北邮微波仿真实验报告
- 格式:docx
- 大小:6.80 MB
- 文档页数:62
一、实验目的1. 理解微波技术的基本原理,掌握微波的基本特性。
2. 学习微波元件和器件的基本功能及使用方法。
3. 通过实验操作,验证微波技术在实际应用中的效果。
二、实验原理微波技术是利用频率在300MHz至300GHz之间的电磁波进行信息传输、处理和接收的技术。
本实验主要涉及微波的基本特性、微波元件和器件的应用以及微波电路的搭建。
三、实验仪器与设备1. 微波暗室2. 微波信号源3. 微波功率计4. 微波定向耦合器5. 微波移相器6. 微波衰减器7. 微波测量线8. 信号分析仪9. 示波器四、实验内容1. 微波基本特性实验(1)测量微波传播速度:通过测量微波信号在实验装置中的传播时间,计算微波在空气中的传播速度。
(2)测量微波衰减:利用微波信号源和功率计,测量微波在传输过程中不同位置的衰减值。
(3)测量微波反射系数:通过测量微波信号在实验装置中的反射强度,计算微波的反射系数。
2. 微波元件和器件应用实验(1)微波移相器:通过调整移相器的相位,观察微波信号在输出端的变化。
(2)微波衰减器:通过调整衰减器的衰减量,观察微波信号在输出端的变化。
(3)微波定向耦合器:通过观察微波信号在定向耦合器两端的输出,验证其功能。
3. 微波电路搭建实验(1)搭建微波滤波器:利用微波元件和器件,搭建一个微波滤波器,并测试其性能。
(2)搭建微波天线:利用微波元件和器件,搭建一个微波天线,并测试其增益。
五、实验步骤1. 微波基本特性实验(1)连接实验装置,确保连接正确。
(2)开启微波信号源,设置合适的频率和功率。
(3)测量微波传播速度、衰减和反射系数。
2. 微波元件和器件应用实验(1)连接微波移相器、衰减器和定向耦合器。
(2)调整移相器、衰减器和定向耦合器的参数,观察微波信号在输出端的变化。
3. 微波电路搭建实验(1)根据设计要求,搭建微波滤波器和天线。
(2)测试微波滤波器和天线的性能。
六、实验结果与分析1. 微波基本特性实验(1)微波传播速度:根据实验数据,计算微波在空气中的传播速度,并与理论值进行比较。
北京邮电大学微波仿真实验报告姓名:学号:班级:院系:一、实验目的1、了解ADS微波仿真软件的使用2、用ADS软件,观察不同的传输线及微波器件的Sminth圆图和S参数。
二、实验要求FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.021.Linecal的使用a)计算FR4基片的50欧姆微带线的宽度b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线宽度与接地板之间的距离)2.分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。
观察Smith圆图变化。
理想传输线微带传输线分析:四分之一波长开路线具有“开路变短路”的作用。
3.分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长短路线的性能参数,工作频率为1GHz。
观察Smith圆图变化。
理想传输线微带传输线分析:四分之一波长短路线具有“短路变开路”的作用。
综上可知:四分之一波长传输线具有“阻抗倒置”的作用。
4.分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆二分之波长开路线的性能参数,工作频率为1GHz。
观察Smith圆图变化。
短路传输线微带传输线分析:二分之一波长开路线阻抗不变,所以开路经阻抗变换后还是开路。
5.分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆二分之波长短路线的性能参数,工作频率为1GHz。
观察Smith圆图变化。
