哈密顿系统一些保结构算法的构造和分析
- 格式:doc
- 大小:12.25 KB
- 文档页数:2
马尔可夫链蒙特卡洛方法中的哈密尔顿蒙特卡洛算法解析在统计学、计算机科学和物理学等领域,马尔可夫链蒙特卡洛(MCMC)方法一直被广泛应用于随机抽样和模拟。
其中,哈密尔顿蒙特卡洛算法是MCMC方法的一种重要变种,它通过模拟哈密尔顿动力学系统来实现对目标分布的抽样。
本文将对哈密尔顿蒙特卡洛算法进行详细解析,介绍其基本原理、算法流程和应用场景。
1. 哈密尔顿蒙特卡洛算法的基本原理哈密尔顿蒙特卡洛算法是由物理学中的哈密尔顿力学系统所启发而来的,它模拟了粒子在势能场中的运动过程。
在MCMC方法中,通常需要从目标分布中抽样,而哈密尔顿蒙特卡洛算法则通过构造Hamiltonian函数来实现对目标分布的抽样。
Hamiltonian函数H(q, p)定义为系统的动能和势能之和,其中q表示系统的位置,p表示系统的动量。
通过Hamiltonian函数,可以得到系统在状态空间中的一组微分方程,即哈密尔顿方程。
在哈密尔顿蒙特卡洛算法中,需要通过数值积分的方式来模拟粒子在状态空间中的运动轨迹,从而实现对目标分布的抽样。
2. 哈密尔顿蒙特卡洛算法的具体流程在哈密尔顿蒙特卡洛算法中,需要依次进行以下步骤:(1)初始化系统状态。
根据目标分布的维度,随机初始化系统的位置和动量。
(2)模拟系统的运动轨迹。
通过数值积分的方法,模拟系统在状态空间中的运动轨迹,直到达到一定的时间步长或者满足一定的条件为止。
(3)接受或拒绝新状态。
根据Metropolis准则,判断新状态是否被接受,从而更新系统的状态。
(4)重复上述步骤,直到满足终止条件。
可以根据需要设置不同的终止条件,如达到一定的迭代次数或者满足一定的收敛准则。
3. 哈密尔顿蒙特卡洛算法的应用场景哈密尔顿蒙特卡洛算法在统计学和物理学等领域有着广泛的应用。
其中,一些具体的应用场景包括:(1)贝叶斯推断。
哈密尔顿蒙特卡洛算法可以用于贝叶斯推断问题的求解,特别是在高维参数空间中的情况下,相比于传统的MCMC方法有着更高的效率和收敛速度。
哈密顿定理引言哈密顿定理,又称哈密顿-雅可比定理,是经典力学中的一条重要定理,由威廉·哈密顿于1835年提出。
它是质点力学中的一个基本定理,可以用来描述质点在势力场中的运动。
哈密顿定理在经典力学、量子力学、统计力学等领域都有广泛的应用。
定理表述哈密顿定理的表述如下:对于一个系统,其哈密顿函数H、广义坐标q和广义动量p之间满足以下关系:∂H/∂p = dq/dt∂H/∂q = -dp/dt其中,H是系统的哈密顿函数,q是广义坐标,p是广义动量,t是时间。
定理解释哈密顿定理可以理解为能量守恒的表述。
在一个力学系统中,系统的哈密顿函数代表系统的总能量。
根据哈密顿定理的第一部分,系统的总能量随时间的变化率与广义动量的变化率相等。
这意味着在系统中,能量的改变取决于动量的改变。
同样地,根据哈密顿定理的第二部分,系统的总能量的变化率与广义坐标的变化率的相反数相等。
这意味着在系统中,能量的改变取决于坐标的改变的相反方向。
这样,哈密顿定理给出了系统能量的变化与坐标和动量的关系,进一步揭示了力学系统内部的运动规律。
哈密顿定理的应用1. 力学系统的轨迹预测哈密顿定理可以用来预测力学系统的轨迹。
通过已知的系统的哈密顿函数、广义坐标和广义动量的初值,可以通过哈密顿定理计算出系统在不同时间点上的坐标和动量的数值。
这样,我们就可以通过数值计算的方式得到系统在未来的运动轨迹,从而对系统的行为进行预测。
这在航天器轨道计算、天体运动预测等领域有广泛的应用。
2. 力学系统的稳定性分析哈密顿定理还可以用来分析力学系统的稳定性。
通过对系统的哈密顿函数进行分析,可以得到系统在不同状态下的能量。
通过计算能量的变化率,可以了解系统在不同状态下的稳定性。
如果能量变化率始终小于零,系统就是稳定的。
而如果能量变化率大于零,系统就是不稳定的。
这种稳定性分析可以帮助我们理解力学系统的运动特性,进一步用来设计控制系统、优化工程结构等。
3. 非保守系统的分析哈密顿定理也可以用来分析非保守系统。
哈密顿算子运算公式及推导
哈密顿算子(HamiltonianOperator)是物理系统的动能和位能的组合,通常被认为是物理系统本质由来的参数,用来描述物理系统的性质(物理量)。
2. 公式及推导
哈密顿算子可以用如下公式表示:
H=Hp+Hk
其中,Hp 为位能,Hk 为动能。
(1)位能Hp:一般地,位能公式可以写成
Hp=- 2
它表示的是物体的力学位能,具有空间变化的粒子受到的力学位能,表示为几何位能。
(2)动能Hk:动能Hk 可以用牛顿动力学的方法推导出,用来描述物体受到的动能,即速度的平方加上位移的有关量,即:
Hk=1/2m*(2/x 2+2/y 2+2/z 2)
其中,m 为物体的质量,x,y,z 分别为物体的X,Y,Z 轴坐标。
所以,将上面两个公式相加,得到的哈密顿算子公式可以表示为: H=- 2+1/2m*(2/x 2+2/y 2+2/z 2)
以上就是哈密顿算子运算公式及推导的介绍,哈密顿算子是物理系统本质由来的参数,可以用来描述物理系统的性质,是物理实验中经常用到的重要参数。
哈密尔顿系统的辛几何算法哈密尔顿系统是一类具有特殊的物理意义的动力系统,其在物理学、力学、动力学和计算力学等领域有着广泛应用。
哈密尔顿系统通常具有一组关于位置和动量的相变量,其演化满足哈密尔顿方程。
由于哈密尔顿系统具有良好的保持量和结构稳定性,因此在数值模拟中的算法设计尤其重要。
辛几何算法是一类特殊的数值演化方法,其以保持哈密尔顿系统相变量守恒和辛结构稳定性为目标,常常用于哈密尔顿系统的数值积分。
辛几何算法最早由李约瑟于 1988 年提出,其不仅能够在数值计算中保持相变量的守恒,还能够在哈密尔顿系统的长期演化中保持辛结构稳定性。
辛几何算法主要由两个部分组成,即辛映射和辛算子。
辛映射指的是从一个相变量向下一个相变量的映射,它通常满足“保相量”和辛结构不变性的特点。
保相量指的是相变量在变化过程中的守恒,而辛结构不变性则指的是哈密尔顿系统在演化过程中的辛不变性。
而辛算子则是这个辛映射的数值逼近,常常采用辛波发方法、显式和隐式辛算法等方法。
在演化哈密尔顿系统时,辛几何算法通常采用显式辛算法进行数值模拟。
显式辛算法的主要思路是采用辛映射和辛算子的组合,来实现对哈密尔顿系统的数值模拟。
在模拟过程中,辛几何算法需要保证每一步的演化都是辛的,这样系统才能保持哈密尔顿量以及其他相变量不变。
因此,辛几何算法在数值模拟中的应用非常广泛。
然而,辛几何算法的实现却比较困难。
在数值模拟时,辛几何算法需要考虑一系列问题,如相变量的数值守恒、哈密尔顿量的捕获和重构、快速演化、长时间演化、难以计算的高维效应等等。
这些问题都需要采用一些特殊的技巧和策略来解决。
总的来说,辛几何算法是一种特殊的数值演化方法,其以保持哈密尔顿系统相变量守恒和辛结构稳定性为目标,在计算力学、物理学、动力学等领域有着广泛应用。
哈密顿回路算法概念:哈密顿图:图G的一个回路,若它通过图的每一个节点一次,且仅一次,就是哈密顿回路。
存在哈密顿回路的图就是哈密顿图。
