固体火箭发动机测试与试验技术教学内容
- 格式:ppt
- 大小:628.50 KB
- 文档页数:43
火箭发动机专业综合实验课程简介课程目标从知识与技能的角度来讲,本课程的教学目标如下:(1)巩固和加深对专业理论知识的理解,掌握主要部件的工作特性;(2)学习火箭发动机的实验理论和实验方法,了解实验系统构成和实验设备;(3)通过具体实验过程,提高动手操作能力,掌握基本的实验技能,包括实验方案设计、系统调试、实验操作规程、实验现象观察以及数据处理等;(4)了解火箭发动机实验研究的发展动态,经过动手实践,熟悉先进的实验方法,具备初步的科研实验能力。
从素质与心理角度来讲,本课程的教学目标如下:在认知上,加深学生对专业理论知识和实验理论知识的记忆与理解(识记、领会层面);正确地使用各项实验技能,设计合理的实验方案(运用层面);分析实验现象,处理实验数据,提炼实验结论(分析层面);根据研究目的,综合自身的理论知识和实验能力,实施一项完整的研究型实验过程(综合层面);评估实验结果的正确性,评价实验本身的科学性与合理性(评价)。
在情感上,引导学生密切关注各种实验现象,加深直观感受(注意层面);充分利用火箭发动机专业教学实验中声学、光学、电磁、气动等现象丰富这一优势,激发学生的实验积极性(反应层面);培养学生科学规范的实验习惯和客观严谨的实验态度(价值评价层面);让学生深刻体会到本课程与其未来职业发展的关联性,激发学生的职业性学习动机,培养创新意识(价值观组织层面);促进学生培养务真求实的工作作风,培养紧密协同的团队意识,培养甘于奉献的职业精神(品格层面)。
在动作技能上,培养学生的动手操作能力,掌握典型设备的基本操作方法,能进行安装、调试与测量,熟练掌握各项应急处理措施。
课程性质与定位“火箭发动机专业综合实验”是北京航空航天大学飞行器动力工程(航天)专业的三大主干专业课程之一;是专业培养过程中的重要实践教育环节。
本课程是一门要求学生运用专业理论知识来分析、解决具体实践问题的课程。
课程以实验为载体,定位于各种联系的“桥梁”——即专业基础理论理解与综合运用的桥梁、专业人才培养与学生职业发展的桥梁。
《火箭发动机原理》课程教学大纲课程代码:110132307课程英文名称:Solid Rocket Motor课程总学时:32 讲课:32 实验:0 上机:0适用专业:弹药工程与爆炸技术大纲编写(修订)时间:2017.10一、大纲使用说明(一)课程的地位及教学目标本门课程是弹药工程与爆炸技术专业的一门专业选修课。
固体火箭发动机是卫星、火箭、飞机、导弹等产品的动力装置,它在现代科学技术研究,国民经济的发展,人们日常生活的改善等方面有着很大的利用价值,在本专业中对于火箭、导弹或炮弹增程有着极其重要的作用。
通过本课程的学习,学生将达到以下要求:1.熟练掌握固体火箭发动机的基本结构、工作原理,燃气在喷管与燃烧室内的流动过程,掌握固体火箭发动机内弹道的计算方法。
2.掌握固体火箭发动机的总体结构设计方法。
3.要求学生能将所学知识灵活运用于产品的设计和生活实践当中。
(二)知识、能力及技能方面的基本要求要求学生理解并掌握《火箭发动机原理》这门课程,使学生对固体火箭发动机有一定的认识。
1.掌握固体火箭发动机原理的主要内容,包括固体火箭发动机的工作原理、固体火箭推进剂以及固体火箭推进剂在燃烧室中的燃烧过程、燃气在喷管中的流动过程、固体火箭发动机性能参数、固体火箭发动机的热力计算、固体火箭发动机的内弹道计算方法等方面的知识。
2.掌握固体火箭发动机设计的主要内容,包括固体火箭发动机的基本结构,主要设计参量的选择,发动机结构的初步设计等。