理想传输线微带传输线先计算分析:二分之一波长短路线阻抗不变,所以所以短路经阻抗变换后还是短路。
综上可知:二分之一波长传输线具有“阻抗还原”的作用。
6.用一段理想四分之一波长阻抗变换器匹配10欧姆到50欧姆,仿真S参数,给出-20dB带宽特性,工作频率为1GHz。
带宽B=m1-m2=200.0 MHz7.用一段FR4基片上四分之一波长阻抗变换器匹配10欧姆到50欧姆,仿真S 参数,给出-20dB带宽特性,工作频率为1GHz,分析7 和8结果。
微波技术实验报告北邮一、实验目的本实验旨在使学生熟悉微波技术的基本理论,掌握微波器件的测量方法,并通过实际操作加深对微波信号传输、调制和解调等过程的理解。
通过实验,学生能够培养分析问题和解决问题的能力,为将来在微波通信领域的工作打下坚实的基础。
二、实验原理微波技术是利用波长在1毫米至1米之间的电磁波进行信息传输的技术。
微波具有较高的频率和较短的波长,因此能够实现高速数据传输。
在实验中,我们主要研究微波信号的产生、传输、调制和解调等基本过程。
三、实验设备1. 微波信号发生器:用于产生稳定的微波信号。
2. 微波传输线:用于传输微波信号。
3. 微波调制器:用于对微波信号进行调制,实现信号的传输。
4. 微波解调器:用于将调制后的信号还原为原始信号。
5. 微波测量仪器:包括功率计、频率计等,用于测量微波信号的参数。
四、实验内容1. 微波信号的产生与测量:通过微波信号发生器产生微波信号,并使用频率计测量信号的频率。
2. 微波信号的传输:利用微波传输线将信号从一个点传输到另一个点,并观察信号的衰减情况。
3. 微波信号的调制与解调:使用调制器对微波信号进行调制,然后通过解调器将调制后的信号还原。
4. 微波信号的传输特性分析:分析不同条件下微波信号的传输特性,如衰减、反射、折射等。
五、实验步骤1. 打开微波信号发生器,设置合适的频率和功率。
2. 将微波信号发生器的输出端连接到微波传输线的输入端。
3. 测量传输线上的信号强度,并记录数据。
4. 将调制器连接到传输线的输出端,对信号进行调制。
5. 将调制后的信号通过解调器还原,并测量解调后的信号参数。
6. 分析信号在不同传输条件下的特性,如衰减系数、反射率等。
六、实验结果通过本次实验,我们成功地产生了稳定的微波信号,并测量了其频率和功率。
在传输过程中,我们观察到了信号的衰减现象,并记录了不同传输条件下的信号强度。
通过调制和解调过程,我们验证了微波信号的可调制性和可解调性。
电磁场与微波测量实验实验报告实验名称:班级:姓名:学号:学院:北京邮电大学实验七.天线与电波传播一、 实验目的(1)掌握微波信号发生器及测量放大器的使用方法。
(2)了解水平面接收天线方向性的测量方法。
二、 实验仪器标准信号发生器、选频放大器、喇叭天线、波导调配器、可变衰减器、波导元件。
三、 实验原理及步骤对于辐射波传输方式,最重要的是测试其辐射场幅值分布的方向性,其表征量是天线方向函数及方向图。
1.系统组成图1-1 系统组成原理框图2.喇叭天线工程上常用的喇叭天线是角锥喇叭,原因是其匹配较好而效率接近100%(G ≈D )。
但是由于其口径场的幅值、相位不是均匀分布,虽然其辐射主向仍是口径面法线方向(波导轴线方向),但是主瓣宽度、方向系数的计算很复杂。
可用以下公式进行估算:E 面(yoz 面)主瓣宽度bE λθ5325.0= (1-1)H 面(xoz 面)主瓣宽度15.0802a H λθ= (1-2)方向系数(最佳尺寸的角锥喇叭)211451.0λπb a D = (1-3)图1-2是角锥喇叭的三维标高方向图。
具体参数喇叭口径1a =5.5λ,1b =2.75λ;波导口径a=0.5λ,b=0.25λ;虚顶点至口径面距离ρ=2ρ=6λ。
1 Array图1-2 角锥喇叭的三维标高方向图图1-3为本实验所用喇叭天线示意图:图1-3 实验所用喇叭天线3.测水平面接收天线方向性图1-1为测量喇叭天线方向性的系统组成情况。