哈密顿图就是从一点出发,经过所有的必须且只能一次,最终回到起点的路径。
图中有的边可以不经过,但是不会有边被经过两次。
与欧拉图的区别:欧拉图讨论的实际上是图上关于边的可行便利问题,而哈密顿图的要求与点有关。
判定:一:Dirac定理(充分条件)设一个无向图中有N个顶点,若所有顶点的度数大于等于N/2,则哈密顿回路一定存在。
(N/2指的是⌈N/2⌉,向上取整)二:基本的必要条件设图G=《V,E》是哈密顿图,则对于v的任意一个非空子集S,若以|S|表示S中元素的数目,G-S表示G中删除了S中的点以及这些点所关联的边后得到的子图,则W(G-S)《=|S|成立。
其中W(G-S)是G-S中联通分支数。
三:竞赛图(哈密顿通路)N(N》=2)阶竞赛图一点存在哈密顿通路。
算法:一:在Dirac定理的前提下构造哈密顿回路过程:1:任意找两个相邻的节点S和T,在其基础上扩展出一条尽量长的没有重复结点的路径。
即如果S与结点v相邻,而且v不在路径S -》T上,则可以把该路径变成v -》S -》T,然后v成为新的S.从S和T分别向两头扩展,直到无法继续扩展为止,即所有与S或T 相邻的节点都在路径S -》T上。
2:若S与T相邻,则路径S -》T形成了一个回路。
3:若S与T不相邻,可以构造出来一个回路。
设路径S -》T上有k+2个节点,依次为S,v1,v2,。
,vk,T.可以证明存在节点vi(i属于[1,k]),满足vi与T相邻,且vi+1与S相邻。
找到这个节点vi,把原路径变成S -》vi -》T -》vi+1 -》S,即形成了。
ACM主要算法介绍初期篇一、基本算法(1)枚举(poj1753, poj2965)(2)贪心(poj1328, poj2109, poj2586)(3)递归和分治法(4)递推(5)构造法(poj3295)(6)模拟法(poj1068, poj2632, poj1573, poj2993, poj2996)二、图算法(1)图的深度优先遍历和广度优先遍历(2)最短路径算法(dijkstra, bellman-ford, floyd, heap+dijkstra)(poj1860, poj3259, poj1062, poj2253, poj1125, poj2240)(3)最小生成树算法(prim, kruskal)(poj1789, poj2485, poj1258, poj3026)(4)拓扑排序(poj1094)(5)二分图的最大匹配(匈牙利算法)(poj3041, poj3020)(6)最大流的增广路算法(KM算法)(poj1459, poj3436)三、数据结构(1)串(poj1035, poj3080, poj1936)(2)排序(快排、归并排(与逆序数有关)、堆排)(poj2388, poj2299)(3)简单并查集的应用(4)哈希表和二分查找等高效查找法(数的Hash, 串的Hash)(poj3349, poj3274, POJ2151, poj1840, poj2002, poj2503)(5)哈夫曼树(poj3253)(6)堆(7)trie树(静态建树、动态建树)(poj2513)四、简单搜索(1)深度优先搜索(poj2488, poj3083, poj3009, poj1321, poj2251)(2)广度优先搜索(poj3278, poj1426, poj3126, poj3087, poj3414)(3)简单搜索技巧和剪枝(poj2531, poj1416, poj2676, 1129)五、动态规划(1)背包问题(poj1837, poj1276)(2)型如下表的简单DP(可参考lrj的书page149):1.E[j]=opt{D+w(i,j)} (poj3267, poj1836, poj1260, poj2533)2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列)(poj3176, poj1080, poj1159)3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]} (最优二分检索树问题)六、数学(1)组合数学1.加法原理和乘法原理2.排列组合3.递推关系(poj3252, poj1850, poj1019, poj1942)(2)数论1.素数与整除问题2.进制位3.同余模运算(poj2635, poj3292, poj1845, poj2115)(3)计算方法1.二分法求解单调函数相关知识(poj3273, poj3258, poj1905, poj3122)七、计算几何学(1)几何公式(2)叉积和点积的运用(如线段相交的判定,点到线段的距离等)(poj2031, poj1039)(3)多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)(poj1408, poj1584)(4)凸包(poj2187, poj1113)中级篇一、基本算法(1)C++的标准模版库的应用(poj3096, poj3007)(2)较为复杂的模拟题的训练(poj3393, poj1472, poj3371, poj1027,poj2706)二、图算法(1)差分约束系统的建立和求解(poj1201, poj2983)(2)最小费用最大流(poj2516, poj2195)(3)双连通分量(poj2942)(4)强连通分支及其缩点(poj2186)(5)图的割边和割点(poj3352)(6)最小割模型、网络流规约(poj3308)三、数据结构(1)线段树(poj2528, poj2828, poj2777, poj2886, poj2750)(2)静态二叉检索树(poj2482, poj2352)(3)树状树组(poj1195, poj3321)(4)RMQ(poj3264, poj3368)(5)并查集的高级应用(poj1703, 2492)(6)KMP算法(poj1961, poj2406)四、搜索(1)最优化剪枝和可行性剪枝(2)搜索的技巧和优化(poj3411, poj1724)(3)记忆化搜索(poj3373, poj1691)五、动态规划(1)较为复杂的动态规划(如动态规划解特别的施行商问题等)(poj1191, poj1054, poj3280, poj2029, poj2948, poj1925, poj3034)(2)记录状态的动态规划(poj3254, poj2411, poj1185)(3)树型动态规划(poj2057, poj1947, poj2486, poj3140)六、数学(1)组合数学1.容斥原理2.抽屉原理3.置换群与Polya定理(poj1286, poj2409, poj3270, poj1026)4.递推关系和母函数(2)数学1.高斯消元法(poj2947, poj1487, poj2065, poj1166, poj1222)2.概率问题(poj3071, poj3440)3.GCD、扩展的欧几里德(中国剩余定理)(poj3101)(3)计算方法1.0/1分数规划(poj2976)2.三分法求解单峰(单谷)的极值3.矩阵法(poj3150, poj3422, poj3070)4.