扎西中学208班2014年中考数学二模试题及答案
- 格式:doc
- 大小:237.00 KB
- 文档页数:6
2014年初中毕业班第二次模拟测试数 学 试 卷说明:1.全卷共4页,考试用时为100分钟,满分为120分。
2.考生务必用黑色字迹的签字笔或钢笔在答题卷密封线左边的空格里填写自己的学校、班级、姓名、准考证号,并在答题卷指定的位置里填写座位号。
3.选择题选出答案后,请将所选选项的字母填写在答题卷对应题目的空格内。
4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卷的整洁。
考试结束时,将试卷和答题卷一并交回。
一、选择题(本大题共10小题,每小题3分,共30分。
在各题的四个选项中,只有—项是正确的,请将所选选项的字母填写在答题卷对应题目的空格内) 1、9的算术平方根是A .81B .3±C .3-D .32、据报道,肇庆团市委“情系农村”深化农村青年创业小额贷款工作,共发放贷款13 000 000多元,数字13 000 000用科学记数法表示为A .1.3×106B .1.3×107C .1.3×108D .1.3×1093、如图所示的几何体的主视图是4、下列计算正确的是 A.222)2(aa =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 A . 12 B . 15 C . 12或15 D . 186、如图,线段DE 是△ABC 的中位线,∠B =60°,则∠ADE 的度数为 A .80° B .70° C .60° D .50°7、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是8、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A .众数B .方差C .平均数D .中位数(第6题图)(第3题图)(第16题图)9、把不等式组2151x x -≤⎧⎨>⎩的解集在数轴上表示正确的是10、童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图中能反映y 与x 的函数关系式的大致图象是二、填空题:(本题共6个小题,每小题4分,共24分) 11、分解因式:24(1)x x --= ▲ .12、如果26a b -=,则42b a -= ▲ .13、已知菱形的两条对角线长分别为6和8,则菱形的边长为 ▲ .14、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为 ▲ . 15x 的取值范围是 ▲ . 16、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠C = 30°,CD =. 则阴影部分的面积S 阴影= ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:2014201(1)()(5)16sin 602π--⨯+---︒18、已知一次函数y x b =+的图象经过点B (0,),且与 反比例函数ky x=(k 为不等于0的常数)的图象有一交点 为点A (m ,1-) .求m 的值和反比例函数的解析式. 19、在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C点处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(第20题图)21、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在▲组,中位数在▲组;(2)求样本中,女生身高在E组的人数;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?(第22题图)22、如图,在平行四边形ABCD 中,∠ABC =60°,E 、F 分别 在CD 和BC 的延长线上,AE ∥BD .(1)求证:点D 为CE 的中点; (2)若EF ⊥BC ,EF =,求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23、现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。
七年级下学期开学测试数学模拟试卷(人教版)(满分100分,考试时间90分钟)一、选择题(每小题3分,共24分)1. 某大米包装袋上标注着“净含量:10kg±150g ”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是( ) A .100gB .150gC .300gD .400g2. 有理数a ,b ,c 在数轴上的位置如图所示,则下列关系式不成立的是( )A .0bc >B .–c b >-C .0a c +>D .a b >3. 下列说法正确的是( )A .-2是-4的平方根B .2是(-2)2的算术平方根C .(-2)2的平方根是2D .8的平方根是4 4. 已知a b >,c 为任意实数,则下列不等式中总成立的是( )A .a c b c +<+B .a c b c ->-C .ac bc <D .ac bc >5.已知:如图,四边形ABCD ,以下说法中正确的有( )个.21DCB A①若AD ∥BC ,则∠1=∠2; ②若∠ABC +∠A =180°,则AD ∥BC ; ③若∠1=∠2,则AB ∥CD ;④若AB ∥CD ,则∠ADC +∠C =180°; ⑤若∠ABC +∠C =180°,则AB ∥CD . A .1B .2C .3D .46. 已知∠AOB =20°,∠AOC =4∠AOB ,OD 平分∠AOB ,OM 平分∠AOC ,则∠MOD 的度数为( )A .20°或50°B .20°或60°C .30°或50°D .30°或60°7. 已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则2m -n 的算术平方根为( )A .±2BC .2D .48. 如图,将三角形向右平移3个单位长度,再向上平移2个单位长度,则平移后三个顶点的坐标为( ) A .(-1,-1),(2,3),(5,1) B .(-1,1),(3,2),(5,1) C .