3.了解固体火箭发动机的应用及发展趋势,并能用所学知识指导在本领域的技术研究和产品的设计。
(三)实施说明1.教学方法:课堂讲授中重点对固体火箭发动机的基本概念,工作原理和设计方法进行讲解。
培养学生的思考能力和分析问题的能力。
在讲授中注意采用理论知识与实际应用相结合的方法,提高学生分析问题、解决问题的能力。
2.教学手段:在教学中主要采用电子教案、CAI 课件及多媒体教学系统等教学手段相结合。
固体火箭发动机地面点火及推力、压强测试实验(火箭发动机原理课程教学实验一)实验指导书西北工业大学航天学院一、实验目的1、学习固体火箭发动机地面点火及推力、压强测试的方法;2、掌握实验中推力传感器、压强传感器的标定方法;3、利用实验结果(数据或曲线)、参照火箭发动机原理课程教学中介绍的方法,处理参试发动机的特征速度(*c)、比冲(s I)和推力系数(F C)。
二、实验内容要求1、清点参试发动机的零部件、检查零部件的齐套情况;2、记录实验前发动机的喷管喉径、固体推进剂装药的结构参数;3、检查实验数据采集系统、点火控制系统,确保各系统正常可靠工作;4、标定实验中使用的推力、压强传感器;5、称量点火药并制作点火药盒、装配实验发动机,做好点火实验前的一切准备工作;6、发动机点火,并采集P~t和F~t曲线;7、完成实验数据处理及实验报告。
三、实验原理固体火箭发动机设计完成之后,要进行地面静止实验,测量P~t和F~t曲线,然后进行数据处理,检查技术指标是否达到设计要求。
如果没有达到,还要进一步修改设计,再次进行地面实验,直至达到设计要求。
因此,学习固体火箭发动机的实验方法,对一个固体火箭发动机设计人员来说就显得特别重要。
由于发动机工作时将伴随着强大的振动和噪声,有时还有毒性、腐蚀性和爆炸的危险,因此为了保证试验人员的安全和健康、保护贵重的仪器仪表,必须采用远距离操纵和测量的方法,即采用非电量电测法。
为了获得发动机的P~t和F~t曲线,通过安装在发动机上的压强传感器和推力传感器,将被测的压强和推力信号转变为电压信号,电压信号经放大后由计算机数据采集系统保存。
由于传感器输出的是电压信号,而实验需要得到的是推力和压强信号(实际物理量),因此实验前应对所采用的传感器进行标定,标定的目的是为了建立传感器电压信号和实际物理量之间的关系,只要将标定结果输入到计算机采集系统中,在信号采集时,采集系统将按照标定结果将测得的电信号转换成实际物理量,即可获得P~t 和F~t 曲线。
宇航推进专业综合实验指导书固体火箭发动机直列式点火综合实验报告人:班 级:同组人:指导老师:日 期:固体火箭发动机直列式点火实验指导书1.实验目的1.考察点火管零件参数与点火条件之间的关系提供分析依据2.了解微型脉冲功率装置组成和工作原理,学会使用电流互感器和电压探头并通过示波器记录波形,掌握微型脉冲功率装置使用要点,能独立完成脉冲放电和测试实验。
3.掌握导弹发动机点火系统的工作原理和安全特性,了解固体火箭发动机点火系统实验过程,了解硼/硝酸钾的钝感特性,能独立完成点火实验,有条件下测试点火延迟时间,并分析不同实验条件下延迟时间的一致性范围。
2.实验背景介绍固体火箭发动机常用点火装置由起爆器、点火器和一些辅助部件组成。
起爆器在电能和其他非电能量的激发下使起爆器起爆,继而点燃点火器,点火器所产生的炽热火焰点燃发动机主装药。
按激发能源不同,起爆器可分为电起爆器和非电起爆器。
按起爆器和点火药是否安装在一起,点火器可分为整体式和分装式。
国内目前导弹和火箭发动机点火系统安全设计思想是以结构钝感为主,对药剂以防护为主,安全要求是满足1A/1W 不发火。