迭代逼近(poj3301)(4)随机化算法(poj3318, poj2454)(5)杂题(poj1870, poj3296, poj3286, poj1095)七、计算几何学(1)坐标离散化(2)扫描线算法(例如求矩形的面积和周长,并常和线段树或堆一起使用)(poj1765, poj1177, poj1151, poj3277, poj2280, poj3004)(3)多边形的内核(半平面交)(poj3130, poj3335)(4)几何工具的综合应用(poj1819, poj1066, poj2043, poj3227, poj2165, poj3429)高级篇一、基本算法要求(1)代码快速写成,精简但不失风格(poj2525, poj1684, poj1421,poj1048, poj2050, poj3306)(2)保证正确性和高效性(poj3434)二、图算法(1)度限制最小生成树和第K最短路(poj1639)(2)最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解)(poj3155, poj2112, poj1966, poj3281, poj1087, poj2289, poj3216, poj2446)(3)最优比率生成树(poj2728)(4)最小树形图(poj3164)(5)次小生成树(6)无向图、有向图的最小环三、数据结构(1)trie图的建立和应用(poj2778)(2)LCA和RMQ问题(LCA(最近公共祖先问题),有离线算法(并查集+dfs)和在线算法(RMQ+dfs))(poj1330)(3)双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移的目的)(poj2823)(4)左偏树(可合并堆)(5)后缀树(非常有用的数据结构,也是赛区考题的热点)(poj3415,poj3294)四、搜索(1)较麻烦的搜索题目训练(poj1069, poj3322, poj1475, poj1924,poj2049, poj3426)(2)广搜的状态优化:利用M进制数存储状态、转化为串用hash表判重、按位压缩存储状态、双向广搜、A*算法(poj1768, poj1184, poj1872, poj1324, poj2046, poj1482)(3)深搜的优化:尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大、可以考虑双向搜索或者是轮换搜索、IDA*算法(poj3131, poj2870, poj2286)五、动态规划(1)需要用数据结构优化的动态规划(poj2754, poj3378, poj3017)(2)四边形不等式理论(3)较难的状态DP(poj3133)六、数学(1)组合数学1.MoBius反演(poj2888, poj2154)2.偏序关系理论(2)博奕论1.极大极小过程(poj3317, poj1085)2.Nim问题七、计算几何学(1)半平面求交(poj3384, poj2540)(2)可视图的建立(poj2966)(3)点集最小圆覆盖(4)对踵点(poj2079)八、综合题(poj3109, poj1478, poj1462, poj2729, poj2048, poj3336, poj3315, poj2148, poj1263)附录:POJ是“北京大学程序在线评测系统”(Peking University Online Judge)的缩写,是个提供编程题目的网站,兼容Pascal、C、C++、Java、Fortran等多种语言。
哈密顿算法遍历哈密顿算法是一种常用于图论中的遍历算法,用于寻找图中的哈密顿路径或哈密顿回路。
哈密顿路径是指一个无向图中通过每个顶点一次且仅一次的路径,而哈密顿回路则是指一个无向图中通过每个顶点一次且仅一次的闭合路径。
该算法的实现原理是通过深度优先搜索(DFS)来遍历图中的所有可能路径,在每个顶点上进行回溯,直到找到满足条件的哈密顿路径或回路。
下面将详细介绍哈密顿算法的遍历流程和关键步骤。
1.首先,确定起始顶点。
在哈密顿算法中,起始顶点对结果并不产生影响,因为哈密顿路径或回路可以从任意顶点开始。
因此,选择任意一个顶点作为起点,将其标记为已访问。
2.接下来,进入递归回溯的过程。
从起点开始,选择一个邻接顶点作为下一个访问的节点,并将其标记为已访问。
然后,继续对该邻接顶点进行递归回溯,直到满足下面两个终止条件之一:- 所有的顶点都已经访问过,即构成了一条哈密顿路径或回路。
- 当前深度已经达到图中的总顶点数,但没有形成哈密顿路径或回路。
3.在进行递归回溯时,需要做以下判断:- 判断当前顶点是否为未访问过的顶点,如果是,则选择该顶点作为下一个访问节点,并标记为已访问。
- 判断当前顶点是否与起始顶点相邻,如果是,则判断是否满足哈密顿回路的条件,即所有顶点都已经访问过。
如果是,则输出该路径或回路。
- 判断当前顶点是否与起始顶点不相邻,如果是,则判断是否满足哈密顿路径的条件,即所有顶点都已经访问过。
如果是,则输出该路径。
4.若当前顶点的邻接顶点都已经访问过,或者当前深度已经达到图中的总顶点数,但没有形成哈密顿路径或回路,则进行回溯。
回溯时,将当前顶点重新标记为未访问,并返回上一层递归。
通过以上步骤,可以使用哈密顿算法来遍历图中的所有可能的哈密顿路径或回路。
在实际应用中,哈密顿算法可以用于解决旅行推销员问题、电路布线问题等,具有重要的实际意义。
总结起来,哈密顿算法遍历的核心思想是通过深度优先搜索来枚举图中的所有路径,并进行回溯来寻找满足哈密顿路径或回路的条件。
哈密顿原理哈密顿原理是经典力学中一种非常重要的原理,它由爱尔兰数学家威廉·哈密顿在19世纪提出,被广泛应用于物理学和工程学的各个领域。
哈密顿原理描述了一个系统的运动方程,它可以通过变分原理来推导出系统的运动方程,是经典力学中最重要的原理之一。
在哈密顿原理中,我们首先需要引入拉格朗日函数。
拉格朗日函数是描述系统动力学行为的一个函数,它通常由系统的动能和势能构成。
然后,我们定义哈密顿量,它是系统的总能量函数,可以用拉格朗日函数通过勒让德变换得到。
接下来,我们引入广义坐标和广义动量,它们是描述系统运动状态的变量。
通过对拉格朗日函数进行变分,我们可以得到哈密顿原理的表达式。
哈密顿原理的本质是要使系统的作用量取极值。
作用量是描述系统在一段时间内的积累效应,它是系统运动的一个重要量。
根据变分原理,我们要使系统的作用量对于任意的变分都取极值,从而得到系统的运动方程。
这就是哈密顿原理的核心思想。
哈密顿原理在物理学中有着广泛的应用。
在经典力学中,我们可以用哈密顿原理来推导出系统的运动方程,比如著名的哈密顿正则方程。
在量子力学中,哈密顿原理也有着重要的地位,它可以用来描述量子系统的演化。
此外,在光学、流体力学、电磁学等领域,哈密顿原理也都有着重要的应用。
除了在物理学中的应用,哈密顿原理在工程学中也有着重要的地位。
在控制理论中,我们可以用哈密顿原理来设计系统的最优控制律,从而实现系统的最优控制。
在航天航空领域,哈密顿原理也可以用来分析飞行器的轨迹和姿态控制。
