易错点专题三:三角函数
- 格式:doc
- 大小:342.00 KB
- 文档页数:7
第五章 三角函数典型易错题集易错点1.忽略顺时针旋转为负角,逆时针旋转为正角。
【典型例题1】(2022·全国·高一专题练习)将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是( ) A .6πB .3π C .6π-D .3π-【错解】B将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ⨯=. 点评:学生对角的理解还是局限在0360之间,把角都当成正数,容易忽视角的定义,顺时针旋转为负,逆时针旋转为正。
【正解】D 【详解】将手表的分针拨快10分钟,则分针在旋转过程中形成的角的弧度数是102603ππ-⨯=-. 故选:D.易错点2.在三角函数定义中,忽略点坐标值的正负。
【典型例题2】(2022·湖北襄阳·高一期中)设α是第三象限角,(),4P x -为其终边上的一点,且1cos 5x α=,则tan α=( ) A .43-或43B .34C .43D .34-【错解】A解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:3x =±,所以(3,4)P ∴--或者(3,4)P ∴-,所以44tan 33α-∴==-或者44tan 33α-∴==-点评:学生在解此类问题时往往忽略了角α15x=方程时容易造成两种错误:①293a a =⇒=,这类错误往往学生只能看到正根,没有负根。
②第二类错误,本题也解出了3x =±,但是忽视了本题α是第三象限角,此时x 是负数,要舍去其中的正根。
【答案】C 【详解】解:(,4)P x -为其终边上的一点,且1cos 5x α=, ∴15x,解得:0x =或3x =±, 又α是第三象限角,0x ∴<,3x ∴=-,(3,4)P ∴--, 44tan 33α-∴==-. 故选:C .易错点3.分数的分子分母同乘或者同除一个数,分数的值不变(分数基本性质)【典型例题3】(2022·安徽省五河第一中学高二月考)已知tan 2θ=则22sin sin cos 2cos θθθθ+-的值为________. 【错解】4222222sin sin cos 2cos (sin sin cos 2cos )cos tan tan 24θθθθθθθθθθθ+-=+-÷=+-=点评:学生在此类问题时多数出现分式问题,习惯了分子分母同除以cos θ(或者2cos θ),但本题是一个整式,要先化成分式,才能进一步同时除以cos θ(或者2cos θ)。
专题03 三角函数与解三角形§3-1 三角函数的概念【知识要点】1.角扩充到任意角:通过旋转和弧度制使得三角函数成为以实数为自变量的函数.2.弧度rad 以及度与弧度的互化:οοο3.57)π180(rad 1,π180;≈===r l α. 3.三角函数的定义:在平面直角坐标系中,任意角α 的顶点在原点,始边在x 轴正半轴上,终边上任意一点P (x ,y ),|OP |=r (r ≠0),则;cos ;sin r x r y ==αα⋅=xy αtan5.三角函数线:正弦线,余弦线OM ,正切线6.同角三角函数基本关系式:⋅==+αααααcos sin tan ,1cos sin 22 7.诱导公式:任意角α 的三角函数与角ααα±±-2π,π,等的三角函数之间的关系,可以统一为“k ·2π±α ”形式,记忆规律为“将α 看作锐角,符号看象限,(函数名)奇变偶不变”.【复习要求】1.会用弧度表示角的大小,能进行弧度制与角度制的互化;会表示终边相同的角;会象限角的表示方法. 2.根据三角函数定义,熟练掌握三角函数在各个象限中的符号,牢记特殊角的三角函数值, 3.会根据三角函数定义,求任意角的三个三角函数值. 4.理解并熟练掌握同角三角函数关系式和诱导公式. 【例题分析】例1 (1)已知角α 的终边经过点A (-1,-2),求sin α ,cos α ,tan α 的值;(2)设角α 的终边上一点),3(y P -,且1312sin =α,求y 的值和tan α . 解:(1)5||==OA r ,所以.2tan ,55cos ,55252sin ==-==-=-==x y r x r y ααα(2),13123sin ,3||22=+=+==y y y OP r α 得⎪⎩⎪⎨⎧=+>13123022y y y ,解得.3236tan ,6-=-===x y y α 【评析】利用三角函数的定义求某一角三角函数值应熟练掌握,同时应关注其中变量的符号.例2 (1)判断下列各式的符号:①sin330°cos(-260°)tan225° ②sin(-3)cos4 (2)已知cos θ <0且tan θ <0,那么角θ 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 (3)已知α 是第二象限角,求角αα2,2的终边所处的位置.解:如图3-1-1,图3-1-2(1)①330°是第四象限角,sin330°<0;-260°是第二象限角,cos(-260°)<0;225°是第三象限角,tan225°>0;所以sin330°cos(-260°)tan225°>0.②-3是第三象限角,sin(-3)<0;5是第四象限角,cos5>0,所以sin(-3)cos5<0或:-3≈-3×57.3°=-171.9°,为第三象限角;5≈5×57.3°=286.5°,是第四象限角【评析】角的终边所处的象限可以通过在坐标系中逆时针、顺时针两个方向旋转进行判断,图3-1-1,图3-1-2两个坐标系应予以重视.(2)cos θ <0,所以角θ 终边在第二或第三象限或在x 轴负半轴上tan θ <0,所以角θ 终边在第二或第四象限中,所以角θ 终边在第二象限中,选B.【评析】角的终边在各个象限中时角的函数值的符号应熟练掌握,(3)分析:容易误认为2α是第一象限角,其错误原因为认为第二象限角的范围是),π,2π(α 是第二象限角,所以2k π+2π<α <2k π+π,(k ∈Z ),所以,2ππ2π4ππ+<<+k k )(Z ∈k 如下图3-1-3,可得2α是第一象限或第三象限角,又4k π+π<2α <4k π+2π,2α 是第三象限或第四象限角或终边落在y 轴负半轴的角.【评析】处理角的象限问题常用方法(1)利用旋转成角,结合图3-1-1,图3-1-2,从角度制和弧度制两个角度处理; (2)遇到弧度制问题也可以由)π180(rad 1=°≈57.3°化为角度处理; (3)在考虑角的终边位置时,应注意考虑终边在坐标轴上的情况. (4)对于象限角和轴上角的表示方法应很熟练. 如第一象限角:)(,2ππ2π2Z ∈+<<k k k α,注意防止2π0<<α的错误写法.例3 (1)已知tan α =3,且α 为第三象限角,求sin α ,cos α 的值; (2)已知31cos -=α,求sin α +tan α 的值;(3)已知tan α =-2,求值:①ααααcos sin cos sin 2-+;②sin 2α +sin α cos α .解:(1)因为α 为第三象限角,所以sin α <0,cos α <0⎪⎩⎪⎨⎧=+=1cos sin 3cos sin 22αααα,得到.1010cos 10103sin ⎪⎪⎩⎪⎪⎨⎧-=-=αα (2)因为031cos <-=α,且不等于-1,所以α 为第二或第三象限角, 当α 为第二象限角时,sin α >0,,22cos sin tan ,322cos 1sin 2-===-=ααααα 所以⋅-=+324tan sin αα 当α 为第三象限角时,sin α <0,,22cos sin tan ,322cos 1sin 2==-=--=ααααα 所以⋅=+324tan sin αα综上所述:当α 为第二象限角时,324tan sin -=+αα,当α 为第三象限角时,⋅=+324tan sin αα 【评析】已知一个角的某一个三角函数值,求其余的三角函数值的步骤:(1)先定所给角的范围:根据所给角的函数值的符号进行判断(2)利用同角三角函数的基本关系式,求其余的三角函数值(注意所求函数值的符号) (3)当角的范围不确定时,应对角的范围进行分类讨论(3)(法一):因为tan α =-2,所以.cos 2sin ,2cos sin αααα-=-= ①原式1cos 3cos 3cos cos 2cos cos 4=--=--+-=αααααα,②原式=(-2cos α )2+(-2cos α )cos α =2cos 2α , 因为⎩⎨⎧=+-=1cos sin cos 2sin 22αααα,得到51cos 2=α,所以⋅=+52cos sin sin 2ααα (法二):①原式,112141tan 1tan 21cos sin 1cos sin 2=--+-=-+=-+=αααααα②原式⋅=+-=++=++=5214241tan tan tan cos sin cos sin sin 22222αααααααα 【评析】已知一个角的正切值,求含正弦、余弦的齐次式的值:(1)可以利用αααcos sin tan =将切化弦,使得问题得以解决; (2)1的灵活运用,也可以利用sin 2α +cos 2α =1,αααcos sin tan =,将弦化为切.