固体火箭发动机直列式点火系统与目前点火系统最大的不同在于取消了电爆管,直接点燃点火药,这时,点火药成为了始发药,点火装置的安全性不再受电爆管的起爆药感度限制,极大的提高了点火装置的安全性。
从而可将结构钝感的安全设计思想和药剂钝感思想结合起来必将极大的提高点火系统的安全性能。
因此以冲击片点火技术为基础的新型固体火箭发动机点火装置可以设计成直列式点火序列。
直列式点火管是直列式引爆概念的延申,是直列式火工品的一种,美国军用标准中还有用非隔断式爆炸序列(Non-interrupted explosive trains)这种说法,而直列式火工品的特点主要体现在以下几个方面:首先,直列式火工品的使用方式与错位式火工品不同,按照美国海军武器系统炸药安全审查局(WSESRB)的技术手册——《非隔断式爆炸序列电子安全与解除保险装置技术手册》(Technical Manual for Electronic Safety and Arming Devices With Non-Interrupted Explosive Trains)的说法:弹药引信历史上一直使用敏感的炸药元件,在解除保险之前它的输出被机械地隔断,在这些引信中解除保险过程的控制是用机械方法完成的,固态电子器件的出现和迅速发展为引信安全设计带来了变化,近年来炸药爆炸元件的发展提供了一种选择,即爆炸序列的机械隔断不再是必需的了。
“火箭发动机专业综合实验”课程学习指导火箭发动机专业综合实验是一门以实验项目为核心的实践课程,在课程学习时,需要重视动手能力的锻炼与培养,还需要学习掌握各种实验方法。
此外,本门课程是建立在宇航推进专业的知识理论与实验理论体系之上,因此,相关的理论知识学习也是完成本课程的基础。
课程的实验项目安排是遵循着从“基础操作实验——参与引导实验——综合演示实验——自主研究实验”的递进路线,同学们在实验项目中的独立性与自主性会越来越高,指导老师在实验过程中的参与和干涉将会越来越少,因此,要求各位同学在进入自主研究实验之前,要一步步完成“具备实验操作技能——理解实验理论——熟悉实验设备——掌握实验方法”的进阶,最终实现“设计实验方案、实施实验过程、完成实验分析”的自主实验研究能力。
学习建议:1.针对不同类型的实验来侧重不同能力的培养,做到重点突出。
目前,本门课程的实验分类如下,2.重视预习。
《实验指导书》是本课程的实验教材,同学们要在实验前提前预习将要开展的实验内容。
通过预习,要达到理解实验原理、初步了解实验设备、熟悉实验内容与步骤的效果。
充分的预习是实验顺利实施的保障。
3.积极主动的参与到实验过程。
无论是哪一种类型的实验,都需要同学们在实验过程中有一个积极主动的态度。
越积极,收获越多;越主动,提高越大。
各个实验项目的内容和重点不一,所以不好统一要求,但是如下三个基本点是需要同学们努力做到的:(1)主动认知实验设备。
实验设备是实验过程的载体,是实验研究的基本工具。
只有正确熟练地使用实验设备,才能完成实验内容,实现实验目标。
(2)关注实验细节。
实验过程是一项随机过程,即便是严格按照实验参数与规程,也可能出现不同的实验现象与数据,因此,需要同学们对实验细节能够多多关注,细小的差别就会牵引出新的问题,科学研究的进展也很多是基于此。
(3)注意实验数据的完整性。
实验过程的目的就是要获取实验数据,通过一定的分析处理,来证明某个定理、说明某项趋势、达到某类指标,从而实现实验目的。
火箭发动机是目前航空航天领域中最核心的技术之一,也是探究太空、探索外太空和实现人类重大探索目标的重要工具。
随着科技的不断进步和创新,火箭发动机技术也不断得到提升和发展。
因此编写一份完备的火箭发动机的教案来培养学生对于火箭发动机的技术知识与应用能力显得尤为重要。