(-1,1),(2,3),(5,1) D .(1,-1),(2,2),(5,1)二、填空题(每小题3分,共21分)9. 2013年某市的旅游收入约为359.8万元,用科学记数法表示旅游收入为___________元. 10.的平方根是___________.11. 若关于x 的一元一次不等式组>7+1<2x ax x ⎧⎨-⎩有解,则a 的取值范围是________.12. 如图所示的数轴上,点B 与点C 关于点A 对称,A ,B和-1,则点C 所对应的实数是_____________.2B A 1CD第12题图第13题图第14题图13. 如图,AB ∥CD ,DB ⊥BC ,∠1=40°,则∠2的度数是____________. 14. 实数a ,b 在数轴上的位置如图所示,b a>,化简a -______________.15. 如图,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为_________.16. 下列图形都是由同样大小的五角星按一定的规律组成,其中第1个图形一共有2个五角星,第2个图形一共有8个五角星,第3个图形一共有18个五角星,…,则第n 个图形中五角星的个数为__________个.…第3个图形第2个图形第1个图形三、解答题(本大题共6个小题,满分55分) 17. 计算(每小题5分,共10分)(1)3216(2)233212÷---⨯-÷⨯+; (2)2113+(4)(5)0.25623⎛⎫--⨯-⨯-÷- ⎪⎝⎭.18. (本小题7分)已知223A x xy y =--+,22243B x xy y =-+,其中12x y ,==-,求[]2(2)4()A A B A B ----的值.19. (本小题10分)解不等式组3(1)5151733x x x x +<⎧⎪⎨--⎪⎩≤,并把解集在数轴上表示出来.20.(本小题8分)甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按九折出售,这样商店共获利157元,问甲、乙两件服装的成本各是多少元?21.(10分)某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1 510元.两种客房各租住了多少间?22.(本小题10分)如图,在四边形ABCD中,AB∥CD,∠ECF=∠D,F是DC延长线上一点,∠CEF=∠F.求证:∠BAE=∠DAE.A BCDEF七年级下学期开学测试数学模拟试卷(人教版)参考答案一、选择题1—8:DCBBCCCA二、填空题9.63.59810⨯10.11.12 a<-12.113.50︒14.2a b+ 15.2551m 16.22n 三、解答题17.(1)252-;(2)40-.18.30-19.解:解不等式①得:32 x>解不等式②得:4x≤∴不等式组的解集为:34 2x<≤数轴略20.甲服装的成本为300元,乙服装的成本为200元.21.租三人间8间,租两人间13间.22.证明:如图,∵AB∥CD∴∠BAE=∠F∵∠ECF=∠D∴BC∥AD∴∠DAE=∠CEF∵∠CEF=∠F ∴∠BAE=∠DAE ABCDEF。
2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
第6题(第 14 题)89 1 2 3 4 5 6 7 8 9102014初中数学二模试题(本试卷共150分 考试时间150分钟)第I 卷 选择题(共18分)请注意:考生须将本卷所有答案填涂到答题卡上,答在试卷上无效! 一、选择题(每题3分,共18分) 1. 下列计算中正确的是A .2352a a a += B .236a a a ⋅= C .235a a a ⋅= D .329()a a =2. 某5A 级风景区去年全年旅游总收入达10.04亿元.将10.04亿元,用科学记数法可表示为 A .10.04×108元B .10.04×109元C .1.004×1010元D .1.004×109元3. 下列事件中最适合使用普查方式收集数据的是A .了解全国每天丢弃的废旧电池数B .了解某班同学的身高情况C .了解一批炮弹的杀伤半径D .了解我国农民的人均年收入情况 4.5. 如图,在矩形ABCD 中,AD =10,AB =6,E 为BC 上一点,DE 平分∠AEC ,则CE 的长为 A .1B.2C .3D .4.6. 如图,△ABC 的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC 的对称图形,得到△''A B C ,若点A的对应点'A 的坐标是(3,5),那么点B 的对应点'B 的坐标是 A .(0,3) B .(1,2) C .(0,2) D .(4,1)二、填空题(每题3分,共30分) 7. 函数5xy x =+中,自变量x 的取值范围是 . 8. 在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,若口袋中有4个红球且摸到红球的概率为21,则袋中球的总数为________ 9. 正n 边形的一个内角比一个外角大100°,则n 为__________.10. 如图是甲、乙两射击运动员的10次射击训练成绩(环数)的折线统计图,观察图形,甲、乙这10次射击成绩的方差甲2S,乙2S 之间的大小关系是 .第10题 第15题11. 二次函数y =2(x +1)(x -3)图象的顶点坐标为_________________.12. 一个底面半径为3cm ,高为4cm 的圆锥模型,则此圆锥的侧面积是 cm 2. 13. 已知点A (-1,y 1)、B (2,y 2)都在双曲线y =3+2mx上,且y 1>y 2,则m 的取值范围是 ___________.14. 已知2x =-是一元二次方程20x ax b ++=的一个根,则代数式2244a b ab +-的值是 .15. 如图,在矩形ABCD 中,AD =D 为圆心,DC 为半径的圆弧交AB 于点E ,交DA的延长线于点F ,∠ECD =60°,则图中阴影部分的面积为_____,(结果保留π)。
