数学知识点新人教版数学2015-2016学年度第一学期二年级期末试卷(1)-总结
- 格式:doc
- 大小:214.87 KB
- 文档页数:3
2014-2015学年度第一学期二年级数学期末试卷得分___________ 一、我会口算(共10分)72-8= 5×9= 36-9= 57+9= 30+70=76-40= 8×4= 7×5= 70-7= 35+8=9+44= 5×4= 9×6= 24-7= 3×8=7×8-20= 4×9+4= 32-20+50= 7-3×2=二、我会填。
(每空一分,共28分)1.)在括号里填上适当的单位名称。
①一张床长约200()②长颈鹿高约3()③一本语文课本厚约2()④一座楼房高12()⑤小学生每天在校时间是6 ()。
⑥看一场电影的时间是120()。
2.)小丽的身高是83厘米,小兵身高1米,小丽比小兵矮()厘米。
3.)7+7+7+7=()写成乘法算式是()读作( );4.)两个乘数都是8,积是()。
5.)你能用0 、 3 、 5 这三张数字卡片组成()个不同的两位数,其中最大的数是(),最小的数是(),它们相差()。
6.)2和7的和是()2个7的和是(),2个7的积是()7.)8.)在○里填上“﹥”、“﹤”或“=”。
26○17+18 31﹣8○3×7 100厘米○98米9.)括号里最大能填几?8×()<60 42>()×6 27>4×()()×5<36 70>9×()()×3<22三、我会选(将正确答案的序号填在括号里)(每题1分,共5分)1.)4个3列成加法算式是()。
①3+3+3+3 ②4+4+4 ③4×32.)明明有3件不同的衬衣,2条颜色不一样的裙子,一共有()种穿法。
①5 ②6 ③33.)下列图形中,有二个直角的是()。
①②③④4.)下列线中,线段是()。
①②③④5.)可以用测量物体长度单位的是()。
①时②角③分④米四、我会用竖式计算。
2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。
2015~2016学年度第一学期期末测试七 年 级 数 学本卷分值 100分,考试时间120分钟.一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.34-的相反数是A .43-B .43C .34-D .342.单项式225x y-的系数和次数分别是A .-2,2B .2-,3C .25-,2D .25-,33.在下面的四幅图案中,通过平移图案(1)得到的是图案4.下列各组中的两项,不是..同类项的是 A .22x y 与23x y - B .3x 与3xC .232ab c -与32c b aD .1与-18 5.若关于x 的方程710x a +-=解是1x =-,则a 的值等于A .8B .-8C .6D .-6 6.从三个不同方向看一个几何体,得到的三视图 如图所示,则这个几何体是A .圆锥B .圆柱C .棱锥D .球7.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中不正确...的是 A .ab<0 B .a -b >0 C .a +b >0 D .ab <0b 0a(1) A B C D(第6题)(第7题)8. 如图,直线a ,b 被直线c 所截,则下列说法中错误..的是 A .∠1与∠2是邻补角 B .∠1与∠3是对顶角C .∠3与∠4是内错角D .∠2与∠4是同位角 9. 如图,点D 在直线AE 上,量得∠CDE=∠A=∠C ,有以下三个结论:①AB ∥CD ;②AD ∥BC ;③∠B=∠CDA .则正确的结论是A .①②③B .①②C .①D .②③ 10.王力骑自行车从A 地到B 地,陈平骑自行车从B 地到A 地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36 km ,到中午12时,两人又相距36 km .求A 、B 两地间的路程.可设A 、B 两地间的路程为x km ,则下列所列方程中:①363624x x -+=;②36363622x -+=;③36362x -=⨯; ④3636x -=;其中正确的个数为A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.用科学记数法表示9600000为 ▲ .12.点A 、B 在同一条数轴上,其中点A 表示的数为-1,若点B 与点A 之间距离为3,则点B 表示的数为 ▲ . 13.已知2a b -的值是2015,则124a b -+的值等于 ▲ .14.