测量时改变接收喇叭天线的方位角,可测出喇叭天线水平面的方向性(按接收到信号的强弱)。
严格的测量应在微波暗室中进行,这样可以消除反射波影响。
但在微波段,因其传播方向性较强,而且房屋墙壁吸收较强,地面影响也可略去,因而这样在普通实验室内测量偏差也不很大。
测天线方向图应有专用天线转台,它有精确的角度(水平面方位角,垂直面俯仰角)刻度指示。
本实验主要测水平面即方位方向性。
四、实验内容及数据处理(1)微波天线方向图测试报告旁瓣宽度-3.0db : 26.33 -6.0db : 39.82 -10.0db : 54.30 -15.0db : 225.13五、心得体会本实验即天线与电波传播实验由老师演示,我们只需了解其原理并会分析其数据即可。
北邮微波实验报告北邮微波实验报告引言:微波技术是现代通信领域的重要组成部分,其在无线通信、雷达探测、卫星通信等方面发挥着重要作用。
本次实验旨在通过对微波的实际操作,深入了解微波的特性和应用。
一、实验目的本次实验的主要目的是:1. 了解微波的基本特性和传输原理;2. 掌握微波实验仪器的使用方法;3. 学习微波的传输线特性及其在微波系统中的应用。
二、实验原理微波是指频率在300MHz至300GHz之间的电磁波,具有较高的频率和较短的波长。
微波的传输线主要包括同轴电缆和微带线两种,其特性阻抗和传输损耗与频率、材料和结构参数有关。
三、实验步骤1. 实验仪器准备:将微波发生器、功率计、频谱分析仪等仪器连接好,确保仪器间的连接正确可靠。
2. 测量微波信号的功率:使用功率计对微波信号的功率进行测量,记录下测量结果。
3. 测量微波信号的频谱:使用频谱分析仪对微波信号的频谱进行测量,观察并记录下频谱特性。
4. 测量微波传输线的特性阻抗:将微波传输线连接好,通过测量反射系数和传输系数等参数,计算出传输线的特性阻抗。
5. 测量微波传输线的传输损耗:通过测量微波信号在传输线中的衰减量,计算出传输线的传输损耗。
6. 分析实验结果:根据实验数据,分析微波信号的功率、频谱特性以及传输线的特性阻抗和传输损耗等。
四、实验结果与分析通过实验测量,我们得到了微波信号的功率、频谱特性以及传输线的特性阻抗和传输损耗等数据。
根据实验结果可以得出以下结论:1. 微波信号的功率与输入功率之间存在一定的关系,可以通过功率计进行测量和调整。
2. 微波信号的频谱特性与信号的频率和幅度有关,可以通过频谱分析仪进行测量和分析。
3. 微波传输线的特性阻抗与线路结构和材料参数有关,可以通过测量反射系数和传输系数等参数进行计算。
4. 微波传输线的传输损耗与线路长度和材料损耗有关,可以通过测量微波信号在传输线中的衰减量进行计算。
五、实验总结通过本次实验,我们深入了解了微波的特性和应用,并掌握了微波实验仪器的使用方法。
微波工程基础仿真实验报告学院:电子工程学院班级:2012211xxx学号:******xxxx姓名:xxxx班内序号:xx一、实验题目实验一1.了解ADS Schematic的使用和设置2.在Schematic里,分别仿真理想电容20pF和理想电感5nH,仿真频率为(1Hz-100GHz),观察仿真结果,并分析原因。
3.Linecalc的使用a)计算中心频率1GHz时,FR4基片的50Ω微带线的宽度b)计算中心频率1GHz时,FR4基片的50Ω共面波导(CPW)的横截面尺寸(中心信号线宽度与接地板之间的距离)4.基于FR4基板,仿真一段特性阻抗为50Ω四分之一波长开路CPW线的性能参数,中心工作频率为1GHz。
仿真频段(500MHz-3GHz),观察Smith 圆图变化,分析原因。
5.基于FR4基板,仿真一段特性阻抗为50Ω四分之一波长短路CPW线的性能参数,中心工作频率为1GHz。
仿真频段(500MHz-3GHz),观察Smith 圆图变化,分别求出500MHz和2GHz的输入阻抗,分析变化原因。
6.分别用理想传输线和在FR4基片上的微带传输线,仿真一段特性阻抗为50Ω四分之一波长开路线的性能参数,工作频率为1GHz。