2014年初中毕业升学考试数学试题参考答案及评分标准说明:1本参考答案及评分标准仅供教师评卷时参考使用. 2其它正确的证法(解法),可参照本参考答案及评分标准酌情赋分. 一、选择题(每小题3分,共30分)1.A2.C3.B4.B5.D6.D7.C8.A9.C 10.D 二、填空题(每小题3分,共24分)11.x ≥-2且x ≠0 12.0.8 13. (2)(2)x x x +- 14.6060322x x -= 15.(4,1)16.217.50°18.222n -或2224n a或24n -三、解答题(19、20每小题9分,共18分)19.解:2213(2)242x x x x x -÷-+++ =(1)(1)(2)(2)32(2)22x x x x x x x x +--+⎡⎤÷+⎢⎥+++⎣⎦…………………………2分 =2(1)(1)432(2)22x x x x x x x ⎡⎤+--÷+⎢⎥+++⎣⎦…………………………3分 =2(1)(1)432(2)2x x x x x x +--+÷++ ……………………………4分 =(1)(1)22(2)(1)(1)x x x x x x x +-+⋅++- …………………………5分=12x…………………………6分 当x = tan45°+2cos60°=1+1=2 时, …………………………8分 原式=12x =14…………………………10分 20. 解:由树形图可知,所有可能出现的结果共有16个,且每种结果出现的可能性相等,其中两次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分∴P (A )=4116= ………………10分 次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分 ∴P (A )=41164= ………………………10分 四、解答题(本题14分) 21.解:(1)a=28%,b=200(2)设身体状况 “良好”的学生有x 人, “及格”的学生有y 人.3463%200200x y xy -=⎧⎪⎨+=⎪⎩ ………2分 解得:8046x y =⎧⎨=⎩ ……………4分 ………………………6分(3)……………………9分(4)200÷10%=2000( 人)……………………10分 2000×56200=560(人) ……………………12分 五、解答题(22小题10分,23小题14,共24分)22.解:(1)连结OF∵AC=BC ∠C=∠C CF=CE ,∴△ACF ≌△BCE …………………………3分 (2)证明:∵△ACF ≌△BCE∴∠B=∠A …………………………4分∵∠C=90°∴∠A+∠AFC=90° …………………………5分∵OB=OF∴∠B=∠OFB …………………………6分∴∠OFB+∠AFC=90° …………………………7分 第22题图E∴∠OFA=90° …………………………8分∴ AF ⊥OF ………………………………9分 ∴AF 是⊙O 的切线 ………………………………10分 23. 解:过点B 作BF ⊥CD,垂足为F. ∵ ∠ABC=120°∴ ∠FBC=30° ……………1分 在Rt △BCF 中,设BF=x ,则AD=x∴ CF=BFtan30°x ………3分在Rt △ABE 中,∠AEB=45°,∴AB=AE=8 ( ……4分 ) ∴DF=AB=8 ………5分∴x +8 …………………6分 在Rt △CDE 中,∠CED=60°ED=8-x∵ tan ∠CED =CDED∴CD=ED tan ∠…7分 第23题图 即3x 8-x ) …………………8分 解得x=6-………………9分∴CF=3x =3-=2………………10分 DC=CF+DF=6+≈9.5(米) ………………11分 答:路灯C 到地面的距离约为9.5米 …………………12分六、解答题(本题12分) 24.解:(1)∵10×1=10,10010330-=……………1分 ∴甲走完全程需4小时,∵甲出发3小时后乙开车追赶甲,两人同时到达目的地 ∴乙走完全程需1小时, ∴乙的速度是60601=(千米/时)………………2分 (2)设AB 的解析式为y=kx+b. ∵10×1=10,∴点A 的坐标是(1,10) …………………3分由(1)得点B 的坐标是(4,100) 第24题图 ∴104100k b k b +=⎧⎨+=⎩ …………………4分C解得3020 kb=⎧⎨=-⎩∴AB的解析式为y=30x-20. …………………6分当y=40时,30x-20=40 …………………5分∴X=2 …………………7分∴甲出发2小时后两人第一次相遇…………………8分(3)设OA的解析式为y=kx∵点A的坐标是(1,10)∴k=10,∴OA的解析式为y=10x, …………………9分设DB的解析式为y=mx+n.∵点D的坐标是(3,40),点B的坐标是(4,100)∴3404100m nm n+=⎧⎨+=⎩…………………10分解得60140 mn=⎧⎨=-⎩∴DB的解析式为y=60x-140. …………………11分①40-(30x-20)=12,解得x=1.6; …………………12分②30x-20-40=12,解得x=2.4; …………………13分③30x-20-(60x-140)=12;解得x=3.6 ……………14分∴甲出发1.6小时,2.4小时或3.6小时后两人相距12千米.七、解答题(本题14分)25. (1)如图1①证明:∵△ABC是等边三角形∴AB=AC,∠B=∠CAF=60°又∵AF=BE ……………2分∴△ABE≌△CAF ……………3分∴AE=CF ……………4分②证明:∵△ABE≌△CAF∴∠BAE=∠ACF ………………5分又∵∠BAC=∠FCG=60°即∴∠BAE+∠EAC=∠ACF+∠ACG∴∠EAC=∠ACG ……………6分第25题图1 ∴AE∥CG ……………7分又∵AE=CF=CG∴四边形AECG是平行四边形. ……………8分(2)四边形AECG是平行四边形………… 9分证明:如图2∵△ABC是等边三角形B∴AB=AC ,∠ABC=∠CAB=60°∴∠AEB=∠CAF=120°又∵AF=BE ∴ △ABE ≌△CAF∴AE=CF ,∠BAE=∠ACF ……………11分 又∵∠BAC=∠FCG=60°∴∠BAE+∠BAC=∠ACF+∠即 ∠EAC=∠ACG ……………12分∴AE ∥CG ……………13分 第25题图2 又∵AE=CG∴四边形AECG 是平行四边形. ……………14分八、解答题(本题14分)26. (1)解:∵抛物线的对称轴是2x =∴2122b-=⎛⎫⨯- ⎪⎝⎭∴b=2. …………………2分 (2)解: 延长DC 交x 轴于点H , ∵∠CAB=90°∴∠CAH+∠HAB=90°∵MN ⊥AF ∴∠FAB+∠ABF=90° ∴∠CAH=∠ABF∵∠AFB=∠AHC=90°,AC=AB∴△ACH ≌△ABF ………………4分∴CH=AF=32,AH=BF=-m ∴C (12-m ,32) …………………6分(3)解:如图1,当点D 在点C 上方时∵CD ∥y 轴,∵点D 在抛物线上,横坐标是12-m ,将x=12-m 代入21y =-得 2111()2()3222y m m =--+-+ ……………7分化简得:21331228y m m =--+∴D (12-m ,21331228m m --+)……………8分∴CD=21331228m m --+-32=21319228m m --+…9分∵四边形OEDC 是平行四边形∴OE=CD=3, 第26题图1E∴21319228m m --+=3 ……………9分 解得152m =-,212m =- ……………10分 ∴B(2, 12-)或B(2, 52-) …………………11分当点D 在点C 下方时 ∵C (12-m ,32),D (12-m ,21331228m m --+ 32-(21331228m m --+)=3 …………………12分解得1m =2m =∴B(2,32--)或B(2,32-+)………13分 第26题图2 综上,当四边形OEDC 是平行四边形时,点B 的坐标是(2, 12-),(2, 52-), (2,32--),(2,32-+) …………14分。
2014年九年级中考模拟考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.1x ≠- 10.66.34410⨯ 11.2 12.20<<y 13.乙14.2m a - 15 16.245 17.3218.注:12题写y<2扣1分三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(1)(1)原式= 23 —4 …………………………………………4分(2)移项配方得:2(2)5x -= ………………………………………2分解之得:1222x x ==………………………………4分20.原式=122122+--÷--x x x x x ……………………………………………………2分 =1+-x ……………………………………………………4分解不等式组得 12x -<≤, …………………………………………6分 符合不等式解集的整数是0,1,2. ……………………7分 当0x =时,原式2= ……………………………………………………8分21.解:(1)列表或画树状图正确(略) …………………………………………4分 ∴P (两次都是红色)=1/9 . …………………………………………………6分(2)两次都是白色或两次一红一白。
…………………………8分22.(1)5 8 图略 …………………………………………………3分(2)95(1分) 95 (2分) …………………………………………………6分(3)54 …………………8分23.证明:(1)∵ BC = CD ,∴ ∠CDB =∠CBD .∵ AD // BC ,∴ ∠ADB =∠CBD .∴ ∠ADB =∠CDB .……………1分又∵ AB ⊥AD ,BE ⊥CD ,∴ ∠BAD =∠BED = 90°. ………2分在△ABD 和△EBD 中,∵ ∠ADB =∠CDB ,∠BAD =∠BED ,BD = BD ,∴ △ABD ≌△EBD . ………………………………………………4分∴ AD = ED . ………………………………………………………5分(2)∵AF // CD ,∴ ∠AFD =∠EDF . ∴∠AFD =∠ADF ,即得 AF = AD .又∵ AD = ED ,∴ AF = DE . …………………………………7分于是,由 AF // DE ,AF = DE ,得四边形ADEF 是平行四边形. ……9分又∵ AD = ED ,∴ 四边形ADEF 是菱形. ………………………10分24.(1)在Rt △BOP 中 ,∠BOP =90°,∠BPO =45°,OP =100,∴OB=OP =100.…………………………………………………………………2分在Rt △AOP 中, ∠AOP =90°,∠APO =60°,tan AO OP APO ∴=⋅∠. AO ∴=. …………………………………4分∴1031)AB =(米). ………………………………………………6分(2)v 此车速度1)=250.7318.25≈⨯=(米/秒) . ………8分 18.25米/秒 =65.7千米/小时. ……………………………………9分65.770<, ∴此车没有超过限制速度. ………………………………………………10分25.(1)设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =kx +b , ……1分由图可知,函数图象过点(2,30)、(6,50),∴⎩⎨⎧=+=+506302b k b k 解得⎩⎨⎧==205b k ……………………………………………4分 ∴y =5x +20. ……………………………………………………………………5分(2)由图可知,甲队速度是:60÷6=10(米/时). ……………………………6分设甲队从开始到完工所铺设彩色道砖的长度为z 米,依题意,得6050.1012z z --= ……………………………………………………8分解得 z =110. ………………………………………………………9分答:甲队从开始到完工所铺设彩色道砖的长度为110米. …………10分26.(1)证明:连接AE ………………………………………………………1分∵AB 为⊙O 的直径,∴∠AEB =90°∴∠BAE +∠ABE =90° …………………2分∵AB =AC ,AE ⊥BC ∴AE 平分∠BAC ∴CBF BAC BAE ∠=∠=∠21 ………3分 ∴︒=∠+∠90ABE CBF ∴AB ⊥BF∴BF 为⊙O 的切线 ………………………………………………………5分(2)过点C 作CG ⊥BF , ………………………………………………………6分在Rt △ABF 中1022=+=BF AB AF∵AC =6 ∴CF =4 ………………7分∵CG ⊥BF ,AB ⊥BF ∴CG ∥AB∴△CFG ∽△AFB ………………8分 ∴ABCG BF GF AF CF == G∴512516==CG CF , ∴5245168=-=-=GF BF BG ………………………………9分 在Rt △BCG 中21tan ==∠BG CG CBF ………………………………………………10分27.