小学数学四下巧妙求和(1)专项训练题
- 格式:doc
- 大小:27.50 KB
- 文档页数:2
四年级数学培优专题:巧妙求和(一),典型题型方法思维精讲精炼巧妙求和(一)一、方法思维若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:通项公式和项数公式。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?【思路导航】这个等差数列的首项是3.公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399.【例题3】有这样一个数列:1.2.3.4,…,99,100。
请求出这个数列所有项的和。
【思路导航】如果我们把1.2.3.4,…,99,100与列100,99,…,3.2.1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。
1+2+3+…+99+100=(1+100)×100÷2=5050【例题4】求等差数列2,4,6,…,48,50的和。
【思路导航】这个数列是等差数列,我们可以用公式计算。
要求这一数列的和,首先要求出项数是多少:项数=(末项-首项)÷公差+1=(50-2)÷2+1=25首项=2.末项=50,项数=25等差数列的和=(2+50)×25÷2=650.【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)【思路导航】容易发现,被减数与减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。
奥数(数学思维拓展)专题培优质量检测
——《巧妙求和》
1、假期里有一些同学相约每人互通两次电话,他们一共打了78次电话,问有多少位同学相约互通电话?
2、求1~3000这3000个连续自然数的所有数字之和。
3、丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个英语单词?
4、有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。
一共有几把锁的钥匙搞乱了?
5、假期里有一些同学相约每人互通两次电话,他们一共打了78次电话,问有多少位同学相约互通电话?
6、求1~999这999个连续自然数的所有数字之和。
四年级奥数专题巧妙求和(一)专题简析:若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
这一周学习“等差数列求和”。
需要记住三个非常重要的公式:“通项公式”、“项数公式”、“求和公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
练习一1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?分析与解答:这个等差数列的首项是3,公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399练习二1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2,求1,4,7,10……这个等差数列的第30项。
3,求等差数列2,6,10,14……的第100项。
例3:有这样一个数列:1,2,3,4,…,99,100。
请求出这个数列所有项的和。
分析与解答:如果我们把1,2,3,4,…,99,100与列100,99,…,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。
8讲巧妙求和(一)第一、知识要点.若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
练习1:1.等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项2.有一个等差数列:,8,11.…,101.这个等差数列共有多少项3.已知等差数列,,…,1001.这个等差数列共有多少项【例题2】有一等差数列:,,……,这个等差数列的第100项是多少【思路导航】这个等差数列的首项是3.公差是4,项数是100。
要求第100)”进行计算。
1公差×(项数-+首项=项,可根据“末项.第100项=3+4×(100-1)=399.练习2:1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少2.求,7,10……这个等差数列的第30项。
3.求等差数列,10,14……的第100项。
【例题3】有这样一个数列:,…,99,100。
请求出这个数列所有项的和。
【思路导航】如果我们把,…,99,100与列100,99,…,相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。
1+2+3+…+99+100=(1+100)×100÷2=5050上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。
四下6——5基础知识填空1、0.5扩大10倍等于500缩小()倍。
2、500缩小100倍等于0.25扩大( )倍。
3、去掉1.32的小数点,原数扩大( ) 倍,结果比原数大( )。
4、一个数的小数点右移两位,增加了198,这个数是()。
5、一个数的小数点左移一位,减少了88.2,这个数是()。
6、一个数扩大100倍后比原来的数多782.1,原来的数是( )。
7、在2.5的末尾添上两个0,它的计数单位由( )变为( )。
8、整数部分最小的计数单位比小数部分最大的计算单位多()。
9、小数点的左边第二位是( )位,它的计数单位是( ),小数点右边第二位是( )位,它的计数单位是( ) 。
10、一个数写错了,丢掉了小数点,读四万五千零一,原来的小数只读一个零,这个小数是( )。
11、小数点左边第二位上的2要比小数点右边第二位上的2多()。
12、一个等腰三角形的顶角是70°,它的一个底角是( ),按角分它是( ) 三角形。
13、一个等腰三角形的两边长分别是8厘米、7厘米,它的周长是()厘米。
14、一个等腰三角形的一个角为80度,则它的另外两个角分别是()。
判断1、比0.6大比0.7小的小数只有9个。
( )2、一个小数它的位数越多,数就越大。
( )3、20.560化简后是2.56。
( )4、大于0.3小于0.5的一位数只有0.4。
( )5、把10.060化简得1.6 。
( )选择1、大于0.6而小于0.7的小数有()个。
A、9B、0C、无数2、直角三角形的两个锐角之和()A、大于90度B、等于90度C、小于90度3、笑笑和淘气玩“剪刀、石头、布”游戏,下面说法中正确的是()。
A、笑笑一定胜B、淘气一定胜C、淘气可能胜4、下面()组线段能围成一个三角形。
A、1㎝、2㎝、3㎝B、2㎝、3㎝、6㎝C、2㎝、3㎝、4㎝列方程解应用题1、今天是奶奶的70岁生日,她的年龄比我的年龄的6倍还大4岁,我几岁?能力提高1、刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都比前一天多3页,第11天读了60页,正好读完。
巧妙求和教学目标:①知识与技能目标:使学生理解首项,末项以及项数的概念,掌握数列求和的公式②过程与方法目标:使学生能利用数列求和公式解决实际问题③情感态度与价值观目标:让学生体验到生活中处处是数学,体验数学的应用价值和数学学习的乐趣教学重点:数列求和公式及其适用条件教学难点:数列求和公式的推导过程[知识引领与方法]通项公式:第n项=首项+(项数-1)X公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)X项数÷2巧妙求和(一)[例题精选及训练]【例1】等差数列4,10,16,22,…,52共有多少项?练习:1.等差数列中,首项=7,末项=119,公差=4。