若23(2)0x y -++=,则16xy = ▲ .15.飞机的无风航速为a 千米/小时,风速为20千米/小时.则飞机逆风飞行4小时的行程是 ▲ 千米.16.某服装店以每件180元的价格卖出两件衣服,其中一件 盈利25%,另一件亏损25%,若盈利记为正,亏损记为负,则该店卖这两件衣服总的盈亏金额是 ▲ 元.17.如图,把小河里的水引到田地A 处就作AB ⊥l ,垂足 为B ,沿AB 挖水沟,这条水沟最短的理由是 ▲ . 18. 如图,将三角板与两组对边分别平行的直尺贴在一起, 使三角板的顶点C (AC ⊥BC )落在直尺的一边上,若∠1=24°,则∠2等于 ▲ 度. 19.如图,平面内有公共端点的6条射线OA 、OB 、OC 、 OD 、OE 、OF ,从射线OA 开始按逆时针方向依次在 射线上写上数字1、2、3、4、5、6、7…,则数字 “2016”应在射线 ▲ 上.20.已知线段AB =12㎝,若M 是AB 的三等分点,N 是AM 的中点,则线段BN 的长度为 ▲ ㎝.三、解答题(本大题共8小题,共60分.请在答题卡指定区域.......内作答,解答时应写出文ac1 234 A B C DE(第8题) (第9题)(第17题)(第18题)(第19题)字说明、证明过程或演算步骤) 21.(每小题4分,共16分)计算:(1) (20)(3)(5)(7)-++---+;(2) 111()(12)462+-⨯-;(3) 322(2)(3)(4)2(3)(2)⎡⎤-+-⨯-+--÷-⎣⎦;(4) 471127326631440-+⨯-⨯÷.22.(每小题3分,共6分)(1)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4㎝,求线段CD的长度.(2)如图,货船A 在灯塔O 的北偏东53°35′的方向上,客船B 在灯塔O 的南偏东28°12′的方向上.求∠AOB 的度数.23.(每小题4分,共8分)先化简,再求值:(1)求22113333a abc c a c +--+的值,其中1,2,36abc =-==-;(2)求2211312()()2323x x y x y --+-+的值,其中22,3x y =-=.24.(每小题4分,共8分)解方程: (1)72(33)20x x +-=; (2)121224x x+--=+.25.(本小题6分)如图,AD ∥BC ,∠1=60°,∠B =∠C ,DF 为∠ADC 的平分线. (1)求∠ADC 的度数;(2)试说明DF ∥AB . 解:(1)根据题意完成填空(括号内填写理由): ∵AD ∥BC (已知)∴∠B =∠1( ) 又∵∠B =∠C (已知) ∴ =∠1=60°C D (第22题(2)) A O B 西 东 北南 (第22题(1))又∵AD ∥BC (已知)∴∠ADC +∠C =180°( ) ∴∠ADC = .(2)请你完成第2题的解答过程:26.(本小题4分)列方程解应用题:某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名? 27.(本小题6分)如图:已知AB ∥CD ,∠ABE 与∠CDE 两个角的角平分线相交于点F . (1)如图1,若∠E =78°,则∠BFD = °;(2)如图2,若∠ABM =14∠ABF ,∠CDM =14∠CDF ,则∠M 和∠E 之间的数量关系为 ;(3)如图2,∠ABM =1n ∠MBF ,∠CDM =1n∠MDF ,设∠M =m °,直接用含有n ,m 的代数式表示出∠E = °.28.(本小题6分)如图,在∠AOB 的内部作射线OC ,使∠AOC 与∠AOB 互补.将射线OA ,OC 同时绕点O 分别以每秒12°,每秒8°的速度按逆时针方向旋转,旋转后的射线OA ,OC 分别记为OM ,ON ,设旋转时间为t 秒.已知t <30,∠AOB =114°. (1)求∠AOC 的度数;(2)在旋转的过程中,当射线OM ,ON 重合时,求 t 的值; (3)在旋转的过程中,当∠COM 与∠BON 互余时,求 t 的值.BE DFACBE DFA CM 图1图2CMNB(第27题)。
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