(1)等腰三角形 …………………………………3分(2)因为抛物线y=-x2+bx (b >0)过原点,设抛物线顶点为B 点,抛物线与X 轴的另一交点为A 点,若“抛物线三角形”是等腰直角三角形,△OAB 中,∠OBA=90°,抛物线的对称轴是x=b/2,B 点坐标为(b/2,b/2)代入函数表达式,算出b=2 …………3分(3)存在,(略) …………4分(4)m=2 …………………………………2分28.解:(1)由题意可知 44m =,1m =.(1分)∴ 二次函数的解析式为24y x =-+.∴ 点A 的坐标为(- 2, 0). …………………………………3分(2)①∵ 点E (0,1),由题意可知, 241x -+=.解得 x = AA …………………………………5分②如图,连接EE ′.由题设知AA ′=n (0<n <2),则A ′O = 2 - n .在Rt △A ′BO 中,由A ′B 2 = A ′O 2 + BO 2,得A ′B 2 =(2–n )2 + 42 = n 2 - 4n + 20. …6分∵△A ′E ′O ′是△AEO 沿x 轴向右平移得到的,∴EE ′∥AA ′,且EE ′=AA ′.∴∠BEE ′=90°,EE ′=n .又BE =OB - OE =3.∴在Rt △BE ′E 中,BE ′2 = E ′E 2 + BE 2 = n 2 + 9, ……………………7分∴A ′B 2 + BE ′2 = 2n 2 - 4n + 29 = 2(n –1)2 + 27. ……………………8分当n = 1时,A ′B 2 + BE ′2可以取得最小值,此时点E ′的坐标是(1,1). ………9分③如图,过点A 作AB ′⊥x 轴,并使AB ′ = BE = 3.易证△AB ′A ′≌△EBE ′,∴B ′A ′ = BE ′,∴A ′B + BE ′ = A ′B + B ′A ′.………………10分当点B ,A ′,B ′在同一条直线上时,A ′B + B ′A ′最小,即此时A ′B +BE ′取得最小值.易证△AB ′A ′∽△OBA ′, ∴34AA AB A O OB ''==',∴AA ′=36277⨯=,∴EE ′=AA ′=67, …………………11分 ∴点E ′的坐标是(67,1). ……………………………………12分。
2014中考二模考试数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,共24分;第Ⅱ卷为非选择题,96分;全卷共10页,满分120分,考试时间为120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题共24分)一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.无理数: ()15D. 52.下列各命题正确的是 : ()A.若两弧相等,则两弧所对圆周角相等B. 有一组对边平行的四边形是梯形.C.垂直于弦的直线必过圆心.D. 有一边上的中线等于这边一半的三角形是直角三角形.3.某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是() A.平均数 B.众数 C.中位数 D.方差4.已知反比例函数2kyx-=的图象如图所示,则一元二次方程22(21)10x k x k--+-=根的情况是()A.有两个不等实根 B.有两个相等实根C.没有实根 D.无法确定5.已知四边形ABCD是平行四边形,下列结论中不正确的有()①当AB=BC时,它是菱形②当AC⊥BD时,它是菱形③当∠ABC=90时,它是矩形④当AC=BDA.1个 B.2个 C.3个 D.4个6.二次函数cbxaxy++=2的图象如图所示,则一次函数abxy+=的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限第7题图7.如图所示,在折纸活动中,小明制作了一张ABC ∆纸片,点D E 、 分别在边AB AC 、上,将ABC ∆沿着DE 折叠压平,A 与A '重合, 若70A ∠=︒,则1+2∠∠=( ) A .70︒ B .110︒ C . 130︒ D .140︒8. 在6张完全相同的卡片上分别画有线段、等边三角形、直角梯形、正方形、正五边形和圆各一个图形。
2014年中考数学模拟考试题 参考答案及解析一、选择题:1、C2、D3、B4、A5、C6、B7、C8、C9、C 10、C 二、填空题:11、x=3; 12、k>-2; 13、25; 14、25 三、解答题15、(1)233+ (2) 原式211x x +== 16、解:由题意得:232a a +≥- ∴2a ≤17、解:由题意得:∠PBH=60°,∠APB=45°. ∵山坡的坡度i (即tan ∠ABC )为1:3 ∴tan ∠ABC=13,∠ABC=30° , ∴∠APB=90°. 在Rt △PHB 中,PB=PBHPH∠sin =203,在Rt △PBA 中,AB=PB=203≈34.6. 答:A 、B 两点间的距离约34.6米.18、(1)把C (1,3)代入y = kx得k =3 设斜边AB 上的高为CD ,则sin ∠BAC =CD AC =35∵C (1,3) ∴CD=3,∴AC=5(2)分两种情况,①当点B 在点A 右侧时,如图1有: AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD·AB ∴AB=AC 2AD =254∴OB=AB -AO=254-3=134O xyB A CD 图1此时B 点坐标为(134,0)②当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(- 54,0)所以点B 的坐标为(134,0)或(- 54,0).19、解:(1) 坐标1232131 1 (1, 2)( 1, 3) (1,21) ( 1 ,31) 2 (2, 1) ( 2, 3)( 2 ,21)( 2 ,31)3(3, 1) ( 3, 2 ) ( 3 ,21)( 3 ,31)21(21,1) (21,2) (21,3) (21 ,31) 31 (31,1) (31,2) (31,3) (31 ,21)(2)当1=x 时2=y ,∴点(1,21),(1,31)在△AOB 内部, 当2=x 时1=y ,∴点(2,21),(2,31)在△AOB 内部,当3=x 时0=y ,∴则上述点都不在△AOB 内部,当21=x 时25=y ,则点(21,1)(21,2),(21,31)在△AOB 内部, 当31=x 时,38=y 则点(31,1)(31,2), (31,21)在△AOB 内点, ∴点P 在△AOB 的内部概率()101=202P =内部xyB ACDO图220、解:(1)过A 作DC 的垂线AM 交DC 于M , 则AM =BC =2. 