例4 求值:(1)tan2010°=______; (2))6π19sin(-=______; (3)⋅+---+-)2πcos()π3sin()2π3sin()πcos()π2sin(ααααα解:(1)tan2010°=tan(1800°+210°)=tan210°=tan(180°+30°)=3330tan =ο (2)216πsin )6ππsin()6ππ3sin(619πsin )6π19sin(==+-=+-=-=-或:216πsin )6ππsin()6ππ3sin()6π19sin(==--=--=-【评析】“将α 看做锐角,符号看象限,(函数名)奇变偶不变”,6π2π26ππ-⨯-=--,可以看出是2π的-2倍(偶数倍),借助图3-1-2看出6ππ--为第二象限角,正弦值为正.(3)原式)2πcos()πsin()]2π(πsin[)cos (sin ααααα---+--=⋅⋅⋅⋅-=-=--=αααααααααsin 1sin cos cos sin sin )2πsin(cos ·sin【分析】αα-⨯=-2π32π3,将α 看做锐角,借助图3-1-2看出α-2π3为第三象限角,正弦值为负,2π的3倍(奇数倍),改变函数名,变为余弦,所以可得ααcos )2π3sin(-=-,同理可得ααsin )2πcos(=+-,所以原式αααααααcsc sin 1sin sin cos )cos (sin -=-=---=⋅⋅⋅.【评析】诱导公式重在理解它的本质规律,对于“将α 看做锐角,符号看象限,(函数名)奇变偶不变”要灵活运用,否则容易陷入公式的包围,给诱导公式的应用带来麻烦.例5 已知角α 的终边经过点)5πsin ,5πcos (-,则α 的值为( ) A .5π- B .5π4 C )(,π5πZ ∈+-k k D .)(,π25π4Z ∈+k k解:因为05πsin ,05πcos >>,所以点)5πsin ,5πcos (-在第二象限中,由三角函数定义得,5πtan 5πcos 5πsin tan -=-==x y α,因为角α 的终边在第二象限, 所以)π25π4tan(5π4tan )5ππtan(tan k +==-=α,所以,)(,π25π4Z ∈+=k k α,选D .例6 化简下列各式:(1)若θ 为第四象限角,化简θθ2sin 1tan - (2)化简θθ2tan 1cos +(3)化简)4πcos(4sin 21--解:(1)原式=|cos |cos sin |cos |tan cos tan 2θθθθθθθ===, 因为θ 为第四象限角,所以cos θ >0,原式=θθθθsin cos cos sin ==⋅,(2)原式=⋅==+=+=|cos |cos cos 1cos cos sin cos cos cos sin 1cos 222222θθθθθθθθθθθ当θ 为第二、三象限角或终边在x 轴负半轴上时,cos θ <0,所以原式1cos cos -=-=θθ,当θ 为第一、四象限角或终边在x 轴正半轴上时,cos θ >0,所以原式1cos cos ==θθ.(3)原式|4cos 4sin |)4cos 4(sin 4cos 4sin 212+=+=+=.4弧度属于第三象限角,所以sin4<0,cos4<0, 所以原式=-(sin4+cos4)=-sin4-cos4.【评析】利用同角三角函数关系式化简的基本原则和方法:(1)函数名称有弦有切:切化弦;(2)分式化简:分式化整式;(3)根式化简:无理化有理(被开方式凑平方),运用||2x x =,注意对符号的分析讨论;(4)注意公式(sin α ±cos α )2=1±2sin α cos α =1±sin2α 的应用.例7 扇形的周长为定值L ,问它的圆心角θ (0<θ <π)取何值时,扇形的面积S 最大?并求出最大值. 解:设扇形的半径为)20(Lr r <<,则周长L =r ·θ +2r (0<θ <π) 所以44214421)2(2121ππ2,22222222++=++=+==⋅=+=θθθθθθθθθθL L L r r S L r . 因为844244=+⨯≥++θθθθ,当且仅当θθ4=,即θ =2∈(0,π)时等号成立.此时16812122L L S =⨯≤,所以,当θ =2时,S 的最大值为162L .练习3-1一、选择题1.已知32cos -=α,角α 终边上一点P (-2,t ),则t 的值为( ) A .5 B .5± C .55 D .55±2.“tan α =1”是“Z ∈+=k k ,4ππ2α”的( )A .充分而不必要条件B .必要不而充分条件C .充要条件D .既不充分也不必要条件3.已知点P (sin α -cos α ,tan α )在第一象限,则在[0,2π]上角α 的取值范围是( )A .)4π5,π()4π3,2π(Y B .)4π5,π()2π,4π(YC .)2π3,4π5()4π3,2π(YD .)π,4π3()2π,4π(Y4.化简=+οο170cos 10sin 21( ) A .sin10°+cos10° B .sin10°-cos10° C .cos10°-sin10°D .-sin10°-cos10°二、填空题5.已知角α ,β 满足关系2π0;<<<βα,则α -β 的取值范围是______. 6.扇形的周长为16,圆心角为2弧度,则扇形的面积为______.7.若2π3π,sin <<=ααm ,则tan(π-α )=______. 8.已知:2π4π,81cos sin <<=ααα,则cos α -sin α =______.三、解答题9.已知tan α =-2,且cos(π+α )<0,求(1)sin α +cos α 的值 (2)θθ2cos sin 22--的值10.已知21tan =α,求值: (1)ααααcos sin cos 2sin -+; (2)cos 2α -2sin α cos α .11.化简ααααααααtan 1tan cos sin ]π)1cos[(]π)1sin[()πcos()πsin(2+++++++-⋅k k k k§3-2 三角变换【知识要点】1.两角和与差的正弦、余弦、正切公式sin(α +β )=sin α cos β +cos α sin β ;sin(α -β )=sin α cos β -cos α sin β ; cos(α +β )=cos α cos β -sin α sin β ;cos(α -β )=cos α cos β +sin α sin β ;⋅+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(;tan tan 1tan tan )tan(2.正弦、余弦、正切的二倍角公式sin2α =2sin α cos α :cos2α =cos 2α -sin 2α =1-2sin 2α =2cos 2α -1;⋅-=ααα2tan 1tan 22tan 【复习要求】1.牢记两角和、差、倍的正弦、余弦、正切公式,并熟练应用; 2.掌握三角变换的通法和一般规律; 3.熟练掌握三角函数求值问题. 【例题分析】例1 (1)求值sin75°=______;(2)设54sin ),π,2π(=∈αα,则=+)4πcos(α______; (3)已知角2α的终边经过点(-1,-2),则)4πtan(+α的值为______;(4)求值=+-οο15tan 115tan 1______.