这个等差数列共有多少项?2.等差数列2,5,8,11,…,101共有多少项?3.已知一个等差数列的首项是5,末项是117,总和是976,这个数列共有多少项?【例2】已知等差数列3,7,11,15,…,则该等差数列的第100项是多少?练习:1.一个等差数列的首项=3,公差=2,项数=10,则它的末项是多少?2.已知等差数列1,4,7,10,…,则该等差数列的第30项是多少?3.已知等差数列2,6,10,14,…,则该等差数列的第100项是多少?【例3】有这样的一个数列1,2,3,4,…,99,100,请你求出这列数各项相加的和。
练习:计算下面各题。
(1)1+2+3+4+…+49+50(2)6+7+8+9+…+75(3)100+99+98+…+61+60【例4】求等差数列2,4,6,…,48,50的和练习:计算下面各题。
(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200(3)99+96+93+…+21+18【例5】如果一个等差数列的第4项为21,第6项为33,那么它的第8项是多少?练习:1.如果一个等差数列的第5项是19,第8项是61,那么它的第11项是多少?2.如果一个等差数列的第3项是10,第7项是26,那么它的第12项是多少?3.如果一个等差数列的第2项是10,第6项是18,那么它的第110项是多少?[课堂练习]1.有一个等差数列:9、12、15、18、...、2004,这个数列共有多少项?2.已知等差数列:1000、993、986、979、...、20,这个数列共有多少项?3.求等差数列:1、6、11、16、...的第61项。
第2讲巧妙求和(一)一、知识要点若干个数排成一列称为数列。
数列中的每一个数称为一项。
其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。
二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?练习1:1、等差数列中,首项=1,末项=39,公差=2.这个等差数列共有多少项?2、有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?练习2:1、一等差数列,首项=3.公差=2.项数=10,它的末项是多少?2、求1,4,7,10……这个等差数列的第30项。
【例题3】有这样一个数列:1.2.3.4,…,99,100。
请求出这个数列所有项的和。
练习3:计算下面各题。
(1)1+2+3+…+49+50(2)6+7+8+…+74+75【例题4】求等差数列2,4,6,…,48,50的和。
练习4:计算下面各题。
(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)练习5:用简便方法计算下面各题。
(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)三、课后作业1、已知等差数列11,16,21,26,…,1001.这个等差数列共有多少项?2、求等差数列2,6,10,14……的第100项。
小学四年级奥数题:巧妙求和一、知识要点某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。
如果是等差数列求和,才可用等差数列求和公式。
在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
二、精讲精练【例题1】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。
这本书共有多少页?【思路导航】根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。
要求这本书共多少页也就是求出这列数的和。
这列数是一个等差数列,首项=30,末项=60,项数=11.因此可以很快得解:(30+60)×11÷2=495(页)想一想:如果把“第11天”改为“最后一天”该怎样解答?练习1:1.刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。
这批零件共有多少个?2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了50页恰好读完,这本书共有多少页?3.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个英语单词?【例题2】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?【思路导航】开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。
所以,至多需试 29+28+27+…+2+1=(29+1)×29÷2=435(次)。
练习2:1.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?2.有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。
四下3——3
基础知识
填空
1、小数点的左边是它的( )部分,最低位是( );小数点的右边是它的( )部
分,最高位是( )。
2、2个1、7个0.1和3个0.01用小数表示是( );72个1000
1用小数表示是( );0.79用分数表示是( )。
3、小红在读一个小数时,没有看到小数点,结果读成了七万零四,原来的小数只读出一个零,
原来的小数是( )。
4、写出小于0.18而大于0.16的两位小数、三位小数、四位小数各一个( )( )
( )。
5、骑车走同一段路程,小芳用了0.68小时,小红用了0.58小时,她俩谁的速度快?( )。
6、把4.009的小数点向右移动三位,小数就扩大到原数的( );把8400后面的两个0去掉,就相当于缩小到原数的( );在76的后面添上一个0,这个数就比原数扩大( )倍。
判断
1、把0.50中的0都去掉,它的大小不变。
( )
2、4.96在自然数4和5之间。
( )
3、3.58至4.58之间的小数有无数个。
( )
4. 0.1是1的十分之一, 是0.01的10倍. ( )
5. 把6写成两位小数是0.06. ( )
选择
1、把1米平均分成10份,其中的3份是( )米。
(1)1/10 (2)3/10 (3)3/100
2、把240缩小到它的( )是0.24。
(1)1/10 (2)1/100 (3)1/1000
3、在2.3的末尾添上两个0,这个数( )
(1)扩大到它的100倍 (2)缩小为它的1/100 (3)大小不变
能力提高
1、刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。
这批零件共有多少个?
2、胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。
最后一天读了50页恰好读完,这本书共有多少页?
3、丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。
丽丽在这些天中学会了多少个英语单词?
4、有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?
5、甲、乙、丙三个数之和是400,已知甲是乙的3倍,丙是甲的4倍。
求甲、乙、丙各是多少。
6、三个植树队共植树1900棵,甲队植树的棵数是乙队的2倍,乙队比丙队少植300棵。
三个队各植树多少棵?
7、甲、乙、丙三个修路队共修路1200米,甲队修的米数是乙队的2倍,乙队修的数数是丙队的3倍。
三个队各修了多少米?。