又tan ∠ADC =2,所以212DM ==.因为MC =AB =1,所以DC =DM+MC =2,即DC =BC . (2)等腰直角三角形.证明:∵DE =DF ,∠EDC =∠FBC ,DC =BC . ∴△DEC ≌△BFC (5分)∴CE =CF ,∠ECD =∠BCF . ∴∠ECF =∠BCF+∠BCE =∠ECD+∠BCE =∠BCD =90° 即△ECF 是等腰直角三角形.(3)设BE =k ,则CE =CF =2k , ∴22EF k =. ∵∠BEC =135°,又∠CEF =45°,∴∠BEF =90°. ∴22(22)3BF k k k =+= ∴1sin 33BFE k k ∠==. B 卷21、8 ; 22、a+b ; 23、 124,1x x =-=-; 24、31nn + ; 25、1或4 26、解:(1)由P =-1100(x -60)2+41知,每年只需从100万元中拿出60万元投资,即可获得最大利润41万元,则不进行开发的5年的最大利润P 1=41×5=205(万元) (2)若实施规划,在前2年中,当x=50时,每年最大利润为: P= 1100-(50-60)2+41=40万元,前2年的利润为:40×2=80万元,扣除修路后的纯利润为:80-50×2=-20万元.设在公路通车后的3年中,每年用x 万元投资本地销售,而用剩下的(100-x )万元投资外地销售,则其总利润W=[-1100(x -60)2+41+(- x 2+x +160]×3=-3(x-30)2+3195当x=30时,W 的最大值为3195万元, ∴5年的最大利润为3195-20=3175(万元)(3)规划后5年总利润为3175万元,不实施规划方案仅为205万元,故具有很大的实施价值.27、解:(1)60,60;(2)∵CM ∥BP ,∴∠BPM+∠M=180°,∠PCM=∠BPC=60. ∴∠M=180°-∠BPM=180-(∠APC+∠BPC )=180°-120°=60°. ∴∠M=∠BPC=60°.(3)∵△ACM ≌△BCP ,∴CM=CP ,AM=BP . 又∠M=60°,∴△PCM 为等边三角形. ∴CM=CP=PM=1+2=3. 作PH ⊥CM 于H.在Rt △PMH 中,∠MPH=30°.∴PH=332. ∴S 梯形PBCM =11315()(23)332224PB CM PH +⨯=+⨯=. 28、解:(1)∵抛物线y=ax 2+bx+3(a≠0)经过A (3,0),B (4,1)两点,∴933016431a b a b ++=⎧⎨++=⎩解得:1252a b ==-∴y=21x 2﹣25x+3; ∴点C 的坐标为:(0,3);(2)①当△PAB 是以AB 为直角边的直角三角形,且∠PAB=90°,直线PA 与y 轴交于点D 过B 作BM ⊥x 轴交x 轴于点M ,如图(1-1)∵A (3,0),B (4,1), ∴AM=BM=1, ∴∠BAM=45°, ∴∠DAO=45°,∴AO=DO , ∵A 点坐标为(3,0), ∴D 点的坐标为:(0,3), ∴直线AD 解析式为:y=kx+b ,将A ,D 分别代入得: ∴0=3k+b ,b=3, ∴k=﹣1, ∴y=﹣x+3, ∴y=21x 2﹣25x+3=﹣x+3, ∴x 2﹣3x=0, 解得:x=0或3, ∴y=3或0(0不合题意舍去), ∴P 点坐标为(0,3),②当△PAB 是以AB 为直角边的直角三角形,且∠PBA=90°,直线PB 与y 轴交于点D , 过B 分别作BE ⊥x 轴,BF ⊥y 轴,分别交x 轴、y 轴于点E 、F ,如图(1-2) 由(1)得,FB=4,∠FBA=45°, ∴∠DBF=45°,∴DF=4, ∴D 点坐标为:(0,5),B 点坐标为:(4,1),∴直线BD 解析式为:y=kx+b ,将B ,D 分别代入得: ∴1=4k+b ,b=5, ∴k=﹣1, ∴y=﹣x+5, ∴y=21x 2﹣25x+3=﹣x+5, ∴x 2﹣3x ﹣4=0, 解得:x 1=﹣1,x 2=4, ∴y 1=6,y 2=1, ∴P 点坐标为(﹣1,6),其中(4,1)不合题意,舍去。
12014年中考数学模拟试题亲爱的同学,相信你已学到了不少数学知识,掌握了基本的数学思想方法,能够解决许多数 学问题,本试卷将给你一个展示的机会•请别急,放松些,认真审题,从容作答,你一定会取得前 所未有的好成绩.(本试卷满分150分,考试时间为120分钟)1A . a-bB . a bC .- a- b 9.如图,N AOB =90Z B=30° ,△ AOB 绕点O 顺时针旋转: 则旋转角〉的大小可以是( A . 30° B . 45°C .角度得到的.若点 A 在AB 上, ).60° D . 90°6.如果点P (m , -2m )在第四象限,那么 m 的取值范围是( ).第12题图14.如图,圆锥的底面半径为 6cm ,高为8cm ,那么这个圆锥的侧面积是、选择题(共 10小题,每小题 A 卷(满分100分)4分,计40分•每小题只有一个选项是符合题意的)11 •的倒数是( ).21 1 A. 2B . -2C .D -222. 1978年,我国国内生产总值是 3 645亿元,2009年升至249 530亿元.将249 530亿元用科学记 数表示为().A . 24.953 1013 元B . 24.953 1012 元x-10 12y-174-2 z• • •(第9题图)y 的对应值,可判断该二次函数的图象与x 轴( ).13C . 2.4953 10 元 14D . 2.4953 10 元3.