2015-2016学年度高二年级期末教学质量检测理科数学试卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“0x >”是0>”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 2.抛物线24y x =的焦点坐标是A .(1,0)B .(0,1)C .1(,0)16 D .1(0,)163.与圆8)3()3(22=-+-y x 相切,且在y x 、轴上截距相等的直线有A .4条B .3条C .2条D .1条 4.设l 是直线,,αβ是两个不同的平面,则下列结论正确的是A .若l ∥α,l ∥β,则//αβB .若//l α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, //l α,则l ⊥β 5.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<06.设(2,1,3)a x = ,(1,2,9)b y =-,若a 与b 为共线向量,则A .1x =,1y =B .12x =,12y =-C .16x =,32y =-D .16x =-,32y =7.已知椭圆2215x y m +=的离心率5e =,则m 的值为A .3B .3C D .253或38.如图,在正方体1111ABCD A BC D -中,,,M N P 分别是111,,B B B C CD 的中点,则MN 与1D P 所成角的余弦值为A. BCD .9.如图,G 是ABC ∆的重心,,,OA a OB b OC c ===,则OG =A .122333a b c ++B .221333a b c ++C .222333a b c ++D .111333a b c ++10.下列各数中,最小的数是A .75B .)6(210 C .)2(111111 D .)9(8511.已知双曲线22214x yb-=的右焦点与抛物线y 2=12x 的焦 点重合,则该双曲线的焦点到其渐近线的距离等于 A . B C .3 D .512、在如图所示的算法流程图中,输出S 的值为 A 、 11 B 、12 C 、1 D 、15二、填空题:本大题共4小题,每小题5分,满分20分13.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a = 14.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 。
2015~2016学年度第一学期七年级期末考试数学第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1.在-25, 0,25,2.5这四个数中,绝对值最大的数是 A. -25 B.0 C. 25D.2.5 2.下面运算正确的是 A.369a b ab += B.33330a b ba -= C.43862a a a -= D.22111236y y -= 3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把书3120000用科学记数法表示为A.3.12×105B.3.12×106C.31.2×105D.0.312×1074.如果一个角的余角是50°,则这个角的补角的度数是A.130°B.140°C.40°D.150°5.如图是每个面都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“祝”字相对的面是A.新B.年C.快D.乐6.下图是由八个相同的小正方体组合而成的几何体,其左视图是7.已知多项式2222A x y z =+-,222=432B x y z -++,且0A B C ++=,则C 为A.2225x y z --B.22235x y z --C.22233x y z --D.22235x y z -+8.如图,点O 在直线AB 上,射线OC 、OD 在直线AB 的同侧,∠AOD =50°,∠BOC =40°,OM 、ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为A.135°B.140°C.152°D.145° 9.如图,直线l 1∥l 2,则∠α为 A.150° B.140° C.130° D.120° 10.若8,5a b ==,且a b +>0,则a b -的值为 A.3或13 B.13或-13 C.3或-3 D. -3或-1311.已知A 、B 、C 三点在同一直线上,M 、N 分别为线段AB 、BC 中点,且AB =60,BC =40,则MN 的长为A.10B.50C.20或50D.10或12.