仿真频段(500MHz-3GHz),观察Smith圆图变化,分别求出500MHz和2GHz的输入阻抗,分析变化原因。
扩展仿真频率(500MHz-50GHz),分析曲线变化原因。
7.分别用理想传输线和在FR4基片上的微带传输线,仿真一段特性阻抗为50Ω四分之一波长短路线的性能参数,工作频率为1GHz。
仿真频段(500MHz-3GHz),观察Smith圆图变化,分别求出500MHz和2GHz的输入阻抗,分析变化原因。
扩展仿真频率(500MHz-50GHz),分析曲线变化原因。
8.分别用理想传输线和在FR4基片上的微带传输线,仿真一段特性阻抗为50Ω二分之一波长开路线的性能参数,工作频率为1GHz。
微波仿真实验实验报告题目:微波仿真实验学院:电子工程学院班级:姓名:学号:2013xxxxxx微波仿真课(1)一、实验要求:1.了解ADS Schematic的使用和设置。
打开ADS软件(2009版本),选择“以管理员身份运行”,新建工程并命名,新建Schematic窗口。
截图如下:2.在Schematic里,分别仿真理想电容20pF和理想电感5nH,仿真频率为(1Hz-100GHz),观察仿真结果,并分析原因。
①理想电容20pF,仿真频率为(1Hz-100GHz):电路图:对数曲线:分析:由计算可知:S 11=Z/Z+2 S 12=2/Z+2,该网络互易对称可知S 21=S 12, S 22=S 11, Z=1/j ωC, 随着频率的增加,S 11=Z/Z+2将会减小,最终趋向于0,即-70db, S 12=2/Z+2,f=1HZ 时,Z 趋近于无穷,S 12趋近于0,即1db, f逐渐增大到100GHZ 时,Z=1, S 12=1/3,仍然接近于0,即1db 。
② 理想电感5nH ,仿真频率为(1Hz-100GHz ): 电路图:史密斯圆图:对数曲线:分析:由计算可知:S 11=Z/Z+2 S 12=2/Z+2。
由该网络互易对称可知S 21=S 12, S 22=S 11, Z=j ωL, 随着频率的增加,S 11=Z/Z+2将会增大,最终趋向于1,即0db, S 12=2/Z+2将会随着频率的减小而减小,最终趋向于0,在图中即为-30db 。
3.Linecalc 的使用:a) 计算中心频率1GHz 时,FR4基片的50Ω微带线的宽度;将FR4基片的参数输入到Linecalc 中,计算得到中心频率1GHz 时,FR4基片的50Ω微带线的宽度为1.543670mm ,截图如下:b)计算中心频率1GHz时,FR4基片的50Ω共面波导(CPW)的横截面尺寸(中心信号线宽度及接地板之间的距离)。
将FR4基片的参数输入到Linecalc中,计算得到中心频率1GHz时,FR4基片的50Ω共面波导(CPW)的中心信号线宽度为87.8355mm,及接地板之间的距离为5mm,截图如下:4.基于FR4基板,仿真一段特性阻抗为50Ω四分之一波长开路CPW线的性能参数,中心工作频率为1GHz。
北邮实验报告微波引言微波是一种电磁波,其波长介于红外线和无线电波之间,频率范围在0.3GHz到300GHz之间。
在通信、雷达、烹饪和科学研究等领域中都有广泛的应用。
在本次北邮实验中,我们将对微波进行详细的实验研究,包括微波的产生、传播和接收等方面。
实验目的本次实验的目的是通过实际操作,深入了解微波的特性和应用,掌握微波的基本原理和实验技巧。
实验步骤1. 微波的产生在实验室中,我们使用了一台微波产生器作为实验的起点。
首先,将微波产生器连接到电源上,调节频率和功率到所需的数值。
然后,将微波产生器的输出端连接到实验室的微波传输线上。
2. 微波的传播在传输线的一端,将一根微波天线连接到传输线上。
通过在传输线上调整微波的传播路径、角度和长度,我们可以实现微波的传输和转换。
在传播过程中,我们还观察了微波的反射和折射现象。
3. 微波的接收在传播线的另一端,将一个微波接收器连接到传输线上,以接收并测量传输线上的微波信号。