解:(1)=︒︒+︒︒=︒+︒=︒30sin 45cos 30cos 45sin )3045sin(75sin 222322+⨯21⨯426+=. (2)因为53cos ,54sin ),π,2π(-==∈ααα所以, 1027)5453(22sin 22cos 22)4πcos(-=--=-=+ααα(3)由三角函数定义得,342tan 12tan2tan ,22tan2-=-==αααα, 所以71tan 1tan 1tan 4πtan 14πtantan )4πtan(-=-+=-+=+ααααα. (4)3330tan )1545tan(15tan 45tan 115tan 45tan 15tan 115tan 1=︒=︒-︒=︒︒+︒-︒=︒+︒-⋅==-=+-=+-3330tan )1545tan(15tan 45tan 115tan 45tan 15tan 115tan 1οοοοοοοοo【评析】两角的和、差、二倍等基本三角公式应该熟练掌握,灵活运用,这是处理三角问题尤其是三角变换的基础和核心.注意αααtan 1tan 1)4πtan(-+=+和αααtan 1tan 1)4πtan(+-=-运用. 例2 求值: (1)=-12πsin 12πcos3______; (2)cos43°cos77°+sin43°cos167°=______; (3)=++οοο37tan 23tan 337tan 23tan o______. 解:(1)原式)12πsin 3πcos 12πcos 3π(sin 2)12πsin 2112πcos 23(2-=-= 24πsin 2)12π3πsin(2==-=.【评析】辅助角公式:,cos ),sin(cos sin 2222ba a xb a x b x a +=++=+ϕϕ⋅+=22sin b a b ϕ应熟练掌握,另外本题还可变形为=-)12πsin 2112πcos 23(2 -12πcos 6π(cos 2.24πcos 2)12π6πcos(2)12πsin 6πsin ==+=(2)分析所给的角有如下关系:77°+43°=120°,167°=90°+77°,原式=cos43°cos77°+sin43°cos(90°+77°)=cos43°cos77°-sin43°sin77°=cos(43°+77°)=cos120°=⋅-21 (3)分析所给的角有如下关系:37°+23°=60°,函数名均为正切,而且出现两角正切的和tan a +tan β 与两角正切的积tan α tan β ,所有均指向公式⋅-+=+βαβαβαtan tan 1tan tan )tan(∵,337tan 23tan 137tan 23tan )3723tan(60tan =︒︒-︒+︒=+=οοο∴,37tan 23tan 3337tan 23tan οοοο-=+∴337tan 23tan 337tan 23tan =++οοοo .【评析】三角变换的一般规律:看角的关系、看函数名称、看运算结构.以上题目是给角求值问题,应首看角的关系:先从所给角的关系入手,观察所给角的和、差、倍是否为特殊角,然后看包含的函数名称,以及所给三角式的结构,结合三角公式,找到题目的突破口.公式βαβαβαtan tan 1tan tan )tan(-+=+的变形tan α+tan β =tan(α +β )(1-tan α tan β )应予以灵活运用.例3 41)tan(,52)tan(=-=+βαβα,则tan2α =______; (2)已知1312)4πsin(,53)sin(),π,4π3(,=--=+∈ββαβα,求)4πcos(+α的值.解:(1)分析所给的两个已知角α +β ,α -β 和所求的角2α 之间有关系(α +β )+(α -β )=2α ,=-++=)]()tan[(2tan ββa a a 1813415214152)tan()tan(1)tan()tan(=⨯-+=-+--++βαβαβαβα,(2)∵)π,4π3(,∈βα,∴)43,2π(4π),π2,23π(π∈-∈+ββα,又∵53)sin(-=+βα,∴54)cos(=+βα;∵1312)4πsin(=-β,∴135)4πcos(-=-β.)4πsin()sin()4πcos()cos()]4π()cos[()4πcos(-++-+=--+=+ββαββαββαα65561312)53()135(54-=⨯-+-⨯=. 【评析】此类题目重在考察所给已知角与所求角之间的运算关系,主要是指看两角之间的和、差、倍的关系,如αββαααββα2)(,4π)4π()(,+-=+=--+++=)(βα)(βα-等,找到它们的关系可以简化运算,同时在求三角函数值时应关注函数值的符号.例4 如图,在平面直角坐标系xOy 中,以Ox 轴为始边做两个锐角α ,β ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 的横坐标分别为552,102.(Ⅰ)求tan(α +β )的值; (Ⅱ)求α +2β 的值.解:由三角函数定义可得552cos ,102cos ==βα, 又因为α ,β 为锐角,所以55sin ,1027sin ==βα,因此tan α =7,21tan =β (Ⅰ)3tan tan 1tan tan )tan(-=-+=+βαβαβα;(Ⅱ) 34tan 1tan 22tan 2=-=βββ,所以12tan tan 12tan tan )2tan(-=-+=+βαβαβα, ∵α ,β 为锐角,∴4π32,2π320=+∴<+<βαβα 【评析】将三角函数的定义、两角和的正切、二倍角的正切公式结合在一起进行考查,要求基础知识掌握牢固,灵活运用;根据三角函数值求角,注意所求角的取值范围.例5 化简(1)12cos2sin22sin 22cos 2-+αααα;(2).2sin 3)4πcos()4πcos(2x x x +-+解:(1)原式⋅+-=--=--=-=)4πsin(2sin cos cos sin sin cos cos sin 2cos 22αααααααααα (2)法一:原式x x x x x 2sin 3)sin 22cos 22)(sin 22cos 22(2++-= x x x 2sin 3sin cos 22+-=⋅+=+=+=)6π2sin(2)2sin 232cos 21(22sin 32cos x x x x x法二:,2π)4π()4π(=--+x x 原式x x x 2sin 3)4πcos()]4π(2πcos[2+--+=x x x x x 2sin 3)2π2sin(2sin 3)4πcos()4πsin(2+--=+---=⋅+=+=)6π2sin(22sin 32cos x x x【评析】在进行三角变换时,应从三个角度:角的关系、函数的名称、所给运算式的结构全面入手,注意二倍角的变式(降幂升角)和辅助角公式的应用,此类变换是处理三角问题的基础.例6 (1)已知α 为第二象限角,且415sin =α,求12cos 2sin )4πsin(+++ααα的值. (2)已知323cos sin 32cos 62-=-x x x ,求sin2x 的值. 解:(1)因为α 为第二象限角,且415sin =α,所以41cos -=α, 原式.2cos 42)cos (sin cos 2)cos (sin 221)1cos 2(cos sin 2)cos (sin 222-==++=+-++=ααααααααααα 【评析】此类题目为给值求值问题,从分析已知和所求的三角式关系入手,如角的关系,另一个特征是往往先对所求的三角式进行整理化简,可降低运算量.(2)因为32sin 32cos 32sin 322cos 16+-=-+⋅x x x x3233)6π2cos(323)2sin 212cos 23(32-=++=+-=x x x 所以0)6π2sin(,1)6π2cos(=+-=+x x 216πsin )6π2cos(6πcos )6π2sin(]6π)6π2sin[(2sin =+-+=-+=x x x x【评析】在进行三角变换时,应从三个角度:角的关系、函数的名称、所给运算式的结构全面入手,注意二倍角的变式(降幂升角)22cos 1sin ,22cos 1cos 22αααα-=+=和辅助角公式的应用,此类变换是处理三角问题的基础,因为处理三角函数图象性质问题时往往先进行三角变换.练习3-2一、选择题1.已知53sin ),π,2π(=∈αα,则)4πtan(+α等于( ) A .71 B .7 C .71-D .-72.cos24°cos54°-sin24°cos144°=( ) A .23-B .21 C .23 D .21-3.