16245A(16位)
特点:3.3V供电,需进行方向控制,
延迟:3.5ns,驱动:-32/64mA,
输入容限:5V
应用:数据、地址和控制总线的驱动
2,总线开关(Bus Switch)
常用器件:SN74CBTD3384(10位)、SN74CBTD16210(20位)
特点:5V供电,无需方向控制
延迟:0.25ns,驱动能力不增加
应用:适用于信号方向灵活、且负载单一的应用,如McBSP等外设信号的电平变换
3,2选1切换器(1 of 2 Multiplexer)
常用器件:SN74CBT3257(4位)、SN74CBT16292(12位)
特点:实现2选1,5V供电,无需方向控制
延迟:0.25ns,驱动能力不增加
应用:适用于多路切换信号、且要进行电平变换的应用,如双路复用的McBSP
4,CPLD
3.3V供电,但输入容限为5V,并且延迟较大:>7ns,适用于少量的对延迟要求不高的输入信号
5,电阻分压
10KΩ和20KΩ串联分压,5V×20÷(10+20)≈3.3V
未用的输入/输出引脚的处理
1,未用的输入引脚不能悬空不接,而应将它们上拉活下拉为固定的电平
1)关键的控制输入引脚,如Ready、Hold等,应固定接为适当的状态,Ready引脚应固定接为有效状态,Hold引脚应固定接为无效状态
2)无连接(NC)和保留(RSV)引脚,NC 引脚:除非特殊说明,这些引脚悬空不接,RSV引脚:应根据数据手册具体决定接还是不接
3)非关键的输入引脚,将它们上拉或下拉为固定的电平,以降低功耗
2,未用的输出引脚可以悬空不接
3,未用的I/O引脚:如果确省状态为输入引脚,则作为非关键的输入引脚处理,上拉或下拉为固定的电平;如果确省状态为输出引脚,则可以悬空不接。