在接收过程中,我们还研究了微波信号的幅度、频率和相位等特性。
4. 微波的应用在实验的最后阶段,我们探索了微波在通信和雷达系统中的应用。
通过调整频率和功率,我们成功地传输了一个数字信号,并利用雷达系统测量了一个静止目标的距离和速度。
实验结果通过本次实验,我们获得了如下的实验结果:1. 微波产生器的频率和功率对微波的传播和接收都具有重要影响。
调节频率和功率可以改变微波信号的强度和特性。
2. 微波在传输线上的传播路径、角度和长度都会对微波信号的幅度、相位和频率产生影响。
合理地设计和构造传输线可以提高微波的传输效率和保真度。
3. 微波信号的接收和测量需要高灵敏度和高精度的微波接收器和测量仪器。
合理调节接收器的参数可以获得准确的微波信号值。
4. 微波在通信和雷达系统中具有重要的应用。
利用微波技术,可以实现远距离的无线通信和精确测量目标的位置和速度。
结论通过本次实验,我们全面了解了微波的特性和应用。
微波是一种重要的电磁波,具有很多优良特性,如高速传输、高精度测量和无线通信等。
信息与通信工程学院电磁场与微波实验报告实验题目:微波器件设计与仿真班级:姓名:学号:日期:2016.5.18实验二分支线匹配器一、实验目的1.掌握支节匹配器的工作原理2.掌握微带线的基本概念和元件模型3.掌握微带分支线匹配器的设计与仿真二、实验原理1.支节匹配器随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。
因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。
常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。
支节匹配器分单支节、双支节和三支节匹配。
这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。
此电纳或电抗元件常用一终端短路或开路段构成。
2. 微带线从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。
微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。
三、实验内容已知:输入阻抗Zin=75Ω负载阻抗Zl=(64+j75)Ω特性阻抗Z0=75Ω介质基片面性εr=2.55 ,H=1mm假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=λ/4,两分支线之间的距离为d2=λ/8。
画出几种可能的电路图并且比较输入端反射系数幅值从1.8GHz至2.2GHz的变化。
四、实验步骤1.建立新项目,确定项目频率,步骤同实验1的1-3步。
2.将归一化输入阻抗和负载阻抗所在位置分别标在Y-Smith导纳图上,步骤类似实验1的4-6步。
3.设计单支节匹配网络,在圆图上确定分支z与负载的距离d以及分支线的长度1,根据给定的介质基片、特性阻抗和频率用TXLINE计算微带线物理长度和宽度。
微波射频测量实验实验报告学院:班级:学号:姓名:班内序号:指导老师:实验一微波同轴测量系统的熟悉一、实验目的1、了解常用微波同轴测量系统的组成,熟悉各部分构件的工作原理,熟悉其操作和特性。
2、熟悉矢量网络分析仪的操作以及测量方法。
二、实验内容1、常用微波同轴测量系统的认识,简要了解其工作原理。
注意在实验报告中需画出微波同轴测量系统图,并说明各元件和仪器在系统中作用2、掌握矢量网络分析仪的操作以及测量方法。
注意在实验报告中给出仪器使用报告包括下列内容:a)矢量网络分析仪的面板组成以及各部分功能i.微波同轴测量系统实物图ii.主要组成部分及其功能●矢量网络分析仪:对RF领域的放大器、衰减器、天线、同轴电缆、滤波器、分支分配器、功分器、耦合器、隔离器、环形器等RF器件进行幅频特性、反射特性和相频特性测量。