=-o30sin 1( ) A .sin15°-cos15° B .sin15°+cos15° C .-sin15°-cos15° D .cos15°-sin15°4.若22)4πsin(2cos -=-αα,则cos α +sin α 的值为( )A .27-B .21-C .21 D .27 二、填空题 5.若53)2πsin(=+θ,则cos2θ =______. 6.=-οο10cos 310sin 1______.7.若53)cos(,51)cos(=-=+βαβα,则tan α tan β =______. 8.已知31tan -=α,则=+-ααα2cos 1cos 2sin 2______. 三、解答题 9.证明⋅=++2tan cos 1cos .2cos 12sin ααααα10.已知α 为第四象限角,且54sin -=α,求ααcos )4π2sin(21--的值.11.已知α 为第三象限角,且33cos sin =-αα. (1)求sin α +cos α 的值;(2)求αααααcos 82cos 112cos2sin82sin 522-++的值.§3-3 三角函数【知识要点】12.三角函数图象是研究三角函数的有效工具,应熟练掌握三角函数的基本作图方法.会用“五点法”画正弦函数、余弦函数和函数y =A sin(ω x +ϕ)(A >0,ω >0)的简图.3.三角函数是描述周期函数的重要函数模型,通过三角函数体会函数的周期性.函数y =A sin(ω x +ϕ)(ω ≠0)的最小正周期:||π2ω=T ;y =A tan(ω x +ϕ)(ω ≠0)的最小正周期:||πω=T .同时应明确三角函数与周期函数是两个不同的概念,带三角函数符号的函数不一定是周期函数,周期函数不一定带三角函数符号.【复习要求】1.掌握三角函数y =sin x ,y =cos x ,y =tan x 的图象性质:定义域、值域(最值)、单调性、周期性、奇偶性、对称性等.2.会用五点法画出函数y =sin x ,y =cos x ,y =A sin(ω x +ϕ)(A >0,ω >0)的简图,掌握图象的变换方法,并能解决相关图象性质的问题.3.本节内容应与三角恒等变换相结合,通过变换,整理出三角函数的解析式,注意使用换元法,转化为最基本的三个三角函数y =sin x ,y =cos x ,y =tan x ,结合三角函数图象,综合考察三角函数性质 【例题分析】例1 求下列函数的定义域(1)xxy cos 2cos 1+=;(2)x y 2sin =.解:(1)cos x ≠0,定义域为},2ππ|{Z ∈+≠k k x x (2)sin2x ≥0,由正弦函数y =sin x 图象(或利用在各象限中和轴上角的正弦函数值的符号可得终边在第一二象限,x 轴,y 轴正半轴上) 可得2k π≤2x ≤2k π+π, 定义域为},2πππ|{Z ∈+≤≤k k x k x例2 求下列函数的最小正周期 (1))23πsin(x y -=;(2))4π2πtan(+=x y ;x y 2cos )3(2=; (4)y =2sin 2x +2sin x cos x ;(5)y =|sin x |.解:(1)π|2|π2=-=T .(2)22ππ==T .(3)214cos 2124cos 1+=+=x x y ,所以2π=T .(4)1)4π2sin(212cos 2sin 2sin 22cos 12+-=+-=+-⨯=x x x x x y ,所以T =π.(5)y =|sin x |的图象为下图,可得,T =π.【评析】(1)求三角函数的周期时,通常利用二倍角公式(降幂升角)和辅助角公式先将函数解析式进行化简,然后用||π2ω=T (正余弦)或||πω=T (正切)求最小正周期. (2)对于含绝对值的三角函数周期问题,可通过函数图象来解决周期问题.例3 (1)已知函数f (x )=(1+cos2x )sin 2x ,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 (2)若函数f (x )=2sin(2x +ϕ)为R 上的奇函数,则ϕ=______. (3)函数)2π2π(lncos <<-=x x y 的图象( )解:(1),,44cos 12sin 21)cos sin 2(21sin cos 2)(2222R ∈-====x xx x x x x x f 周期为2π,偶函数,选D (2)f (x )为奇函数,f (-x )=-f (x ),所以2sin(-2x +ϕ)=-2sin(2x +ϕ)对x ∈R 恒成立,即sin ϕcos2x -cos ϕsin2x =-sin2x cos ϕ-cos2x sin ϕ, 所以2sin ϕcos2x =0对x ∈R 恒成立,即sin ϕ=0,所以ϕ=k π,k ∈Z .【评析】三角函数的奇偶性问题可以通过奇偶性定义以及与诱导公式结合加以解决.如在本题(2)中除了使用奇偶性的定义之外,还可以从公式sin(x +π)=-sin x ,sin(x +2π)=sin x 得到当ϕ=2k π+π或ϕ=2k π+π,k ∈Z ,即ϕ=k π,k ∈Z 时,f (x )=2sin(2x +ϕ)可以化为f (x )=sin x 或f (x )=-sin x ,f (x )为奇函数.(3)分析:首先考虑奇偶性,f (-x )=lncos(-x )=lncos x =f (x ),为偶函数,排除掉B ,D 选项 考虑(0,2π)上的函数值,因为0<cos x <1,所以lncos x <0,应选A 【评析】处理函数图象,多从函数的定义域,值域,奇偶性,单调性等方面综合考虑.例4 求下列函数的单调增区间(1))3π21cos(-=x y ;(2) ]0,π[),6π2sin(2-∈+=x x y ; (3) x x y 2sin 32cos -=;(4))23πsin(2x y -=解:(1)y =cos x 的增区间为[2k π+π,2k π+2π],k ∈Z ,由π2π23π21ππ2+≤-≤+k x k 可得3π14π43π8π4+≤≤+k x k )3π21cos(-=x y 的增区间为Z ∈++k k k ],3π14π4,3π8π4[,(2)先求出函数)6π2sin(2+=x y 的增区间Z ∈+-k k k ],6ππ,3ππ[然后与区间[-π,0]取交集得到该函数的增区间为]6π5,π[--和]0,3π[-,(3))3π2cos(2)2sin 232cos 21(2+=-=x x x y ,转化为问题(1),增区间为 Z ∈++k k k ],6π5π,3ππ[(4)原函数变为)3π2sin(2--=x y ,需求函数)3π2sin(-=x y 的减区间, 2π3π23π22ππ2+≤-≤+k x k ,得12π11π12π5π+≤≤+k x k , )23πsin(2x y -=的增区间为.],12π11π,12π5π[Z ∈++k k k【评析】处理形如y =A sin(ω x +ϕ)+k ,(ω <0)的函数单调性时,可以利用诱导公式将x 的分数化正,然后再求相应的单调区间.求三角函数单调区间的一般方法:(1)利用三角变换将解析式化为只含有一个函数的解析式,利用换元法转化到基本三角函数的单调性问题. (2)对于给定区间上的单调性问题,可采用问题(2)中的方法,求出所有的单调增区间,然后与给定的区间取交集即可.例5 求下列函数的值域(1)函数1)6π21cos(2++-=x y 的最大值以及此时x 的取值集合(2))3π2,6π(,sin 2-∈=x x y (3) )3π,2π(),3π2cos(2-∈+=x x y (4)y =cos2x -2sin x解:(1)当Z ∈+=+k k x ,ππ26π21时,1)6π21cos(-=+x ,函数的最大值为3,此时x 的取值集合为},3π5π4|{Z ∈+=k k x x(2)结合正弦函数图象得:当)3π2,6π(-∈x 时,1sin 21≤<-x该函数的值域为(-1,2](3)分析:利用换元法,转化为题(2)的形式.)6π,3π(),3π2cos(2-∈+=x x y ,,3π23π23π),6π,3π(<+<-∴-∈x x Θ设3π2+=x t ,则原函数变为3π23π,cos 2<<-=t t y ,结合余弦函数图象得:1cos 21≤<-t ,所以函数的值域为(-1,2].