总之,哈密顿原理作为经典力学中的重要原理,不仅在物理学中有着广泛的应用,而且在工程学中也有着重要的地位。
它通过变分原理描述了系统的运动方程,是经典力学中不可或缺的一部分。
通过深入学习和理解哈密顿原理,我们可以更好地理解物理学和工程学中的许多现象,为实际问题的分析和解决提供重要的理论基础。
面向HCN和BCN网络结构的哈密顿分析及路由算法研究面向HCN和BCN网络结构的哈密顿分析及路由算法研究一、引言随着互联网的高速发展,数据中心网络的规模越来越大。
在这些网络中,高容量网络(HCN)和超大规模网络(BCN)是重要的网络架构。
它们提供了高性能、低延迟和可扩展性,以满足大规模云计算和大数据应用的需求。
在这样的网络中,快速而高效的路由算法至关重要。
然而,由于网络拓扑的复杂性,我们需要深入研究哈密顿分析和路由算法。
二、HCN和BCN网络结构HCN和BCN网络结构是相似的,都采用了大规模的交换机和路由器连接的层次化结构。
在网络的最底层,是一组高带宽的交换机,连接了大量的终端设备。
在上一层,是一组分布式的交换机,用于连接底层交换机。
最顶层则是一组核心交换机,用于连接分布式交换机,通过更高带宽的链路进行通信。
这种层次化结构提供了网络的可扩展性和高性能。
三、哈密顿分析哈密顿分析是一种对网络拓扑结构进行分析的方法。
它通过识别网络中的哈密顿回路来评估网络的可达性和连通性。
哈密顿回路是一种经过网络中所有节点的闭合路径。
通过分析哈密顿回路的数量和分布,我们能够了解网络的整体结构以及节点之间的连接方式。
这对于设计高效的路由算法非常重要。
在HCN和BCN网络中,由于网络规模巨大,哈密顿回路的数量非常庞大。
因此,在进行哈密顿分析时,我们需要采用高效的算法和数据结构。
一种常用的方法是使用图论的相关算法,如深度优先搜索(DFS)和广度优先搜索(BFS),来找到网络中的哈密顿回路。
此外,还可以结合网络流算法,如最小割和最大流算法来优化哈密顿回路的查找过程。
四、路由算法研究哈密顿分析为我们提供了网络拓扑结构的重要信息,这些信息可以用于设计高效的路由算法。
在HCN和BCN网络中,路由算法的目标是在保证高性能和低延迟的前提下,找到一条最优路径来传输数据。
传统的路由算法,如最短路径算法(如Dijkstra算法)和负载均衡算法可以在小规模网络中表现良好,但在大规模网络中面临很大的挑战。
1 引言Hamilton动力系统理论有着悠久而丰富的历史,它本身是Lagrange力学的升华与推广,从数学角度看又是一门内容精深的相空间几何学,如辛几何、辛拓扑等都源于此.近几十年来,随着纯数学理论的不断发展与计算机的普遍应用,Hamilton动力系统理论又成为当今非线性科学中极其活跃而富有魅力的研究领域.由于这类系统广泛存在于数理科学、生命科学以及社会科学的各个领域,特别是天体力学、等离子物理、航天科学以及生物工程中的很多模型都以Hamilton系统的形式出现,因此该领域的研究多年来长盛不衰.本文利用Hamilton原理推导出了Hamilton系统的正则方程.最后利用Hamilton正则方程给出一个具体物理实例的数学模型并对其进行动态模拟仿真.2 预备知识2.1 状态空间的基本概念1)状态任何一个系统在特定时刻都有一个特定的状态,系统在0t 时刻的状态是0t 时刻的一种信息量,它与此后的输入一起惟一地确定系统在0t t ≥时的行为.2)状态变量状态变量是一个完全表征系统时间域行为的的最小内部变量组. 3)状态向量设系统有n 个状态变量,用()()()12,,,n x t x t x t 表示,而且把这些状态变量看做向量()x t 的分量,则向量()x t 称为状态向量,记为()()()()12,,,Tn x t x t x t x t =⎡⎤⎣⎦.4)状态空间以状态变量()()()12,,,n x t x t x t 为轴的n 维实向量空间称为状态空间.5)状态方程描述系统状态变量与输入变量之间关系的一阶微分方程组(连续时间系统)或一阶差分方程组(离散时间系统)称为系统的状态方程,它表征了输入对内部状态的变换过程,其一般形式为:()()(),,x t f x t u t t =⎡⎤⎣⎦其中,t 是时间变量,()u t 是输入变量.6)输出方程描述系统输出量与系统状态变量和输入变量之间函数关系的代数方程称为输出方程,它表征了系统内部状态变化和输入所引起的系统输出变换,是一个变化过程.输出方程的一般形式为:()()(),,y t g x t u t t =⎡⎤⎣⎦.7)状态空间表达式状态方程与输出方程的组合称为状态空间表达式,也称动态方程,它表征一个系统完整的动态过程,其一般形式为:()()()()()(),,,,x t f x t u t t y t g x t u t t ⎧=⎡⎤⎪⎣⎦⎨=⎡⎤⎪⎣⎦⎩ 通常,对于线性定常系统,状态方程为x Ax Buy Cx Du =+⎧⎨=+⎩其中,()12,,Tn x x x x =表示n 维状态向量,()n n ij n nA a R ⨯⨯=∈表示系统内部状态的系数矩阵,称为系统矩阵n n A ⨯,()n r ij n rB b R ⨯⨯=∈表示输入对状态作用的矩阵,称为输入(或控制)矩阵n r B ⨯,()m n ij m nC c R ⨯⨯=∈表示输出对状态关系的矩阵,称为输出矩阵m n C ⨯,()m r ij m rD d R ⨯⨯=∈表示输入直接对输出作用的矩阵,称为直接转移矩阵m r D ⨯,也称前馈系数矩阵.A 由系统内部结构及其参数决定,体现了系统内部的特性,而B 则主要体现了系统输入的施加情况,通常情况下0D = .2.2线性定常连续系统的能控性定义2.1 设(),,n p n n x Ax Bu x R u R A R ⨯=+∈∈∈,若存在一分段连续控制向量()u t ,能在0,f t t ⎡⎤⎣⎦内,将系统从任意的初态()0x t 转移至任意终态()f x t ,则系统完全能控.定理2.1 系统完全能控的充要条件:rankSc n =其中,1,,,n Sc B AB A B -⎡⎤=⎣⎦,称为能控矩阵.2.3线性状态反馈控制律线性状态反馈控制律为u V Kx =-式中,V 是参考输入,p n K R ⨯∈称为状态反馈增益矩阵.系统动态方程变为:()()()()K K x Ax B V Kx A BK x BV A BVy Cx D V Kx C DK x DV C DV=+-=-+=+⎧⎪⎨=+-=-+=+⎪⎩ 式中,K A A BK =-,K C C DK =-,当0D =时,状态反馈系统闭环传递函数()K W s 为()()1K W s C sI A BV B -=--⎡⎤⎣⎦式中,A BV -为闭环系统的系统矩阵.以上我们简要介绍了控制系统的有关问题,现在针对单输入定常线性系统,设计其某种形式的线性定常控制律,使得闭环系统具有指定的希望的一组极点,即极点配置.2.4 极点配置考虑下述单输入线性定常系统⎩⎨⎧=+=Cxy bu Ax x (2.4.1)其中A 为n n ⨯常阵,b 和C 分别为1⨯n 和n ⨯1常阵.选取线性定常反馈控制律kx u -=,使得(2.4.1)在该控制律下的闭环系统具有指定的极点集.