●同轴线:连接矢量网络分析仪和校准元件或测量元件。
●校准元件:对微波同轴侧量系统进行使用前校准,以尽量减小系统误差。
●测量元件:待测量的原件(如天线、滤波器等),可方便地通过同轴线和矢量网络分析仪连起来。
iii.矢量网络分析仪的面板组成以及各部分功能b)S 参数测量步骤(1)将一个待测的二端口网络通过同轴线接入矢量网络分析仪,组成一个微波同轴测量系统(2)然后经过SOLT校准,消除系统误差;(3)在矢量网络分析仪上调处S参数测量曲线,读出相应的二端口网络的S参量,保存为s2p数据格式和cst数据格式的文件。
c)如何用Smith圆图显示所测结果以及如何与直角坐标转换TOOLS工具栏下,下拉选项中可得到simth圆图的显示以及转换直角坐标d)如何保存所测数据,以及可存的数据格式点击【文件】>【另存为】,然后选择相应的保存目录可保存的数据格式为.jpg图片格式。
e)开路校准件的电容值设定(校准系数)在校准菜单下的CalKit(校准件)选项里,打开校准件的开路件对话框。
对应公式:C(f)=C0+C1f+C2f2+C3f3f)短路校准件的电感值设定(校准系数)在校准菜单下的CalKit(校准件)选项里,打开校准件的短路件对话框。
微波仿真实验实验报告题目:微波仿真实验学院:电子工程学院班级:姓名:学号:2013xxxxxx微波仿真课(1)一、实验要求:1.了解ADS Schematic的使用和设置。
打开ADS软件(2009版本),选择“以管理员身份运行”,新建工程并命名,新建Schematic窗口。
截图如下:2.在Schematic里,分别仿真理想电容20pF和理想电感5nH,仿真频率为(1Hz-100GHz),观察仿真结果,并分析原因。
①理想电容20pF,仿真频率为(1Hz-100GHz):电路图:对数曲线:分析:由计算可知:S11=Z/Z+2 S12=2/Z+2,该网络互易对称可知S21=S12, S22=S11, Z=1/jωC, 随着频率的增加,S11=Z/Z+2将会减小,最终趋向于0,即-70db, S12=2/Z+2,f=1HZ时,Z趋近于无穷,S12趋近于0,即1db, f逐渐增大到100GHZ时,Z=1, S12=1/3,仍然接近于0,即1db。
②理想电感5nH,仿真频率为(1Hz-100GHz):电路图:史密斯圆图:对数曲线:分析:由计算可知:S11=Z/Z+2 S12=2/Z+2。
由该网络互易对称可知S21=S12, S22=S11, Z=jωL, 随着频率的增加,S11=Z/Z+2将会增大,最终趋向于1,即0db, S12=2/Z+2将会随着频率的减小而减小,最终趋向于0,在图中即为-30db。
3.Linecalc的使用:a)计算中心频率1GHz时,FR4基片的50Ω微带线的宽度;将FR4基片的参数输入到Linecalc中,计算得到中心频率1GHz时,FR4基片的50Ω微带线的宽度为1.543670mm,截图如下:b)计算中心频率1GHz时,FR4基片的50Ω共面波导(CPW)的横截面尺寸(中心信号线宽度与接地板之间的距离)。
将FR4基片的参数输入到Linecalc中,计算得到中心频率1GHz时,FR4基片的50Ω共面波导(CPW)的中心信号线宽度为87.8355mm,与接地板之间的距离为5mm,截图如下:4.基于FR4基板,仿真一段特性阻抗为50Ω四分之一波长开路CPW线的性能参数,中心工作频率为1GHz。
仿真频段(500MHz-3GHz),观察Smith圆图变化,分析原因。
电路图:Smith圆图:分析:Smith圆图上近似在r = 无穷的等电阻圆上转一圈多,频率每增加1G,圆就增加半圈,即λ/4电长度,由于CPW存在损耗,即衰减系数不为0,相位常数不为0,所以相位和大小均发生改变,所以反射系数成螺旋型,当频率为0时,位于史密斯原图开路点处,1GHZ时,顺时针旋转半个周期到短路点处,反射系数的绝对值即为所在点到圆心的距离,虽然从500M到3G时,反射系数的大小都接近1(终端短路时的传输系数),但随着频率的升高,反射系数的绝对值略有减小,同时说明传输系数增大,说明随着频率越高,衰减系数越小,即损耗越小。