(4)y =-2sin 2x -2sin x +1,设t =sin x ,则函数变为y =-2t 2-2t +1,t ∈[-1,1], 因为⋅++-=23)21(22t y 结合二次函数图象得,当t =1时,函数最小值为-3,当21-=t 时,函数最大值为23,所以函数的值域为].23,3[-【评析】处理三角函数值域(最值)的常用方法: (1)转化为只含有一个三角函数名的形式,如y =A sin(ω x +ϕ)+k ,y =A cos(ω x +ϕ)+k ,y =A tan(ω x +ϕ)+k 等,利用换元法,结合三角函数图象进行处理. (2)转化为二次型:如A sin 2x +B sin x +C ,A cos 2x +B cos x +C 形式,结合一元二次函数的图象性质求值域. 例6 函数y =sin(ω x +ϕ)的图象(部分)如图所示,则ω 和ϕ的取值是( )A .3π,1==ϕω B .3π,1-==ϕω C .6π,21==ϕω D .6π,21-==ϕω解:π)3π(3π24=--=T ,即ωπ2π4==T ,所以21=ω, 当3π-=x 时,0])3π(21sin[=+-⨯ω,所以Z ∈+=k k ,6ππω,选C例7 (1)将函数x y 21sin =的图象如何变换可得到函数)6π21sin(+=x y 的图象(2)已知函数y =sin x 的图象,将它怎样变换,可得到函数)3π2sin(2-=x y 的图象解:(1)x y 21sin =−−−−−−−−→−个单位图象向左平移3π)6π21sin()3π(21sin +=+=x x y (2)法一:y =sin x −−−−−−−−→−个单位图象向右平移3π)3πsin(-=x y −−−−−−−−−−−−−−−→−倍横坐标变为原来图象上点的纵坐标不变21,)3π2sin(-=x y−−−−−−−−−−−−−−−→−倍纵坐标变为原来图象上点的横坐标不变2,)3π2sin(2-=x y法二:y =sin x −−−−−−−−−−−−−−→−倍横坐标变为原来图象上点的纵坐标不变21,x y 2sin = −−−−−−−−→−个单位图象向右平移6π)6π(2sin -=x y−−−−−−−−−−−−−−−→−倍纵坐标变为原来图象上点的横坐标不变2,)3π2sin(2-=x y【评析】由y =sin x 的图象变换为y =A cos(ω x +ϕ)(ω >0)的图象时,特别要注意伸缩变换和横向平移的先后顺序不同,其横向平移过程中左右平移的距离不同.例8 (1)函数)3π21sin(2-=x y 的一条对称轴方程为( ) A .3π4-=x B .6π5-=x C .3π-=x D .3π2=x (2)函数)3π2cos(-=x y 的对称轴方程和对称中心的坐标解:(1)法一:)3π21sin(2-=x y 的对称轴为Z ∈+=-k k x ,2ππ3π21, 即Z ∈+=k k x ,3π5π2,当k =-1时,3π-=x ,选C法二:将四个选项依次代入)3π21sin(2-=x y 中,寻找使得函数取得最小值或最大值的选项当3π-=x 时,22πsin 2)3π6πsin(2-=-=--=y ,选C (2) )3π2cos(-=x y 的对称轴为Z ∈=-k k x ,π3π2,即Z ∈+=k k x ,6π2π对称中心:,,2ππ3π2Z ∈+=-k k x 此时Z ∈+=k k x ,12π52π所以对称中心的坐标为Z ∈+k k ),0,12π52π(【评析】正余弦函数的对称轴经过它的函数图象的最高点或最低点,对称中心是正余弦函数图象与x 轴的交点,处理选择题时可以灵活运用.例9 已知函数)0(),2πsin(sin 3,sin )(2>++=ωωωωx x x x f 的最小正周期为π. (1)求ω 的值. (2)求f (x )在区间]3π2,0[上的值域. (3)画出函数y =2f (x )-1在一个周期[0,π]上的简图.(4)若直线y =a 与(3)中图象有2个不同的交点,求实数a 的取值范围. 解:(1)x x xx f ωωωcos sin 322cos 1)(+-=21)6π2sin(212cos 21sin 23+-=+-=x x x ωωω 因为函数f (x )的最小正周期为π,且ω >0,所以π2π2=ω,解得ω =1 (2)由(1)得21)6π2sin()(+-=x x f ,因为3π20≤≤x ,所以6π76π26π≤-≤-x ,结合正弦函数图象,得1)6π2sin(21≤-≤-x因此2321)6π2sin(0≤+-≤x ,即f (x )的取值范围为]23,0[(3)由(1)得)6π2sin(21)(2-=-=x x f y(4)由图象可得,-2<a <2且a ≠-1.【评析】本节内容应与三角恒等变换相结合,利用降幂升角公式和辅助角公式等三角公式化简三角函数解析式,整理、变形为只含有一个函数名的解析式,如y =A sin(ω x +ϕ)(ω >0)或y =A cos(ω x +ϕ)(ω >0)的形式,利用换元法,结合y =sin x 、y =cos x 的图象,再研究它的各种性质,如求函数的周期,单调性,值域等问题,这是处理三角函数问题的基本方法.练习3-3一、选择题1.设函数),2π2sin()(-=x x f x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 2.把函数y =sin x (x ∈R )的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ) A .R ∈-=x x y ),3π2sin( B .R ∈+=x x y ),6π2sin(C .R ∈+=x x y ),3π2sin(D .R ∈+=x x y ),32π2sin(3.函数)3π2sin(+=x y 的图象( )A .关于点(3π,0)对称B .关于直线4π=x 对称C .关于点(4π,0)对称D .关于直线3π=x 对称4.函数y =tan x +sin x -|tan x -sin x |在区间)2π3,2π(内的图象大致是( )二、填空题5.函数)2πsin(sin 3)(x x x f ++=的最大值是______. 6.函数)]1(2πcos[)2πcos(-=x x y 的最小正周期为______.7.函数)2π0,0)(sin(<<>+=ϕωϕωx y 的图象的一部分如图所示,则该函数的解析式为y =______.8.函数y =cos2x +cos x 的值域为______. 三、解答题9.已知函数f (x )=2cos x (sin x -cos x )+1,x ∈R . (Ⅰ)求函数f (x )的对称轴的方程; (Ⅱ)求函数f (x )的单调减区间. 10.已知函数.34sin 324cos 4sin2)(2+-=xx x x f (Ⅰ)求函数f (x )的最小正周期及最值; (Ⅱ)令)3π()(+=x f x g ,判断函数g (x )的奇偶性,并说明理由.11.已知R ∈>++=a a x x x x f ,0(,cos sin 32cos 2)(2ωωωω,a 为常数),且满足条件f (x 1)=f (x 2)=0的|x 1-x 2|的最小值为2π. (Ⅰ)求ω 的值; (Ⅱ)若f (x )在]3π,6π[-上的最大值与最小值之和为3,求a 的值.§3-4 解三角形【知识要点】1.三角形内角和为A +B +C =πA CB -=+π,2π222=++C B A ,注意与诱导公式相结合的问题. 2.正弦定理和余弦定理正弦定理:r CcB b A a 2sin sin sin ===,(r 为△ABC 外接圆的半径). 余弦定理:abc b a C ac b c a B bc a c b A 2cos ;2cos ;2cos 222222222-+=-+=-+=&. a 2=b 2+c 2-2bc cos A ;b 2=a 2+c 2-2ac cos B ;c 2=a 2+b 2-2ab cos C .3.在解三角形中注意三角形面积公式的运用:21=∆ABC S ×底×高.21=∆ABC S ab sin .sin 21sin 21B ac A bc C == 4.解三角形中注意进行“边角转化”,往往结合三角变换处理问题.【复习要求】1.会正确运用正余弦定理进行边角的相互转化;2.会熟练运用正弦定理和余弦定理解决三角形中的求角,求边,求面积问题. 