图中圆与圆之间不同的位置关系有( ).(第3题图)A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧 D .无交点二、填空题(共 8小题,每小题4分,计32分) 11. 函数y = J 】—1中,自变量x 的取值范围是_ 12. 如图的围棋盘放在某个平面直角坐标系内,白棋②(-6,-8),那么黑棋①的坐标应该是 ___________13. 如图是一个被等分成 6个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是 _______________ .的坐标为(-7,-4),白棋④的坐标为4.王老师为了了解本班学生课业负担情况, 在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间分别是(单位:小时) :1.5, 2, 2, 2, 2.5, 2.5 , 2.5, 2.5, 3, 3.5 .则这10 个数据的平均数和众数分别是( ).A . 2.4, 2.5B . 2.4, 2C . 2.5 , 2.5D . 2.5, 25. 若正比例函数的图象经过点(-1 , 2),则这个图象必经过点(). A . (1, 2) B . ( -1 , -2 ) C . (2, -1 ) D . (1, -2 )C .m :: 07.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面 (接缝忽略不计),则这个圆锥的底面半径是( ).A . 1.5B . 2C . 3D . 612015.用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,按此规律,第 瓷砖 _____________ 块.6个图形中需要黑色).D .- a + b△ AOB 可以看作是由题号-一--二二三A 卷合计B 卷 合计AB 卷 总分得分10 .根据下表中的二次函数 y二ax2bx c 的自变量x 与函数第13题图 第14题图2______ cm .的结果是(直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米? 16•如图所示的抛物线是二次函数y = -x2 ax a2 -4的图象,那么a的值是 ______________ .17.学习小组5位同学参加初中毕业生实验操作考试(满分20分)的平均成绩是16分•其中三位男生考试成绩的方差为 6 (分2),两位女生的成绩分别为17分,15分•则这个学习小组5位同学考试成绩的方差为 ______________ 分2•21.(本小题满分10分)设有关于x的一元二次方程x2+2 •... a x+ b =0(a> o.)(1)a、b满足什么关系时,方程有实根;(2)若a是从1、2、3三个数中任取一个数,b是从2、3两个数中任取的一个数,求上述方程有实根的概率。
α第7题图 ABOC 12 第3题图BO C ·云南省双柏县2012年初中学业水平模拟考试数学试题(二)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1.下列运算正确的是【 】A .325()a a =B .325a a a +=C .32()a a a a -÷=D . 331a a ÷= 2.今年是我云南省实施新课改后的首次高考,报名总人数达21.1万人,是全省高考报名持续10年增长后首次下降.21.1万用科学记数法表示这个数,结果正确的是【 】 A .2.11×104 B .2.11×105 C .21.1×104 D .2.11×10 3.如图,三条直线相交于一点O ,其中,AB ⊥CO ,则∠1与∠2【 】 A .互为补角 B .互为余角 C .相等 D .对顶角4.若等腰三角形的一个内角是80°,则它的顶角是【 】A .80°B .40°C .80°或40°D .100° 5.如图所示的几何体左俯视图是【 】A .B .C .D .6.若正比例函数y =kx 的图象在第二、四象限,则k 的取值可以是【 】 A . -1B . 0C . 1D . 27.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个 锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为【 】 A .15︒或30︒ B .30︒或45︒ C .45︒或60︒ D .30︒或60︒8.下列说法正确的是【 】A .3、4、3、5、4、2、3,这组数据的中位数、众数都是3;B .方差反映了一组数据的波动性大小,方差越大,波动越小;C .为了检测一批灯泡的使用寿命,应该采用普查方式进行调查;D .为了解某校学生的身高情况,从九年级学生中随机抽取80名学生的身高,则样本是80名学生.二、填空题(本大题共6个小题,每小题3分,满分18分) 9.-0.2的倒数是 .第5题图⑴1+8=?1+8+16=?⑵ ⑶ 1+8+16+24=?第14题……A C F E D 第17题图B10.不等式组203x x +≤⎧⎨->⎩的解集为 .11.函数y 2x =-中自变量x 的取值范围是__________.12.如图,BD 是⊙O 的直径,∠CBD=25°,则∠A 等于 . 13.圆锥的底面半径为1,侧面积为4π,则圆锥的高线长为__________.14.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为__________.三、解答题(本大题共9个小题,满分58分)15.(4分)计算:220121()94(1)2---+---16.(5分)先化简,再求值:23422xx x x x x-⎛⎫-⋅ ⎪-+⎝⎭,其中12x =.17.(5分)如图,四边形ABCD 中,AD ∥BC ,AF=CE ,BE ⊥AC 于E ,DF ⊥AC 于F . 试判断DC 与AB 的位置关系,并说明理由.18.(6分)某校数学兴趣小组要测量摩天轮的高度.如图, 他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往 摩天轮的方向前进50 米至D 处,测得最高点A 的仰角 为60︒.则该兴趣小组测得的摩天轮的高度AB 约是多少 米?(结果精确到1米)(参考数据:2 1.41≈,3 1.73≈)19.