5.基于FR4基板,仿真一段特性阻抗为50Ω四分之一波长短路CPW 线的性能参数,中心工作频率为1GHz。
仿真频段(500MHz-3GHz),观察Smith圆图变化,分别求出500MHz和2GHz的输入阻抗,分析变化原因。
电路图:史密斯圆图:分析:阻抗计算结果:500MHz时,Zin = Z0*(0.069+j1.042) ≈j*Z02GHz下,Zin = Z0*(0.034-j*0.026) ≈0变化原因:对以1GHz为中心频率的1/4波长CPW而言,对1GHz对应1/4波长,此时阻抗倒置,由短路点变为开路点;2GHz下,频率加倍,波长减半,对相同的波导规格,电长度加倍,相当于1/2波长,阻抗还原,仍为短路点,500MHz时,电长度相当于1/8波长,相当于从短路点(-1,0)在Smith圆图中顺时针(向源)旋转了1/4个圆。
6.分别用理想传输线和在FR4基片上的微带传输线,仿真一段特性阻抗为50Ω四分之一波长开路线的性能参数,工作频率为1GHz。
仿真频段(500MHz-3GHz),观察Smith圆图变化,分别求出500MHz 和2GHz的输入阻抗,分析变化原因。
扩展仿真频率(500MHz-50GHz),分析曲线变化原因。
①理想传输线,特性阻抗为50Ω四分之一波长,开路线,工作频率为1GHz,仿真频段500MHz-3GHz:电路图:史密斯圆图:②微带传输线,特性阻抗为50Ω四分之一波长,开路线,工作频率为1GHz,仿真频段500MHz-3GHz:电路图:史密斯圆图:③理想传输线,特性阻抗为50Ω四分之一波长,开路线,工作频率为1GHz,仿真频段500MHz-50GHz:电路图:史密斯圆图:④微带传输线,特性阻抗为50Ω四分之一波长,开路线,工作频率为1GHz,仿真频段500MHz-50GHz:电路图:史密斯圆图:分析:理想传输线的史密斯圆图在开路圆山重复旋转将近一圈多,而微带传输线的史密斯圆图的曲线呈螺旋型,且随着频率的增大,波长变小,即对应相同的波导,电长度变大,此时反射系数的模值变小,即说明理想传输线不存在损耗,而微带线的损耗随着频率的增加而减小。
对于1Ghz对应的λ/4的理想传输线,2Ghz对应λ/2的理想传输线,相当于阻抗还原,对于没有损耗的理想传输线来说,其输入阻抗接近无穷,而对应微带传输线来说,其因为存在损耗,所以值会略有减小。
500Mhz对应的是λ/8,即从开路点处朝源的方向,即顺时针旋转λ/8长度得到的输入阻抗,同理,微带线比理想线略小。
扩展仿真频率,由于理想传输线不存在损耗,所以即时频率扩展了,也仍以2G为一个频率周期重复再开路圆上画圆,而由于微带线存在损耗,随着频率越来越大,反射系数的模值将会越来越小。
7.分别用理想传输线和在FR4基片上的微带传输线,仿真一段特性阻抗为50Ω四分之一波长短路线的性能参数,工作频率为1GHz。
仿真频段(500MHz-3GHz),观察Smith圆图变化,分别求出500MHz 和2GHz的输入阻抗,分析变化原因。
扩展仿真频率(500MHz-50GHz),分析曲线变化原因。
①理想传输线,特性阻抗为50Ω四分之一波长,短路线,工作频率为1GHz,仿真频段500MHz-3GHz:电路图:史密斯圆图:②微带传输线,特性阻抗为50Ω四分之一波长,短路线,工作频率为1GHz,仿真频段500MHz-3GHz:电路图:史密斯圆图:③理想传输线,特性阻抗为50Ω四分之一波长,短路线,工作频率为1GHz,仿真频段500MHz-50GHz:电路图:史密斯圆图:④微带传输线,特性阻抗为50Ω四分之一波长,短路线,工作频率为1GHz,仿真频段500MHz-50GHz:电路图:史密斯圆图:分析:四分之一波长短路线的短路点在1GHz,即中心工作频率。
对于理想传输线,能量并不会随频率升高而衰减,因此史密斯原图无变化。