【例题分析】例1 (1)在△ABC 中,3=a ,b =1,B =30°,则角A 等于( )A .60°B .30°C .120°D .60°或120° (2)△ABC 中,内角A ,B ,C 所对的边分别为a 、b 、c ,满足等式(a +b )2=ab +c 2,则角C 的大小为______. (3)在△ABC 中,若sin A ∶sin B ∶sin C =5∶7∶8,则∠B 的大小是______. (4)在△ABC 中,若31tan =A ,C =150°,BC =1,则AB =______. 解:(1)∵,23sin ,30sin 1sin 3,sin sin =∴=∴=A A B b A a ο又∵a >b ,∴A >B =30°,∴A =60°或120°,(2)∵(a +b )2=ab +c 2,∴a 2+b 2-c 2=-ab ,∴,120,2122cos 222ο=∴-=-=-+=C ab ab ab c b a C (3)∵CcB b A a sin sin sin ==,sin A ∶sin B ∶sin C =5∶7∶8. ∴a ∶b ∶c =5∶7∶8,∴21852*******cos 222=⨯⨯-+=-+=ac b c a B ,∴B =60°. (4)分析:已知条件为两角和一条对边,求另一条对边,考虑使用正弦定理,借助于31tan =A 求sin A 210,150sin 10101,sin sin ,1010sin ,31tan =∴=∴==∴=AB AB B AC A BC A A οΘΘ. 【评析】对于正弦定理和余弦定理应熟练掌握,应清楚它们各自的使用条件,做到合理地选择定理解决问题.例2 (1)在△ABC 中,a cos A =b cos B ,则△ABC 一定是( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰三角形或直角三角形 (2)在△ABC 中,2sin B ·sin C =1+cos A ,则△ABC 的形状为( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形解:(1)法一:BbA a sin sin =Θ,a cos A =b cos B , ∴sin A cos A =sin B cos B ,∴sin2A =sin2B ,∵2A ,2B ∈(0,2π),∴2A =2B 或2A +2B =π,∴A =B 或2π=+B A ,选D . 法二:∵a cos A =b cos B ,∴acb c a b bc a c b a 2)(2)(222222-+=-+,整理得(a 2-b 2)(a 2+b 2-c 2)=0.所以:a =b 或a 2+b 2=c 2,选D .(2)∵2sin B ·sin C =1+cos A ,cos(B +C )=cos(π-A )=-cos A , ∴2sin B ·sin C =1-(cos B cos C -sin B sin C ), ∴cos B cos C +sin B ·sin C =1, ∴cos(B -C )=1,∵B ,C ∈(0,π),∴B -C ∈(-π,π), ∴B -C =0,∴B =C ,选C .【评析】判断三角形形状,可以从两个角度考虑(1)多通过正弦定理将边的关系转化为角的关系,进而判断三角形形状,(2)多通过余弦定理将角的关系转化为边的关系,进而判断三角形形状,通常情况下,以将边的关系转化为角的关系为主要方向,特别需要关注三角形内角和结合诱导公式带给我们的角的之间的转化.例3 已知△ABC 的周长为12+,且sin A +sin B =2sin C (1)求边AB 的长;(2)若△ABC 的面积为C sin 61,求角C 的度数. 解:(1)由题意及正弦定理,得⎪⎩⎪⎨⎧=++=++ABAC BC AC BC AB 212,解得AB =1. (2)由△ABC 的面积C C AC BC S sin 61sin 21=⋅=,得31=⋅AC BC ,因为2=+AC BC ,所以(BC +AC )2=BC 2+AC 2+2AC ·BC =2,可得3422=+AC BC ,由余弦定理,得212cos 222=-+=⋅BC AC AB BC AC C , 所以C =60°.例4 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别为a 、b 、c ,设a 、b 、c 满足条件b 2+c 2-bc =a 2和b c =321+,求∠A 和tan B 的值. 解(1)由已知和余弦定理得212cos 222=-+=bc a c b A ,所以∠A =60°. (2)分析:所给的条件是边的关系,所求的问题为角,可考虑将利用正弦定理将边的关系转化为角的关系.在△ABC 中,sin C =sin(A +B )=sin(60°+B ),因为BBB B B BC b c sin sin 60cos cos 60sin sin )60sin(sin sin οοο+⋅=+==.32121tan 123+=+=B所以⋅=21tan B 【评析】体现了将已知条件(边321+==b c )向所求问题(角tan B →sin a ,cos α )转化,充分利用了正弦定理和三角形内角关系实现转化过程.例5 在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,3π=C . (Ⅰ)若△ABC 的面积等于3,求a ,b ;(Ⅱ)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.解:(Ⅰ)由余弦定理abc b a C 2cos 222-+=及已知条件得,a 2+b 2-ab =4,又因为△ABC 的面积等于3,所以3sin 21=C ab ,得ab =4.联立方程组⎩⎨⎧==-+,4,422ab ab b a 解得a =2,b =2.(Ⅱ)由题意得sin(B +A )+sin(B -A )=4sin A cos A ,(sin B cos A +cos B sin A )+(sin B cos A -cos B sin A )=4sin A cos A , 即sin B cos A =2sin A cos A , 当cos A =0时,332,334,6π,2π====b a B A ,当cos A ≠0时,得sin B =2sin A ,由正弦定理得b =2a ,联立方程组⎩⎨⎧==-+,2,422a b ab b a 解得334,332==b a . 所以△ABC 的面积332sin 21==C ab S .【评析】以上两例题主要考查利用正弦定理、余弦定理来确定三角形边、角关系等基础知识和基本运算能力.以及三角形面积公式B ac A bc C ab S ABC sin 21sin 21sin 21===∆的运用.同时应注意从题目中提炼未知与已知的关系,合理选择定理公式,综合运用正弦定理和余弦定理实现边角之间的转化.例6 如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α ,∠BDC =β ,CD =s ,并在点C 测得塔顶A 的仰角为θ ,求塔高AB .解:在△BCD 中,∠CBD =π-α -β . 由正弦定理得.sin sin CBDCDBDC BC ∠=∠所以)sin(sin sin sin βαβ+=∠∠=⋅s CBD BDC CD BC .在Rt △ABC 中,⋅+=∠=⋅)sin(sin tan tan βαβθs ACB BC AB例7 已知在△ABC 中,sin A (sin B +cos B )-sin C =0,sin B +cos2C =0,求角A ,B ,C 的大小. 解:sin A sin B +sin A cos B -sin(A +B )=0,sin A sin B +sin A cos B -(sin A cos B +cos A sin B )=0, sin A sin B -cos A sin B =sin B (sin A -cos A )=0, 因为sin B ≠0,所以sin A -cos A =0,所以tan A =1,4π=A ,可得BC +=4π3, 所以02sin sin )22π3cos(sin )4π3(2cos sin =+=++=++B B B B B B ,sin B +2sin B cos B =0,因为sin B ≠0,所以12π,3π2,21cos ==-=C B B .【评析】考查了三角形中角的相互转化关系,同时兼顾了两角和、二倍角、诱导公式等综合应用.练习3-4一、选择题1.在△ABC 中,若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =( ) A .1∶2∶3B .2:3:1C .1∶4∶9D .3:2:12.