一、教学目标本次火箭发动机教学活动的核心目标是,让学生了解火箭发动机整体结构、各种零部件原理、燃料和氧化剂选择、燃烧产生的推力等方面的知识,掌握火箭发动机的分析方法,培养学生的科学分析能力、实验能力和创新能力,引导学生引导学生积极探索,开阔眼界,增强抗压能力和创新思维。
二、教学内容1.火箭发动机整体结构的设计原理通过该部分内容的学习,能使学生了解火箭发动机整体结构的设计原理,并了解火箭发动机工作的基本原理。
就是使学生能分析出火箭发动机中各个组成部分的工作原理,并了解每个组成部分的作用是什么。
2.火箭发动机中各种零部件的原理及设计通过该部分内容的学习,能让学生了解火箭发动机中各种零部件的原理及设计,并了解零部件之间的联系和相互作用的关系。
就是使学生能分析出各个零部件不同的功能,以及各个零部件之间的联系和作用。
3.火箭发动机的燃料和氧化剂选择通过该部分内容的学习,能使学生了解火箭发动机燃料和氧化剂选择的原理和方法,并了解燃料和氧化剂的选择对于火箭发动机推力大小和性能的影响。
就是使学生能了解不同燃料和氧化剂的化学性质,以及它们之间的反应关系,了解不同燃料和氧化剂适用的场景和条件。
4.火箭发动机燃烧产生的推力通过该部分内容的学习,能使学生了解火箭发动机燃烧产生的推力的原理和数学公式,并且能够解答火箭发动机的推力变化受哪些因素影响。
就是使学生掌握计算火箭发动机推力的公式,以及掌握各个因素对于火箭发动机推力大小的影响程度。
三、教学方法本次火箭发动机教学活动采取讲解理论部分,注重实践的方式进行。
包括对火箭发动机的解析、组装、燃烧实验等。
让学生通过实际的操作和演练,更加直观和深刻的理解火箭发动机的结构和原理。
专业综合实验课程教学大纲课程编号:G15D4170课程中文名称:专业综合实验课程英文名称:Speciality Comprehensive Experiment开课学期:秋季学分/学时:1.5/120先修课程:火箭发动机原理开课对象:飞行器动力工程专业四年级本科生责任人名单:课程团队负责人:刘宇,课程责任教授:刘宇。
参加课程教学大纲编写人员:刘宇,航空宇航推进理论与工程专业,教授,主持课程教学大纲的制定和编写。
覃粒子,航空宇航推进理论与工程专业,副教授,参与课程教学大纲编写。
马彬,航空宇航推进理论与工程专业,高级实验师,参与课程教学大纲编写。
一、课程的性质、目的和任务火箭发动机专业综合实验课程是针对飞行器动力工程(航天)专业的本科生所开设的一门专业核心课程。
该课程是专业实践能力培养的一个重要环节,是最具特色的专业主干课程之一,其教学目的如下:(1)巩固和加深对专业理论知识的理解,掌握主要部件的工作特性;(2)学习火箭发动机的实验理论和实验方法,了解实验系统构成和实验设备;(3)通过具体实验过程,提高动手操作能力,掌握基本的实验技能,包括实验方案设计、系统调试、实验操作规程、实验现象观察以及数据处理等;(4)了解火箭发动机实验研究的发展动态,经过动手实践,熟悉先进的实验方法,具备初步的科研实验能力。
本课程的先修课程:火箭发动机原理。
本课程是通过具体的实验项目来加深学生对火箭发动机原理知识的理解,运用专业理论知识来分析、解决具体实践问题。
实验项目的设计从火箭发动机的热力过程出发,包含了推进剂的输送与供给、喷注雾化、点火、燃烧、推力产生、热防护等关键环节,涉及到喷注器、点火器、燃烧室、喷管、减压器、汽蚀文氏管、输送管路等关键部组件。
二、课程内容、基本要求及学时分配教学内容分为理论课程和实验课程两大部分。
理论课程共28学时。
实验课程共92学时。
第一部分理论课程(共28学时)1.1 火箭发动机实验概述,2学时。