问题SPA[状态反馈极点配置问题] 给定矩阵n n R A ⨯∈,1⨯∈n R b 及一组共轭封闭复数i s , i=1,2,…,n (不必互异),求取矩阵n r R K ⨯∈ 使得()i i s bK A =-λ n i ,,2,1 =对问题SPA 先考虑其解的存在性有:定义2.2 如果对于任何给定的一组共轭封闭复数i s ,n i ,,2,1 =,前述问题SPA 均有解,则称线性定常系统(2.4.1)可用状态反馈任意配置极点.下述定理给出了线性定常系统(2.4.1)利用状态反馈任意配置极点的条件.定理2.2 定常线性系统(2.4.1)可用状态反馈任意配置极点的充要条件是系统(2.4.1)完全能控问题 对单输入系统,给定能控矩阵对[]b A 和一组期望的闭环特征值{}**2*1,,,n λλλ ,要确定n ⨯1的反馈增益矩阵k ,使成立()*i i BK A λλ=-,n i ,,2,1 =. 对于上述问题,我们有下述算法:算法2.1 [单输入系统的极点配置设计] 第一步:计算A 的特征多项式,即()0111det a s a s a s A sI n n n ++++=---第二步:计算由{}**2*1,,,n λλλ 所决定的多项式,即()()*0*11*1**1*)(a a s a s s s s a n n n n ++++=--=-- λλ第三步:计算[]*11*11*0-----=n n a a a a a a K第四步:计算变换阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=---11][1111n n n a a a b Ab b A P 第五步:求1-=p Q第六步:所求的增益阵Q K K = .2.5 分析力学中相关的知识1) 广义坐标能够完全确定质点系位形的独立参变量,用符号 ,,21q q 表示.广义坐标是彼此独立的.其选择有一定的随意性,只需根据质点系的特点,选择那些能够惟一地确定该系统位形的参变量即可.2)广义速率在质点系中引入广义坐标之后,质点系的运动可以用广义坐标随时间的变化规律来描述,即广义速率:()k dtdq q,,2,1 ==ααα3)广义坐标变分假设在给定的运动初始条件下,某质点系的运动微分方程组的解已经求得,它的广义坐标运动方程为()t q q αα=,广义速率dtdq qαα= 于是广义坐标的全微分为 dt qdq αα = ()k ,,2,1 =α 同样,广义坐标也有它的可能运动方程()t q q **αα= ()k ,,2,1 =α 比较统一瞬时广义坐标的真实运动和与其相邻的可能运动,并限定二者的差值为无限小量,即αααδq q q -=*()k ,,2,1 =α αδq 就称为广义坐标变分.4)质点系的自由度该系统独立坐标变分的数目.对完整系统它的自由度等于它的广义坐标的数目. 5)广义动量质点系的动能T 对广义速率αq的偏导数,即 ααqTp ∂∂=其中动能T 是广义坐标αq 和广义速率αq的函数. 6) 勒让德变换勒让德变换是把以n x x x ,,21为变量的函数()n x x x f ,,,21 变换成以n y y y ,,,21 为新变量的函数()n 21y …,y ,y ~f 的一种特殊变换,f ~称为f 的勒让德变换. 设有一个二次可微的函数()n x x x f ,,,21 ,且在雅可比行列式不为零,即0221212212≠∂∂∂∂∂∂∂∂∂∂nnn x f x x f x x f x f的区域内存在以下变量变换ss x fy ∂∂=()n s ,,2,1 = 定义f 的勒让德变换为()∑=-=ns s s f y x f 1n 21y …,y ,y ~于是有s sx y f=∂∂~下面给出对部分变量进行变换的情况s s x F y ∂∂=, ss y F x ∂∂=~对保留变量有rr x Fx F ~~~∂∂-=∂∂. 定理2.3 哈密顿原理从动力学普遍方程出发可推导出哈密顿原理的一般形式,即()010=+⎰dt t t W T δδ其中T δ是系统动能的变分,W δ是作用于系统的所有主动力的虚功.当作用在系统上主动力为有势时,V W δδ-=.引入哈密顿作用量⎰=tt Ldt I 10其中L 为拉格朗日函数,是系统动能与势能之差,即V T L -=.于是,对完整系统哈密顿原理可以写成常见的变分形式⎰==t t Ldt I 10δδ.3 哈密顿系统的动力学表述——哈密顿正则方程3.1 保守系统的情形拉格朗日方程是用一组关于k 个广义坐标j q 的二阶常微分方程组来描述系统的运动.方程的建立完全依赖于以()t qq j j ,, 为变量的拉格朗日函数L ,即),,,,,,,(2121t q q qq q q L L k k =.哈密顿以广义动量j p 取代广义速度j q ,以),,(t p q j j 为变量,称为哈密顿变量或正则变量.以哈密顿函数H 代替拉格朗日函数L ,用k 2个关于广义坐标j q 和广义动量j p 为变量对称整齐的一阶常微分方程组,即称为哈密顿正则方程或正则方程,以此来描述系统的运动.因本文是针对线性系统而言,故这里只给出单自由度系统的哈密顿正则方程,下面用哈密顿原理导出单自由度系统的哈密顿正则方程.首先,利用勒让德变换把以()t qq ,, 为变量的拉格朗日函数L 变换成以),,(t p q 为新变量的哈密顿函数H .显然,新变量p 代替旧变量q参与变换,而同时保留变量q 及t . 根据对原变量进行部分替换的勒让德变换,可得哈密顿函数L qp H -= 因此,拉格朗日函数H qp L -= 代入哈密顿原理,即 ()01010=-=⎰⎰dt t t H qp t t Ldt δδ 对上式进行变分运算,得0)(1=∂∂-∂∂-+⎰dt t t q qH p p H p q q p δδδδ (3.1.1) 将上式第一项改写成如下形式,即()()q pq p dtd q dt dp qp kj j j δδδδ -==∑=1代入式(3.1.1),有 0])()[(1001=∂∂+-∂∂-+⎰dt t t q qH p p p H q t t qp δδδ (3.1.2) 因为系统在始末位置是确定的,则有0)(0=t q δ, 0)(1=t q δ (3.1.3) 于是有0])()[(10=∂∂+-∂∂-⎰dt t t q qH p p p H q δδ . (3.1.4) 根据广义动量的定义qLp ∂∂=,由部分勒让德变换可得 pHq∂∂= (3.1.5) 因此式(3.1.2)成为0])([10=∂∂+-⎰dt t t q q Hp δ对于完整系统,由于q δ可以任意取值,因此欲使上式成立,必有qHp∂∂-= (3.1.6) 联立式(3.1.5)和式(3.1.6),即关于变量),,(t p q 的哈密顿正则方程⎪⎪⎭⎪⎪⎬⎫∂∂-=∂∂=q H pp H q. 3.2非保守系统的情形系统除有势力以外还存在非有势力作用的情形.在哈密顿原理的一般形式()010=+⎰dt t t W T δδ (3.2.1)中,系统的主动力的虚功W δ可写成如下形式:q Q V W δδδ'+-=其中,V δ-和q Q δ'分别表示有势力和非有势力的虚功.