在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,3,3π==a A ,b =1,则c =( ) A .1B .2C .13-D .33.△ABC 中,若a =2b cos C ,则△ABC 的形状一定为( ) A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形4.△ABC 的三内角A ,B ,C 的对边边长分别为a ,b ,c ,若b a 25=,A =2B ,则cos B =( ) A .35B .45 C .55 D .65二、填空题5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,3π,3==C c ,则A =______. 6.在△ABC 中,角ABC 的对边分别为a 、b 、c ,若ac B b c a 3tan )(222=-+,则角B 的值为______.7.设△ABC 的内角6π=A ,则2sinB cosC -sin(B -C )的值为______. 8.在三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若b cos C =(2a -c )cos B ,则∠B 的大小为______. 三、解答题9.在△ABC 中,53tan ,41tan ==B A . (Ⅰ)求角C 的大小;(Ⅱ)若AB 的边长为17,求边BC 的边长.10.如图,某住宅小区的平面图呈扇形AOC .小区的两个出入口设置在点A 及点C 处,小区里有两条笔直的小路AD ,DC ,且拐弯处的转角为120°.已知某人从C 沿CD 走到D 用了10分钟,从D 沿DA 走到A 用了6分钟.若此人步行的速度为每分钟50米. 求该扇形的半径OA 的长(精确到1米).11.在三角形ABC 中,5522cos ,4π,2===B C a ,求三角形ABC 的面积S .专题03 三角函数与解三角形参考答案练习3-1一、选择题:1.B 2.B 3.B 4.C 二、填空题 5.)0,2π(-6.16 7.21mm - 8.23- 三、解答题9.解:(1)⋅-=+=-=>55cos sin ,55cos ,552sin ,0cos ααααα (2)原式=222)sin 1(sin sin 21cos 1sin 21θθθθθ-=+-=-+-=⋅+=-=-=5521sin 1|sin 1|θθ 10.解:(1)原式51tan 2tan -=-+=αα(2)原式.0tan 1tan 212=+-=αα11.解:当k 为偶数时,原式.0cos sin cos sin 1cos sin 1cos sin .cos sin )cos (sin cos sin 22=+-=++---=αααααααααααααα 当k 为奇数时,原式01cos sin )cos (sin =+-=αααα,综上所述,原式=0.练习3-2一、选择题1.A 2.C 3.D 4.C 二、填空题 5257-6.4 7.21 8.65- 三、解答题 9.解:左边=====2tan 2cos 22cos2sin22cos2sin 2cos 2cos cos 2cos sin 22222.ααααααααααα右边.10.解:原式)sin (cos 2cos 1cos 2cos sin 21cos )2cos 2(sin 12ααααααααα-=-+-=--=, 因为α 为第四象限角,且54sin -=α,所以53cos =α, 所以原式514=. 11.解:(1)由a a a a cos sin 21)cos (sin 2-=-=31可得32cos sin 2=αα, 所以a a a a cos sin 21)cos (sin 2+=+=35,因为α 为第三象限角,所以sin α <0,cos α <0,sin α +cos α <0,所以315cos sin -=+αα. (2)原式αααααααααcos cos 3sin 4cos )12cos 2(3sin 4cos 82cos 6sin 4522+=-+=-++=3tan 4+=α,因为51tan 1tan cos sin cos sin -=-+=-+αααααα,所以2531515tan -=+-=α, 所以原式.52932534-=+-⨯= 练习3-3一、选择题1.B 2.C 3.A 4.D 二、填空题5.2 6.2 7.)3π2sin(+=x y 8.]2,89[- 三、解答题9.解:x x x x x x f 2cos 2sin 1cos 2cos sin 2)(2-=+-==)4π2sin(2-x . (1)Z ∈+=-k k x ,2ππ4π2,对称轴方程为Z ∈+=k k x ,8π32π, (2)Z ∈+≤-≤+k k x k ,2π3π24π22ππ2,即Z ∈+≤≤+k k x k ,8π7π8π3π,f (x )的单调减区间为Z ∈++k k k ],8π7π,8π3π[.10.解:(I)∵⋅+=+=-+=)3π2sin(22cos 32sin )4sin 21(32sin )(2x x x x x x f∴f (x )的最小正周期.π421π2==T当1)3π2sin(-=+x 时,f (x )取得最小值-2;当1)3π2sin(=+x 时,f (x )取得最大值2.(Ⅱ)由(I)知⋅+=+=)3π()().3π2sin(2)(x f x g x x f 又⋅=+=++=∴2cos 2)2π2sin(2]3π)3π(21sin[2)(xx x x g).(2cos 2)2cos(2)(x g xx x g ==-=-Θ∴函数g (x )是偶函数.11.解:(1)12cos 2sin 32sin 322cos 12)(+++=+++⨯=a x x a x xx f ωωωω,1)6π2sin(2+++=a x ω由满足条件f (x 1)=f (x 2)=0的|x 1-x 2|的最小值为2π,可得的最小正周期为π,所以ω =1.。
第三部分 三角函数22、若)2,0(πα∈,则αααtan sin <<;角的终边越“靠近”y 轴时,角的正弦、正切的绝对值就较大,角的终边“靠近”x 轴时,角的余弦、余切的绝对值就较大.[举例1]已知],0[πα∈,若0|cos |sin >-αα,则α的取值范围是_______. 分析:由0|cos |sin >-αα且],0[πα∈,即|cos ||sin |αα>知其角的终边应“靠近”y 轴,所以)43,4(ππα∈. [举例2]方程sin x x =的解的个数为____个.分析:在平面直角坐标系中作出函数sin y x =与y x =的图像,由函数sin ,y x y x ==都是奇函数,而当1x >时sin x x >恒成立.在(0,)2x π∈时,sin x x <,所以两函数图像只有一个交点(坐标原点),即方程sin x x =只有一个解. 同样:当(,)22x ππ∈-时,方程tgx x =只有唯一解0x =. 23、求某个角或比较两角的大小:通常是求该角的某个三角函数值(或比较两个角的三角函数值的大小),然后再定区间、求角(或根据三角函数的单调性比较出两个角的大小).比如:由βαtg tg >未必有βα>;由βα>同样未必有βαtg tg >;两个角的三角函数值相等,这两个角未必相等,如βαsin sin =;则βπα+=k 2;或Z k k ∈-+=,2βππα;若βαcos cos =,则Z k k ∈±=,2βπα;若βαtg tg =,则Z k k ∈+=,βπα.[举例1]已知βα,都是第一象限的角,则“βα<”是“βαsin sin <”的――( )A 、充分不必要条件;B 、必要不充分条件;C 、充要条件;D 、既不充分又不必要条件. 分析:βα,都是第一象限的角,不能说明此两角在同一单调区间内.如613,3ππ都是第一象限的角,6133ππ<但613sin 3sin ππ>.选D. [举例2]已知0,0,αβαβπ>>+<,则“βα<”是“βαsin sin <”的―――( )A 、充分不必要条件;B 、必要不充分条件;C 、充要条件;D 、既不充分又不必要条件. 分析:注意到由),0(,,πβαβα∈+,则βα,可以看作是一三角形的两内角.选C.24、已知一个角的某一三角函数值求其它三角函数值或角的大小,一定要根据角的范围来确定;能熟练掌握由αtg 的值求ααcos ,sin 的值的操作程序;给(一个角的三角函数)值求(另一个三角函数)值的问题,一般要用“给值”的角表示“求值”的角,再用两角和(差)的。