下面每个表格中的四个数都是按相同规律填写的: 根据此规律确定x 的值为A.135B.170C.209D.252第Ⅱ卷(非选择题共72分)乐快年新你祝D C B A NMD C B A l 2············第4个第3个第2个第1个35834∙∙∙···x 20b a 541054206329421二、填空题(本大题共4小题,每小题4分,共16分,请将最后答案填在题中横线上)13.312m a b 与212n a b -是同类项,则m n -=________; 14.规定符号*运算为a *b =21ab a b -++,那么-3*4=_____________;15.若代数式2245x x --的值为6,则2122x x --的值为_________; 16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为_____________________.三、解答题(本大题共6个小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)计算与化简:(1)2241325(2)4-+----⨯-()() (2)224(6)3(2)x xy x xy +---18.(本小题满分8分)先化简,再求值:2211312()()2323a a b a b ----,其中22,3a b =-=.19.(本小题满分9分)一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走了1.5千米到达商场C,又向西走了4.5千米到达超市D,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?20.(本小题满分8分)某中学初一(四)班3位教师决定带领本班a名学生在五一期间取北京旅游,A旅行社的收费标准为:教师全价,学生半价;而B旅行社的收费标准为:不分教师、学生,一律八折优惠.(1)分别用代数式表示参加这两家旅行社所需的费用;(2)如果这3位教师要带领该班30名学生参加旅游,你认为选择哪一家旅行社较为合算,为什么?21.(本小题满分10分)如图,已知AB∥CE,∠A=∠E,试说明∠CGD=∠FHB.22.(本小题满分11分)HGFEDCBA将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°,∠E=∠B=45°).(1)1若∠DCE=45°,则∠ACB的度数为_________:2 若∠ACB=140°,则∠DCE的度数为______;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE所有可能的值(不必说明理由);若不存在,请说明理由.。
一、主要存在的问题及其分析1、选择题和填空题得分率80%左右,选择题错得最多的是第11,12题,填空题错得最多的是第16题。
2、第17题,此题考察了平面向量的线性运算及数量积的坐标表示,涉及的知识面较全。
1、学生做题中较容易把向量平行的坐标表示与数量积的坐标表示混淆。
2、计算出现符号弄反的较多,估计是学生粗心所致。
3、第18题,本题有2个小题。
第(1)小题主要考查同角三角函数的基本关系,第(2)小题主要考查向量数量积,模的坐标表示及向量夹角余弦值,属于基础题型,基本上是公式的应用,但平均分不高,大概有6分。
存在问题主要是公式记不牢,计算不准确,对此,要加强对学生基本功,计算能力的提高。
4、第19题,本题主要考查学生对三角函数周期对称轴、对称中心、零点等方面知识的记忆与理解,属于中等偏易题型。
从学生的答题情况来看并不理想。
能拿满分12分的估计只有的学生,能拿到6分的也只有不到,甚至很多学生拿0分。
从学生答案分析,只要能对三角函数的周期、对称轴、对称中心熟练记忆与正确理解的都能拿到12分,但不少同学没有熟记或错误理解这些知识,从而没有答对。
例如对零点理解为坐标点,对称轴记为对称中心等。
另外还有部分同学因计算能力不好,在解方程时出现错误。
今后教学建议:(1)加强基础知识教学;(2)加强计算能力培养;(3)鼓励学生积极参与课堂教学积极应用所学的知识解题,答题。
5、第20题,考查目标:向量的坐标运算(加、减、数乘、数量积、求模均有考查)试题评价:该题目命题角度灵活,能很好体现向量法解决平面几何问题,在解决过程中几乎考查了“向量坐标运算”所有知识点。
能很好的考查学生对向量有关概念,定理的掌握。
难度:易主要存在问题:1、向量表示不规范,漏写“→”。
2、求对角线(求模)漏求另一条。
3、向量坐标求法(好多用起点减终点)4、第(2)问主要运算出错。