而对于微带线,因为微带线有耗,损耗随功率升高而增大,因此反射系数逐渐减小,从而随着频率的升高,半径越来越小。
8.分别用理想传输线和在FR4基片上的微带传输线,仿真一段特性阻抗为50Ω二分之一波长开路线的性能参数,工作频率为1GHz。
仿真频段(500MHz-3GHz),观察Smith圆图变化,分别求出500MHz 和2GHz的输入阻抗,分析变化原因。
扩展仿真频率(500MHz-50GHz),分析曲线变化原因。
①理想传输线,特性阻抗为50Ω二分之一波长,开路线,工作频率为1GHz,仿真频段500MHz-3GHz:电路图:史密斯圆图:②微带传输线,特性阻抗为50Ω二分之一波长,开路线,工作频率为1GHz,仿真频段500MHz-3GHz:电路图:史密斯圆图:③理想传输线,特性阻抗为50Ω二分之一波长,开路线,工作频率为1GHz,仿真频段500MHz-50GHz:电路图:史密斯圆图:④微带传输线,特性阻抗为50Ω二分之一波长,开路线,工作频率为1GHz,仿真频段500MHz-50GHz:电路图:史密斯圆图:分析:二分之一波长开路线的开路点在1GHz,即中心工作频率。
对于理想传输线,能量并不会随频率升高而衰减,因此史密斯原图无变化。
而对于微带线,因为微带线有耗,损耗随功率升高而增大,因此反射系数逐渐减小,从而随着频率的升高,半径越来越小。
9.分别用理想传输线和在FR4基片上的微带传输线,仿真一段特性阻抗为50Ω二分之一波长短路线的性能参数,工作频率为1GHz。
仿真频段(500MHz-3GHz),观察Smith圆图变化,分别求出500MHz 和2GHz的输入阻抗,分析变化原因。
扩展仿真频率(500MHz-50GHz),分析曲线变化原因。
①理想传输线,特性阻抗为50Ω二分之一波长,短路线,工作频率为1GHz,仿真频段500MHz-3GHz:电路图:史密斯圆图:②微带传输线,特性阻抗为50Ω二分之一波长,短路线,工作频率为1GHz,仿真频段500MHz-3GHz:电路图:史密斯圆图:③理想传输线,特性阻抗为50Ω二分之一波长,短路线,工作频率为1GHz,仿真频段500MHz-50GHz:电路图:史密斯圆图:④微带传输线,特性阻抗为50Ω二分之一波长,短路线,工作频率为1GHz,仿真频段500MHz-50GHz:电路图:史密斯圆图:注:FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02。
分析:二分之一波长开路线阻抗不变,所以开路经阻抗变换后还是开路。
微波仿真课(2)一、实验要求:1.用一段理想四分之一波长阻抗变换器匹配10欧姆到50欧姆,仿真S参数,给出-20dB带宽特性,工作频率为1GHz。
理想四分之一波长阻抗变换器,匹配10欧姆到50欧姆,工作频率为1GHz,频率范围取0-3GHz:电路图:对数曲线:2.用一段FR4基片上四分之一波长阻抗变换器匹配10欧姆到50欧姆,仿真S参数,给出-20dB带宽特性,工作频率为1GHz,比较分析题1和题2的结果。
FR4基片上四分之一波长阻抗变换器,匹配10欧姆到50欧姆,工作频率为1GHz,频率范围取0-3GHz,步长取1MHz:电路图:对数曲线:分析:由图可知,-20dB的带宽W=1065-921=143MHz,最低点对应频率为1GHz,即史密斯圆图的圆心处,由此可见已完成匹配,带宽略大于理想传输线。
3.设计一个3节二项式匹配变换器,用于匹配10欧姆到50欧姆的传输线,中心频率是1GHz,该电路在FR4基片上用微带线实现,设的带宽,给出回波损耗和插入损耗计这个匹配变换器并计算1.0Γ=m与频率的关系曲线,比较分析题2和题3的结果。
取频率范围为0-3GHz,步长为0.001GHz,由题目可知,ZL=10Ω,ZS=50Ω,所以:Z1=ZL^(7/8)ZS^(1/8)=12.23Ω,Z2=ZL^(1/2)ZS^(1/2)=22.36Ω,Z3=ZL^(1/8)ZS^(7/8)=40.89Ω。