三角函数一、高考预测该专题是高考重点考查的部分,从最近几年考查的情况看,主要考查三角函数的图象和性质、三角函数式的化简与求值、正余弦定理解三角形、三角形中的三角恒等变换以及三角函数、解三角形和平面向量在立体几何、解析几何等问题中的应用.该部分在试卷中一般1.考小题,重在基础运用考查的重点在于基础知识:解析式、图象及图象变换、两域(定义域、值域)、四性(单调性、奇偶性、对称性、周期性)、 反函数以及简单的三角变换(求值、化简及比较大小)。
2.考大题,难度明显降低有关三角函数的大题即解答题,通过三角公式变形、转换来考查思维能力的题目已经没有了,而是考查基础知识、基本技能和基本方法。
解答题的形式进行考查,且难度不大,主要考查以下四类问题:(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角三角函数的基本关系和诱导公式求三角函数值及化简和等式证明的问题;(4)与周期有关的问题.高考备考是紧张的、同时也是收获的前夜。
成功永远属于那些准备充分的人们.祝愿各位在2012年的高考中取得辉煌成绩。
图象上升时与x 轴的交点)为002x k ωϕπ+=+,其他依次类推即可。
3.五点法作y =A sin (ωx +ϕ)的简图:五点取法是设x =ωx +ϕ,由x 取0、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图。
3.函数B x A y ++=)sin(ϕω),(其中00>>ωA 最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。
4.由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。
高中数学三角函数知识点专题复习高中数学三角函数知识点专题复一、任意角及其三角函数1.已知α为第三象限的角,则在第二或四象限。
2.正确的命题是:终边相同的角必相等。
3.sin570等于-3/2.4.已知扇形的周长是8cm,圆心角是2rad,则扇形的面积是4cm²。
二、同角基本关系式和诱导公式1.已知cosα=3/5,α为第四象限角,则tanα=-4/3.2.设π≤x<2π,且1-sin2x=sinx-cosx,则x的取值范围是[π,5π/3]。
3.已知cos(-α)=4/3,则sin(α-π/2)=-3/5.4.已知sinβ+cosβ=1/5,且-π/2<β<π/2,求sinβcosβ、sinβ-cosβ、sinβ、cosβ、tanβ的值。
5.已知tanα=2,求2cosα-3sinα、sinαcosα、(cosα-sin²α)/2的值。
三、三角函数的图像和性质一)求定义域、值域1.函数y=cosx+1/2的定义域是全体实数,值域是[-1/2,3/2]。
2.y=sinx/2+3cosx在区间[0,2π]上的值域为[1/2,7/2]。
3.y=2cosx在区间[0,2π]上的值域为[-2,2]。
4.y=cosxsin²x在区间R上的值域为[-1/4,1/4]。
二)单调区间、对称轴(中心)、最值1.函数y=sin(x+π/4)的图象的一个对称中心是(π/4,-1)。
2.函数y=sin(2x-π/6)的单调递增区间是[π/12,7π/12]。
3.函数y=cos2x的单调递减区间是[π/4,3π/4]。
三)正弦函数的图象与性质正弦函数公式为y = Asin(ωx + φ),其中A为振幅,ω为角频率,φ为初相位。
正弦函数的最小正周期为2π/ω。
正弦函数的图象为一条在坐标系中上下振动的曲线,对称轴为x轴,振动中心为原点。
B.三角函数的周期性sin函数的周期为2π,即在区间[0,2π]上,sin函数的图象是一个完整的正弦波。
三角函数的易错题专题及答案三角函数易错题专题一、选择题1.___α的终边落在直线x+y=0上,则sinα1-cos2α的值等于( )解析:由于终边在直线x+y=0上,所以sinα=-cosα,代入原式得:-cosα-cos2α。
再利用余弦的半角公式cos2α=2cos^2α-1,得到原式化简为-2cos^2α-cosα。
选项B。
2.将函数y=sin2x的图像向右平移π/4个单位,得到的解析式为( )解析:向右平移π/4个单位相当于将原来的自变量x替换成x-π/8,所以新的解析式为y=sin2(x-π/8)。
根据正弦的平移公式sin(x-π/8)=sinxcos(π/8)-cosxsin(π/8)=cos(π/8)sinx-sin(π/8)cosx,所以新的解析式为y=cos(π/8)sin2x-sin(π/8)cos2x。
选项D。
3.在△ABC中,锐角A满足sin4A-cos4A≤sinA-cosA,则( )解析:利用正弦的平方和余弦的平方公式,将不等式右边化简为2sin^2A-2sinAcosA,左边化简为2sin^2A-2cos^2A。
所以原不等式化简为sin^2A+2cos^2A-2sinAcosA≤0,即(sinA-cosA)^2≤0,只有当sinA=cosA时等号成立。
所以A=π/4,选项B。
4.在△ABC中,角A,B,C的对边分别为a,b,c,且a=1,A=60°,若三角形有两解,则b的取值范围为( )解析:根据正弦定理a/sinA=b/sinB=c/sinC,代入数据得sinB=√3/2,所以B=π/3或5π/3.由于三角形有两解,所以B的取值范围为(π/3,π)∪(5π/3,2π),即选项D。
5.将函数y=3sin(2x+π/7)的图像向右平移1/2个单位长度,得到的图像对应的函数( )解析:向右平移1/2个单位相当于将原来的自变量x替换成x-1/4,所以新的解析式为y=3sin(2(x-1/4)+π/7)。
易错点专题三:三角函数
一、选择题
1.()2
tan cot cos x x x +=( ) (A)tan x (B)sin x (C)cos x (D)cot x
2则tan α=( )
A B 、2 C D 、2-
3.已知αcos2α=
(B
4.记cos(80)k -︒=,那么tan100︒=
(A (B (C D
5,则α的取值范围是:()
36.ABC △的内角A B C ,,的对边分别为a b c ,,,,则a 等于( )
7.在△ABC 中,角ABC 的对边分别为a 、b 、c
B 的值为( )
A
B
C
D
8.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( )
(A )
185 (B) 43 (C) 23 (D) 87
9.在同一平面直角坐标系中,
交点个数是
A 、0
B 、1
C 、2
D 、4
10的图象,只需将函数x y 2sin =的图象(
) A B C
D
11. 已知函数2sin()(0)y x ωϕω=+>)在区间[]
02π,的图像如下:那么ω=( )
A .1
B .2
C
D .
12.有四个关于三角函数的命题:
1p :∃x ∈R, 2p : ∃x 、y ∈R, sin(x-y)=sinx-siny 3p : ∀x ∈[]0,π,=sinx 4p : sinx=cosy ⇒x+y=其中假命题的是( ) A.1p ,4p B.2p ,4p C.1p ,3p D.2p ,4p
13
A.先将每个x 值扩大到原来的4倍,y
B.先将每个x y
C.先把每个x 值扩大到原来的4倍,y
D.先把每个x y
二、填空题
14的最小正周期是_____T =
15.设α为锐角,若的值为 .
三、解答题
16.求曲线x y sin =与x 轴在区间]2,0[π上所围成阴影部分的面积S.
17.已知()0,απ∈,求tan α的值。
18,且α、β均为锐角,求αβ+的值。
19(I )求函数()f x 的最小正周期;
(II )设函数()g x 对任意x R ∈,,且时, ;求函数()g x 在[,0]π-上的解析式。
20.设函数f(x)=sin(2x+φ),(-π<φ<0),y=f(x)图象的一条对称轴是直线
(Ⅰ)求φ;
(Ⅱ)求函数y=f(x)的单增区间;
(Ⅲ)证明直线5x-2y+c=0与函数y=f(x)的图像不相切.
△的周长为
21.(本题14分)已知ABC
(I)求边AB的长;
△的面积为,求角C的度数.
(II)若ABC
22.在△ABC中,角A,B,C的对边分别为a,b,c。
已知,
(2ABC的面积。