补救措施:1、加强基本概念、定理的讲解;2、加强基本题型的训练,让学生理解,巩固向量有关概念、定理等;3、加强答题书写的规范性;4、平时加强限时训练,提高计算的准确度、速度;6、第21题:本题主要考查函数的单调性、零点存在性定理和对数函数三个知识点,该题得分率偏低,大部分同学没能推理出最后的答案,平均得分7.1分,得分率为75.1%,主要存在的问题是推理问题,少部分学生是题目看不明。
2015-2016学年四川省成都七中高二(上)期末数学模拟试卷(理科)(一)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()A.46,45,56 B.46,45,53 C.47,45,56D.45,47,532.执行如图的框图,第3次和最后一次输出的A的值是()A.7,9 B.5,11 C.7,11 D.5,93.对于线性回归方程,下列说法中不正确的是()A.直线必经过点B.x增加一个单位时,y平均增加个单位C.样本数据中x=0时,可能有D.样本数据中x=0时,一定有4.如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①;②∠BAC=60°;③三棱锥D﹣ABC是正三棱锥;④平面ADC的法向量和平面ABC的法向量互相垂直.其中正确的是()A.①②B.②③C.③④D.①④5.若A、B两点的坐标分别是A(3cosa,3sina,1),B (2cosb,2sinb,1),则||的取值范围是( )A.B.C.(1,5) D.6.平面α与正四棱柱的四条侧棱AA1、BB1、CC1、DD1分别交于E、F、G、H.若AE=3,BF=4,CG=5,则DH等于( )A.6 B.5 C.4 D.37.已知直线l的倾斜角为α,且60°<α≤135°,则直线l斜率的取值范围是( )A.B.C.D.8.已知:,求z=x2+y2最小值为()A.13 B.C.1 D.9.已知圆C1:(x+1)2+(y﹣1)2=1,圆C2与圆C1关于直线x﹣y﹣1=0对称,则圆C2的方程为()A.(x+2)2+(y﹣2)2=1 B.(x﹣2)2+(y+2)2=1C.(x+2)2+(y+2)2=1 D.(x﹣2)2+(y﹣2)2=110.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是( )A.﹣2 B.﹣4 C.﹣6 D.﹣8 11.两个圆C1:x2+y2+2x+2y﹣2=0与C2:x2+y2﹣4x﹣2y+1=0的公切线有且仅有()A.1条B.2条C.3条D.4条12.已知直线x+ay﹣1=0是圆C:x2+y2﹣4x﹣2y+1=0的对称轴,过点A(﹣4,a)作圆C的一条切线,切点为B,则|AB|=()A.2 B.6 C.4D.2二、填空题:本大题共4小题,每小题4分,共16分。
广东省深圳市龙岗区2015-2016学年第一学期期末高二理科数学试题带答案龙岗区2015-2016学年第一学期期末质量监测试题高二(理科)数学本试卷共分为选择题和非选择题两部分,共22小题,满分150分,考试用时120分钟。
注意事项如下:1.答卷前,请检查答题卡是否整洁无缺损。
考生必须使用规定的笔将自己的学校、班级、姓名和考号填写在答题卡指定的位置上,并将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区。
请保持条形码整洁、不污损。
2.选择题请使用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其他答案。
不按以上要求作答的答案无效。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上。
如需改动,请先划掉原来的答案,然后再写上新的答案。
不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.请保持答题卡的整洁,不折叠、不破损。
考试结束后,请将试卷和答题卡一并交回。
第Ⅰ卷选择题(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知命题p:x R,sinx1,则下列哪个命题是对p的否定?A.p:x R,sinx-1B.p:x R,sinx≥-1C.p:x R,sinx≤-1D.p:x R,sin(x2y2)+x≠12.1<k<4是方程4-kk-1的充分不必要条件。