(6分)如图,一转盘被等分成三个扇形,上面分别标有-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形).(1)若小静转动转盘一次,求得到负数的概率; (2)小宇和小静分别转动转盘一次,若两人得 到的数相同,则称两人“不谋而合”.用列表法 (或画树状图)求两人“不谋而合”的概率. 20.(8分)我县某楼盘准备以每平方米3000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米2430元的均价开盘销售. (1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米40元,试问哪种方案更优惠? 21.(6分)我县开展小组合作学习,为了解学生课堂发言情况,随机抽取某校九年级部分学生,对他们每天在课堂上发言的次数进行调查和统计,统计表如下,并绘制了两幅不完整的统计图.已经知A 、B 两组发言人数直方图高度比为1:5.请结合图中相关的数据回答下列问题:(1)A 组的人数是多少?本次调查的样本容量是多少? (2)求出C 组的人数并补全直方图. (3)该校九年级共有250人,请估计全年级每天在课堂上发言次数不少于15次的人数. 22.(8分)如图,直线y=3x +3交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x轴于另一点C (3,0). (1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标.发言次数nA 0≤n <50B 5≤n <10C 10≤n <15D 15≤n <20E 20≤n <25F 25≤n <30A B C D E F 组别人数 025 2015 10 510 发言人数直方图 发言人数扇形统计图 AB C 40% D26%EF 6% 4% y xO CBAACF ED第17题图BBO Cx第23题图(2)PAOA KPx23y x= 23y x=yy第23题图(1)23.(10分)在直角坐标系x oy 中,已知点P 是反比例函数23y (0)x x=>图象上一个动点,以P 为圆心的圆始终与y 轴相切,设切点为A . (1)如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKPA 的形状,并说明理由.(2)如图2,⊙P 运动到与x 轴相交,设交点为B 、C .当四边形ABCP 是菱形时,求出点A 、B 、C 的坐标.参考答案一.选择题: 1.D 2.B 3.B 4.C 5.A 6.A 7.D 8.A 二.填空题: 9.-5 10.x ≤-3 11.x ≥2 12.65° 13.15 14.(2n+1)2 三.解答题:15.(4分)220121()94(1)434142---+---=-+-=解:16.(5分)2343(2)(2)22223(2)(2)(2)(2)223(2)(2)36228xx x x x x x x x x x x x x x x x x x x x x x x x x x x -+-⎛⎫⎛⎫-⋅=-⋅⎪ ⎪-+-+⎝⎭⎝⎭+-+-=⋅-⋅-+=+--=+-+=+解: 当12x =时,原式=12+8=2892x ⨯+=17.(5分)解:DC ∥AB ,理由如下:∵AD ∥BC ∴∠DAF=∠BCE 又∵BE ⊥AC ,DF ⊥AC ∴∠DFA=∠BEC=90° 又∵AF=CE ∴△DFA ≌△BEC ∴AD=BC ,而 AD ∥BC ∴四边形ABCD 是平行四边形 ∴DC ∥ABA P 23y x=yG18.(6分)解:在Rt △ABC 中,由∠C=45︒,得AB=BC 在Rt △ABD 中,O AB tan60 =BD ,得o AB AB 3BD AB tan6033===又CD=50,即BC -BD=50,得3AB AB=50AB 1183-≈,解得答:摩天轮的高度AB 约是118米 19.(6分)解:(1)因为转盘被等分成三个扇形,上面分别标有-1,1,2,所以小静转动转盘一次,得到负数的概率为13; (2)列表得:一共有9种等可能的结果,两人得到的数相同的有3种情况,因此两人“不谋而合”的概率为=3193=.-1 1 2 -1 (-1,-1) (-1,1) (-1,2) 1 (1,-1) (1,1) (1,2) 2(2,-1)(2,1)(2,,2)20.(8分)解:(1)设平均每次下调的百分率为x , 则3000(1-x )2=2430,解得x 1=0.1, x 2=1.9(舍去), 故平均每次下调的百分率为10%; (2)方案①购房优惠:2430×100×0.02=4860(元),方案②购房优惠:40×100=4000(元), 故选择方案①更优惠. 21.(6分)解:(1)由10÷5=2,所以A 组的人数是2人,本次调查的样本容量是2÷4%=50. (2)C 组的人数:50×40%=20(人),补全直方图略.(3)九年级在课堂上发言次数不少于15次的人数=(250×18)÷50=90(人). 22.(8分)解:(1)当x =0时,y=3,当y=0时,x = -1∴A (-1,0),B (0,3),而C (3,0) ∴抛物线的解析式为y=a (x +1)( x -3)将B (0,3)带入上式得,a = -1 ∴y=-(x +1)( x -3)= -x 2+2x +3 (2)∵y= -x 2+2x +3=- (x -1)2 +4∴抛物线的对称轴是x =1;顶点坐标是(1,4) 23.(10分)解:(1)∵⊙P 分别与两坐标轴相切 ∴ PA ⊥OA ,PK ⊥OK ∴∠PAO=∠OKP=90°,而∠AOK=90° ∴四边形OKPA 是矩形,而PA=PK ∴四边形OKPA 是正方形(2)连接PB ,设点P 的横坐标为x ,则其纵坐标为x32.过点P 作PG ⊥BC 于G ,∵四边形ABCP 为菱形 ∴BC=PC= PA= AB ,而 PA= PB = PC ∴△PBC 是等边三角形在Rt △PBG 中,∠PBG=60°,PB=PA=xPG=x 32.sin60°=PB PG ,即2332x x解得:x =±2(负值舍去)∴ PG=3,PA=BC=2 易知四边形OGPA 是矩形,PA=OG=2,BG=CG=1∴OB=OG -BG=1,OC=OG+GC=3 ∴ A (0,3),B (1,0) C (3,0).。