将上式代入式(3.2.1),得dt t t q Q L dt t t q Q V T )()(1010⎰⎰'+='+-δδδδδ将H qp L -= 代入上式,并进行变分运算,得 0)(1='+∂∂-∂∂-+⎰dt t t q Q q qH p p H p q q p δδδδδ 利用式(3.1.2)和式(3.1.3)有0])()[(10='-∂∂+-∂∂-⎰dt t t q Q qH p p p H q δδ 采用与前面同样的作法,即可得到存在非有势力作用时的哈密顿正则方程pHq∂∂= Q qHp'+∂∂-= (3.2.2) 式中Q '为系统的非有势力对应于q 的广义力.4 利用哈密顿正则方程建立具体物理系统的数学模型—水平弹簧质量振动系统图4.1弹簧质量振动系统4.1水平弹簧质量系统的问题描述假设系统满足条件:1) 振动无阻尼.2) 系统只能在水平方向即x方向运动.3) 外力()t u,以x的同方向为正.要求:1) 建立弹簧质量系统的运动微分方程.2) 求出反馈增益阵.3) 弹簧质量系统仿真模拟.u x4) 作任何有意义的讨论.4.2水平弹簧质量问题的分析解:令()t u 为输入量,y 为输出量,取弹簧等于原长0l 时,质量位置o 为x 坐标轴的原点,取y x =1为广义坐标.如势能零点取在弹簧原长位置,则系统的势能2121kx V =,因此系统的拉格朗日函数121212121ux kx x m V T L +-=-= . 求得广义动量1x m xLp x =∂∂=因此mp xx=1 . 计算哈密顿函数H ,并把它写成广义动量和广义坐标的函数12121212111212)2121(ux kx m p ux kx x m x p L x p H x x x -+=+--=-=求得H 后,按式(3.2.2)写出系统的正则方程mp p Hxx x =∂∂=1 u kx xHpx +-=∂∂-=1 由上二式消去x p ,得到系统运动微分方程u kx xm =+11 . 4.3 建立弹簧质量系统的数学模型令x p x =2 则有u x x u x x k x xm⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡1001001010002121121输出方程为1x y =则弹簧质量系统的状态空间表达式⎩⎨⎧=+=Cxy bu Ax x其中 ⎥⎥⎦⎤⎢⎢⎣⎡-=o k m A 10⎥⎦⎤⎢⎣⎡=10b []01=C .5 系统闭环状态反馈控制器设计5.1系统状态反馈控制根据线性系统状态反馈控制律,设状态反馈下受控系统的输入为Kx u -= (21⨯∈R K 为反馈增益矩阵,[]21k k K =),将上式代入弹簧质量振动系统的状态空间表达式,得到弹簧质量状态反馈闭环系统的状态空间表达式⎩⎨⎧=-=Cxy x bK A x)( 其中⎥⎥⎦⎤⎢⎢⎣⎡---=-2110k kk m bk A .6 求解状态反馈增益阵由定理2.1 []⎥⎥⎦⎤⎢⎢⎣⎡==0110m Ab bs c 显然系统完全能控,故满足闭环极点可任意配置条件. 取1=m ;1=k给定一组期望的闭环特征值j +-=1*1λ, j --=1*2λ1)现计算系统的特征多项式()111det det 2+=⎥⎦⎤⎢⎣⎡-=-s s s A sI 再由指定闭环极点可得希望的闭环特征多项式为()()()()2211221**++=++-+=-=∏=s s j s j s s s a i i λ 于是可求得**0011[][12]k a a a a =--=再来计算变换阵[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=1001100110011011a b Ab P 并求出其逆⎥⎦⎤⎢⎣⎡==-10011P Q 从而所要确定的反馈增益阵k 即为10[12][12]01k kQ ⎡⎤===⎢⎥⎣⎦. 2)调用Matlab 函数算出的反馈增益阵见[附录1]7 动态系统的simulink 仿真7.1创建Simulink 系统模型首先根据弹簧质量状态反馈闭环系统的状态空间表达式,选择合适的Simulink 系统模块,然后建立此系统的Simulink 模型.系统的Simulink 模型图见[附录3].7.2动态系统的Simulink 仿真在MATLAB 中,系统状态空间用(),,,A B C D 矩阵组表示,当输入(),,,A B C D 矩阵组后,用函数(),,,ss A B C D 直接可以得到状态空间模型。
哈密顿蒙特卡洛算法(Hamiltonian Monte Carlo, HMC)是一种用于统计推断的强大马尔可夫链蒙特卡洛(MCMC)方法。
它在许多复杂的统计模型,特别是贝叶斯统计中,表现出了卓越的性能。
HMC结合了物理学中的哈密顿动力学与蒙特卡洛采样技术,有效地解决了传统MCMC方法在处理高维分布时面临的困难。
首先,我们来了解一下蒙特卡洛方法。
蒙特卡洛方法是一类通过随机数(或更一般地,伪随机数)进行数值计算的方法。
在统计物理、粒子输运、真空技术、激光技术、生物医学等多个领域都有广泛应用。
蒙特卡洛方法的基本思想是通过大量随机抽样来估计某个难以直接计算的量。
例如,我们可以用蒙特卡洛方法估算圆周率π的值,或者求解复杂的定积分问题。
然而,传统的蒙特卡洛方法在处理高维分布时效率较低。
为了克服这一问题,哈密顿蒙特卡洛算法应运而生。
HMC算法利用了物理学中的哈密顿动力学原理。
在哈密顿系统中,系统的状态由位置变量和动量变量共同描述,而系统的演化则遵循哈密顿方程。
HMC算法将这些物理概念引入到统计采样中,通过模拟哈密顿动力系统的演化过程来生成样本。
具体来说,HMC算法从一个给定的初始状态开始,然后在每一步中,根据哈密顿方程更新位置和动量。
这个过程相当于在目标分布上进行一次“模拟”的物理运动。
经过一段时间后,系统达到一个新的状态,这个状态被接受作为样本的一部分。
通过重复这个过程,HMC算法可以生成一系列样本,这些样本渐进地服从目标分布。
HMC算法的关键在于如何选择合适的哈密顿函数以及如何模拟哈密顿动力系统的演化。
一般来说,我们需要根据目标分布的特点来构造哈密顿函数,以确保生成的样本能够准确地反映目标分布的特性。
同时,我们还需要选择合适的数值积分方法来模拟哈密顿方程的演化过程,以保证算法的精度和效率。
相比于传统的蒙特卡洛方法,HMC算法具有更高的采样效率和更好的样本质量。
它能够有效地探索高维空间中的复杂分布,并生成与目标分布更为接近的样本。
物理学中的哈密顿系统与演化方程在物理学中,哈密顿系统和演化方程是两个非常重要的概念。
哈密顿系统是描述物理系统的数学模型,而演化方程则用于描述系统如何随着时间演变。
本文将深入探讨这两个概念,以及它们在物理学中的应用。
一、哈密顿系统哈密顿系统是一种用于描述物理系统的数学模型。
它由两个部分组成:哈密顿量和坐标动量空间。
哈密顿量描述了系统的总能量,而坐标动量空间则表明了系统的位置和速度。
哈密顿系统最初由物理学家威廉·哈密顿在19世纪提出。
他研究了运动学,并提出了稍后被称为哈密顿量的概念。
哈密顿量是描述系统总能量的函数,它可以用于计算系统运动的轨迹和离散化性质。
在哈密顿系统中,系统的演化是由哈密顿方程描述的。
哈密顿方程描述了系统的运动和能量守恒,它是动力学的基础。