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.已知三角形ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为A.3B.2C.2/3D.4/34.在空间直角坐标系中,给定点M(2,-1,3),若点A与点M关于xOy平面对称,点B与点M关于x轴对称,则AB=?A.2B.4C.25D.375.当a<-1时,不等式(x-a)/(x+1)(x-3)≤0的解集是A.(-∞,-1)∪[a,3]B.(-∞,a)∪[-1,3]C.(-∞,a)∪(-1,3)D.(-∞,a]∪(-1,3)6.若椭圆(a>b>0)的方程为x^2/a^2+y^2/b^2=1,离心率为e,则双曲线x^2/a^2-y^2/b^2=1的离心率为?A.2√5/5B.√3/2C.√5/2D.√3/5以下省略)7.已知等比数列{a_n}中,a_3=7,前3项之和S_3=21,则公比q的值为1或-1.8.若不等式组{x+3y≥4,XXX表示平面区域被直线y=kx分为面积相等的两部分,则k的值是3/4.9.如图所示的5×5正方形表格中共有20个空格,若在每一个空格中填入一个正整数,使得每一行和每一列都成等差数列,则字母a所代表的正整数是18.10.不等式f(x)=ax^2-x-c>0的解集为{x|-2<x<1},则函数y=f(-x)的图象大致是关于y轴对称的。
2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。
卧龙实验小学2015---2016学年度第一学期二年级数学期末试卷
姓名班级分数
一、填空(23分)
1、3个6相加的和是(),6个3相加的和是()。
2、8+8+8+8写成乘法算式是()或
()。
3、5元7角=()角。
38角=()元()角
4、在35÷5=7中被除数是(),除数是(),商是()
口诀是()。
5、1米=()厘米700厘米=()米
6、在下面的括号里填上合适的单位。
⑴、教室的黑板长4 ()。
⑵、铅笔盒的长是18()。
⑶、一棵大树高10 ()。
7、一个乘数是8,另一个乘数是9,积是()。
8、把24平均分成3分,每份是()。
9、人民币的单位有()、()、()。
10、测量比较长的物体,可以用()作单位,测量比较短的物体,
可以用()作单位。
二、判断(5分)
1、18÷3=6读作18除以3等于6。
()
2、24÷8=3中8是除数,24也是除数。
()
3、奇思的身高是120米。
()
4、4×7=28和28÷4=7用同一句口诀。
()
5、21÷3=7表示把21平均分成3份,每份是7 。
()
三、选择题(5分)
1、求6的5倍是多少,正确的算式是()。
A、30÷5=6
B、6×5=30
C、6+5=11
2、求4个3相加是多少的算式是()。
A、3+3+3+3
B、4+4+4
C、4+3
3、12÷3=4中被除数是()。
A、12
B、4
C、3
4、 有42朵花平均分成6份,每份有几朵?列算式是( )。
A 、6×7=42
B 、42÷6=7
C 、42÷6=7
5、教室的门高约是2( )。
A 、米
B 、厘米
C 、毫米
四、看图写出两道乘法算式和两道除法算式。
(8分)
五、在○里填上“>”“<”“=”。
(4.5分 )
28 6 45÷5 8+9 8×9
72-8 1×1 1+1 9×7 65
9×4 16+5 20 6×7 6×8
六、 4.5分 )
<30 3× <25 4× < 22
40 36> ×8 ×9 <37
32 75> ×9 ×6<25
1、直接写得数( 16分 )
45÷5= 9×7= 48 ÷ 8= 8 ×5=
24÷6= 54 ÷6= 7 ×5= 56 ÷8=
9×8= 56÷7= 18÷9= 63 ÷ 9=
72÷8= 35÷5= 24÷3= 42÷6=
3、列竖式计算( 8分 )
23+35-24= 48-32+43= 37+29-34 = 34+36-
35=
4、列式计算( 8分 )
⑴、一个乘数是5,另一个乘数是9,积是多少?
⑵、 36是4的多少倍?
⑶、一个加数是36,另一个加数是42,和是多少?
⑷、 8的3倍是多少?
八、解决问题(18分)
1.实验小学二年级一共有56位学生,这些学生每8位站一排,可以站几
排?(3分)
=
(
)
2. 357行,每行几棵?(
3分)
=
3.购物
3元 24元 ?元 6元
⑴、 买5双袜子要付多少钱?(3分)
⑵、 一件衣服是一对手套的6倍,一件衣服要多少钱?(3分)
⑶、一双鞋子的价钱是一双袜子的几倍? (3分)
⑷、24(3
= = = = ( )
( )
( )
( )
( )。