哈密顿方程是由哈密顿量和坐标动量空间构成的。
二、演化方程演化方程是用于描述物理系统如何随时间演变的数学模型。
它与哈密顿系统密切相关,并且往往与量子力学、统计力学和热力学有关。
常见的演化方程有薛定谔方程和固体物理学中的热输运方程。
薛定谔方程用于描述波函数的时间演化,而热输运方程则用于描述固体物质中的热传递过程。
这些演化方程都包含了一些物理量,如位置、动量、时间和能量。
它们是用于描述物理系统演化的重要工具。
三、应用哈密顿系统和演化方程广泛应用于物理学的各个领域。
以下是一些例子:1. 量子力学:哈密顿系统和演化方程在量子力学中具有非常重要的作用。
它们用于描述粒子的运动和量子波函数的演化。
2. 统计力学:哈密顿系统和演化方程也在统计力学中广泛应用。
它们用于描述大量粒子的统计性质,并且被应用于分子动力学模拟和计算固体物质的热力学性质。
3. 天体物理学:天体物理学中的哈密顿系统和演化方程用于描述天体运动和星系的演化。
这些都是哈密顿系统和演化方程在不同领域的应用,表明了它们是一种非常重要的数学工具。
总之,哈密顿系统和演化方程是物理学中非常重要的概念。
研究量子力学中的哈密顿算符与能量本征态量子力学是描述微观世界行为的重要理论之一,它的基础是哈密顿量。
在量子力学中,哈密顿量起着类似于经典力学中能量的作用,它决定了体系的演化规律。
在许多实际问题中,我们需要研究哈密顿算符的本征态和相应的能量本征值。
本文将讨论哈密顿算符的定义、本征态的性质以及其在理论和实际应用中的重要性。
首先,让我们来了解哈密顿算符的定义。
在量子力学中,哈密顿算符(Hamiltonian Operator)用H表示,它是一个厄米算符,即满足H†=H。
厄米算符的本征值是实数,而对应的本征态是正交归一的。
哈密顿算符描述了量子体系的总能量,它由动能算符和势能算符组成。
在不同问题中,哈密顿算符的形式是不同的,比如自由粒子哈密顿量、谐振子哈密顿量等。
接下来,我们来探究哈密顿算符的本征态性质。
对于一个给定的哈密顿算符H,它的本征态可以表示为:H|ψ⟩=E|ψ⟩其中|ψ⟩表示系统的本征态,E表示对应的能量本征值。
对于不同的哈密顿量,本征态的形式也是不同的。
以谐振子哈密顿量为例,它的本征态是谐振子的能量本征态,对应不同的能量本征值。
本征态的性质有时很难直观理解,但它们在量子力学中具有重要的意义。
哈密顿算符的本征态具有一些重要的性质,比如正交性和完备性。
正交性是指不同本征态之间满足正交关系,即⟨ψ_i|ψ_j⟩=δ_ij,其中δ_ij是克罗内克δ符号。
而完备性是指任意系统的波函数可以通过哈密顿算符的本征态展开,即:|ψ⟩=∑_i c_i |ψ_i⟩其中c_i是展开系数。
这些性质保证了本征态的一组基函数,可以用来表示任意系统的态。
在理论研究中,研究哈密顿算符与能量本征态可以帮助我们了解量子系统的性质。
例如,通过求解哈密顿算符的本征值问题,我们可以得到系统的能级结构和相应的能量本征值。
这对于理解和预测实验结果非常重要。
此外,通过分析哈密顿算符的形式和本征值,可以揭示量子系统的演化规律,从而推断量子系统的行为。
哈密顿正则体系哈密顿正则体系是一种数学理论体系,它为动力系统的研究提供了一种全新的方法。
在哈密顿正则体系中,将动力系统的演化看成是在相空间中进行的,通过一系列的数学公式和方程,描述了运动量与位置之间的关系,系统的演化规律等。
下面将对哈密顿正则体系进行重新整理,并讨论其相关内容。
一、哈密顿方程哈密顿方程是哈密顿正则体系的关键。
如果只考虑运动学方面,可以将物理系统描述为一组位置和速度的函数。
但是,在动力学中,为了更加全面地描述物理系统的运动,还需要引入能量,作为一个额外的变量。
这样,哈密顿正则体系的运动方程就被描述为哈密顿函数H在相空间中的偏导数。
具体表达式如下所示:$${\frac {\partial p_{i}}{\partial t}}=-{\frac {\partialH}{\partial q_{i}}},\quad {\frac {\partial q_{i}}{\partial t}}={\frac {\partial H}{\partial p_{i}}},$$其中,$q_{i}$表示系统的位置坐标,$p_{i}$表示相应的运动量。
这两个量构成了相空间中的一个点。
哈密顿函数H则代表系统的总能量,即动能和势能之和。
二、常微分方程与哈密顿正则方程的区别在传统的常微分方程中,系统的演化规律仅仅是一个几何变化,因为位置和速度是时空坐标系中的标量。
而在哈密顿正则体系中,系统的演化规律是一个混合了几何和代数的变化,因为位置和运动量是相空间中的矢量。
三、哈密顿正则体系的应用哈密顿正则体系在动力系统中有广泛的应用,特别是在地球物理学和天体力学中。
由于相空间的几何性质可以明确地描述运动量和位置的变化规律,因此,哈密顿正则体系可以用于预测天体运动轨迹、研究行星运动动力学等问题。
此外,在材料科学和化学领域中,哈密顿正则体系也被用于描述两种不同原子之间的相互作用,以及化学反应动力学等问题。
总之,哈密顿正则体系是一种全新的数学工具,它可以用于研究动力学系统中的演化规律,而且在物理学、地球物理学、天体力学、材料科学、化学等学科中都有广泛的应用。
回溯算法的应用课程名称:算法设计与分析院系:学生姓名:学号:专业班级:指导教师:年月日回溯算法的应用摘要:回溯法是在包含问题的所有解的解空间树(或森林)中,按照深度优先的策略,从根结点出发搜索解空间树。
算法搜索至解空间树的任一结点时,总是先判断该结点是否满足问题的约束条件。
如果满足进入该子树,继续按深度优先的策略进行搜索。
否则,不去搜索以该结点为根的子树,而是逐层向其祖先结点回溯。
其实回溯法就是对隐式图的深度优先搜索算法。
回溯法是一个既带有系统性又带有跳跃性的的搜索算法。
它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。
算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。
如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。
否则,进入该子树,继续按深度优先的策略进行搜索。
回溯法的优点在于其程序结构明确,可读性强,易于理解,而且通过对问题的分析可以大大提高运行效率。
回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。
而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。
这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。
这就是以深度优先的方式系统地搜索问题解的回溯算法,它适用于解决一些类似n皇后问题等求解方案问题,也可以解决一些最优化问题。
关键词:回溯法解空间树深度优先搜索目录第1章绪论 (1)1.1 回溯算法的背景知识 (1)1.2 回溯法的前景意义 (1)第2章回溯算法的理论知识 (2)2.1 回溯算法的基本思想 (2)2.2 回溯算法设计过程 (2)2.3回溯算法框架 (2)2.4 回溯算法的一般性描述 (4)第3章哈密尔顿问题 (5)3.1 问题描述 (5)3.2 问题分析 (5)3.3 算法设计 (5)3.4 测试结果与分析 (7)第4章结论 (11)参考文献 (12)第1章绪论1.1 回溯算法的背景知识回溯算法是尝试搜索算法中最为基本的算法,在递归算法中,其存在的意义是在递归知道可解的最小问题后,逐步返回原问题的过程。
数学的哈密顿动力系统在现代数学领域中,哈密顿动力系统被广泛研究和应用。
它是由爱尔兰数学家威廉·罗维尔·哈密顿于19世纪首次提出的,通过对经典力学的数学建模,揭示了物理系统中的运动规律和动力学行为。
本文将介绍哈密顿动力系统的基本概念、数学建模方法以及在现代科学中的应用。
一、基本概念哈密顿动力系统是一种描述力学系统演化的数学模型,其核心概念包括哈密顿函数、哈密顿方程以及哈密顿流形。
1.1 哈密顿函数哈密顿函数是描述力学系统的总能量函数,通常用H表示。
对于一个力学系统,其位置变量用q=(q₁,q₂,...,qₙ)表示,动量变量用p=(p₁,p₂,...,pₙ)表示。
则哈密顿函数H(q,p)定义为总能量关于位置和动量的函数。
它是系统自由度的函数,可描述系统的状态。
1.2 哈密顿方程哈密顿方程描述了力学系统的运动规律。
对于一个具有哈密顿函数H的力学系统,其哈密顿方程表示为:dqᵢ────── = ∂H/∂pᵢdtdpᵢ────── = -∂H/∂qᵢdt其中i=1,2,...,n,表示系统的自由度。
1.3 哈密顿流形哈密顿动力系统的状态空间被称为哈密顿流形。
它是一个与位置变量和动量变量相关联的流形。
哈密顿流形的维度等于系统的自由度。
通过研究哈密顿流形的几何性质,我们可以深入理解系统的动力学行为。
二、数学建模方法为了求解哈密顿动力系统的运动规律,数学家提出了多种建模方法。
其中最常用的是拉格朗日变换和正则变换。
2.1 拉格朗日变换拉格朗日变换是一种基于拉格朗日力学的建模方法。
通过定义拉格朗日函数L(q,q),其中q表示对时间的导数,可以将系统的动力学方程转化为一阶微分方程组。
这种变换方法可以简化哈密顿方程的求解过程。
2.2 正则变换正则变换是一种通过引入新的变量和方程来改变系统坐标的方法。
通过适当的正则变换,可以将系统的哈密顿函数表示为新的位置变量和动量变量的函数。
这样,我们可以将原系统的哈密顿方程转化为新系统中的哈密顿方程,并利用新的坐标系求解问题。
数学的哈密顿系统在数学领域中,哈密顿系统是一个重要且广泛应用的概念。
它与解决动力学问题和描述物理现象有着密切关联。
本文将介绍哈密顿系统的定义、特性以及其在数学和物理学中的重要应用。
1. 哈密顿系统的定义哈密顿系统是指在哈密顿力学中描述的一类动力学系统。
它由两个重要的数学对象组成:哈密顿函数和哈密顿方程。
哈密顿函数通常记作H(q, p),其中q代表广义坐标,p代表广义动量。
哈密顿方程用来描述系统的演化方式,它由以下形式给出:dq/dt = ∂H/∂pdp/dt = -∂H/∂q这个方程组表达了系统在时间演化过程中广义坐标和动量随时间的变化规律。
2. 哈密顿系统的特性哈密顿系统具有一些独特的特性,这些特性使得它在研究动力学问题时得到了广泛的应用。
首先,哈密顿系统具有能量守恒的性质。
根据哈密顿函数的定义,我们可以得出系统的哈密顿量H是一个守恒量,即系统的总能量在演化过程中保持不变。
这个性质在物理学中有着重要的意义,例如在天体力学研究中,可以使用哈密顿系统描述行星的运动。
其次,哈密顿系统满足哈密顿-雅可比方程。
哈密顿-雅可比方程是指哈密顿系统的哈密顿函数H与广义坐标和广义动量的偏导数之间存在一定的关系。
这个关系提供了研究哈密顿系统稳定性和周期性解的重要工具。
此外,哈密顿系统还具有相空间的结构性特征。
相空间是指由广义坐标和广义动量组成的多维空间。
在相空间中,哈密顿系统的演化可以表示为一条曲线或者一组曲线,这些曲线描述了系统在不同状态下的运动轨迹。
相空间的结构性特征提供了对系统动力学行为的深入理解。
3. 哈密顿系统的应用哈密顿系统在数学和物理学中有着广泛的应用。
在数学领域,哈密顿系统是动力系统理论的重要组成部分。
研究哈密顿系统的稳定性、周期解和混沌现象,对于理解动力系统的行为以及解决实际问题具有重要作用。
在物理学中,哈密顿系统广泛应用于描述宏观和微观系统的演化。
例如在量子力学中,哈密顿系统可以描述粒子的量子态演化。
哈密顿系统一些保结构算法的构造和分析一切真实的,耗散可忽略不计的物理过程都可以用哈密顿系统进行描述.哈密顿系统有两个最重要的性质,一个是辛结构,另一个就是能量守恒.正确计算哈密顿系统非常重要.近年来,能够保持哈密顿系统辛结构或能量的保结构方法已经得到了很大的发展.本文讨论哈密顿系统一些保结构算法的构造和分析,主要研究成果如下:I.近几年,人们构造了等离子物理中洛伦兹力系统的保结构格式,比如保体积格式和保辛格式.然而这些格式都不能保持系统能量.我们把洛伦兹力系统写为一个非典则的哈密顿系统,然后利用Boole离散线积分方法进行求解,得到洛伦兹力系统的一个新的格式.该方法可以保持系统哈密顿能量达到机器精度.II.我们研究如何利用二,三和四阶AVF方法求解哈密顿偏微分方程.对非线性薛定谔方程,空间用Fourier拟谱方法半离散,时间用三个AVF方法进行离散,得到该方程三个不同精度的AVF格式.我们用数值实验验证了这三个格式的精度和保能量守恒特性.III.基于根树和B-级数理论,我们给出了5阶树的带入规则的具体公式.利用新得到的带入规则,我们把二阶AVF方法提高到高阶精度,给出了一个新的AVF方法.我们证明了,新方法具有6阶精度,并且可以保持哈密顿系统能量.我们利用六阶AVF方法求解非线性哈密顿系统,并测试了其精度和能量守恒特性.IV.在哈密顿偏微分方程保结构算法框架下,我们研究了基于系统弱形式的空间离散方法.首先,空间用有限元法或谱元法对偏微分方程进行半离散,把得到的常微分方程组写成一个哈密顿系统.然后,我们用一个保结构方法对这个常微分哈密顿系统进行求解,得到一个全离散保结构格式.我们用这个方法对一维非线性薛定谔(NLS)方程进行求解,其中空间用Legendre谱元法,时间用AVF
方法,得到一个新的保能量方法.同样对一维NLS方程,我们在空间用Galerkin
有限元方法,时间用Crank-Nicolson格式离散,则得到一个同时保能量和质量的格式.对二维NLS方程,空间用Galerkin谱元法,时间用Crank-Nicolson格式离散,得到一个同时保能量和质量的格式.而对Klein-Gordon-Schrodinger方程空间用Galerkin方法,时间用辛Stomer-Verlet方法离散,得到一个显式辛格式.对自旋为1的Bose-Einstein凝聚态(BEC)中耦合Gross-Pitaevskii(GP)方程,空间用Galerkin方法,时间用隐中点辛格式离散,则得到一个新的同时保系统辛结构,质量和磁场强度的格式.对自旋轨道耦合的BEC中耦合GP方程离散,空间用Galerkin方法,时间用Crank-Nicolson格式,得到的新格式可以同时保能量和质量.我们做了数值实验验证理论结果.。