最新人教新课标A版高中数学必修五全册教案
- 格式:doc
- 大小:5.59 MB
- 文档页数:96
人教版高中数学必修五教案(全册)
本教案共包括必修五全部章节,共计 xx 课时,主要涵盖以下
内容:
第一章函数的概念
本章主要介绍函数的概念、性质、分类以及函数图像的绘制等
方面的知识点。
通过本章的研究,学生将能够掌握函数的基本概念,理解函数的重要性以及掌握函数图像的绘制方法。
第二章三角函数
本章主要介绍正弦函数、余弦函数、正切函数等三角函数的定义、图像及其性质等方面的知识点,并针对不同类型的三角函数进
行了详细的讲解。
通过本章的研究,学生将能够深入理解三角函数
的概念,掌握三角函数的性质,运用三角函数解决实际问题。
第三章数学归纳法与递推数列
本章主要介绍数学归纳法的基本原理及其在数学证明中的运用,同时通过递推数列的研究,进一步巩固对数学归纳法的理解和应用。
通过本章的研究,学生将能够掌握数学归纳法的基本原理及其在数
学证明中的应用,同时掌握递推数列的推导与实际应用技巧。
第四章极坐标系与参数方程
本章主要介绍极坐标系的定义、性质,以及参数方程的基本概
念与运用等方面的知识点。
通过本章的研究,学生将能够理解极坐
标系的概念与性质,掌握参数方程的推导与实际应用技巧。
第五章一元函数微积分学初步
本章主要介绍导数与微分、不定积分、定积分等知识点。
通过
本章的学习,学生将能够掌握导数与微分的基本概念与计算方法,
掌握不定积分与定积分的计算方法,以及这些知识在实际问题中的
应用。
课题:1.1.1 正弦定理主备人: 执教者: 【学习目标】1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法。
2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
【学习重点】正弦定理的探索和证明及其基本应用。
【学习难点】已知两边和其中一边的对角解三角形时判断解的个数。
【授课类型】新授课【教 具】课件、电子白板【学习方法】【学习过程】一、引入: 固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来?二、新课学习:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, 则sin sin sin a b c c A B C === ,从而在直角三角形ABC 中,sin sin sin a b c A B C == 思考:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B =, 同理可得sin sin c b C B =, 从而sin sin a b A B =sin c C = 证法二):过点A 作j AC ⊥, 由向量的加法可得 AB AC CB =+则 ()j AB j AC CB ⋅=⋅+∴j AB j AC j CB ⋅=⋅+⋅j个性设计cos cosj AB j CB+j BC,可得⊥∆ABC是钝角三角形时,以上关系式仍然成立。
正弦定理一、教学内容的分析“正弦定理”是人教A版必修五第一章第一节的主要内容。
其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.二、学生学习情况分析在初中学生已经学习过关于任意三角形中大边对大角、小边对小角的边角关系,本节内容是处理任意三角形中的边角关系,与初中学习的三角形的边与角的基本关系有着密切的联系;这里的一个重要问题是:是否能得到这个边、角关系准确量化的表示.也就是如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.三、设计思想培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。
这就要求教师在教学中引导学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得知识。
所以本节课的教学将以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
四、三维目标1、知识与技能通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及证明方法,并能解决一些简单的三角形问题。
2、过程与方法通过对特殊三角形边长和角度关系的探索,发现正弦定理,初步学会用特殊到一般的思想方法发现数学规律。
3、情感态度与价值观通过生活实例的探究引出正弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值。
五、教学重难点重点:正弦定理的证明及其基本运用.难点:(1)正弦定理的探索和证明;(2)已知两边和其中一边的对角解三角形时,判断解的个a cb O B C A 数.六、教学过程设计(一)新课导入如图,河流两岸有A 、B 两村庄,有人说利用测角器与直尺,不过河也可以得到A 、B 两地的距离(假设现在的位置是A 点),请同学们讨论设计一个方案解决这个问题。
数学必修5 第一章解三角形章节总体设计(一)课标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。
通过本章学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
(二)编写意图与特色1.数学思想方法的重要性数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。
本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。
在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。
”设置这些问题,都是为了加强数学思想方法的教学。
2.注意加强前后知识的联系加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。
数学5 第二章数列一、课程要求数列作为一种特殊的函数,是反映自然规律的基本模型。
在本模块中,学生将通过对日常中大量实际问题的分析,建立等差数列和等比数列这两种模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。
1、了解数列的概念,概念2、理解等差数列的概念,探索并掌握等差数列的通项公式,体会等差数列的通项公式与一次函数之间的关系。
3、探索并掌握等差数列的前n项和公式,体会等差数列的前n项和公式与二次函数之间的关系。
4、理解等比数列的概念,探索并掌握等比数列的通项公式,体会等比数列的通项公式与指数函数之间的关系。
5、探索并掌握等比数列的前n项和公式,体会等比数列的前n项和公式与指数型函数之间的关系。
6、能在具体的问题情境中,发现数列的等差或等比关系,并能用有关知识解决相应的问题。
二、编写意图:1、数列是刻画离散过程的重要数学模型,数列的知识也是高等数学的基础,它可以看成是定义在正整数集或其有限子集的函数,因此,从函数的角度来研究数列,即是对函数学习的延伸,也是一种特殊的函数模型。
2、本章力求通过具体的问题情景展现,帮助学生了解数列的概念,通过对具体问题的探究,理解与掌握两类特殊的数列,并应用它们解决实际生活中相关的一些问题。
编写中体现了数学来源于生活,又服务于生活的这种基础学科的特点,使学生感觉到又亲切又好奇,充满魅力。
3、教材在例题、习题的编排上,注重让学生重点掌握数列的概念、特殊数列的通项公式、求和公式等,并应用这些知识解决实际生活中的问题,渗透函数思想解决问题。
4、教材在内容设计上突出了一些重要的数学思想方法。
如类比思想、归纳思想、数形结合思想、算法思想、方程思想、特殊到一般等思想贯穿于全章内容的始终。
5、教材在知识内容设计上,注意了数列与函数、算法、微积分、方程等的联系,适度应用现代信息计术,帮助学生理解数学,提高数学学习的兴趣。
三、教学内容及课时安排建议本章教学时间约12课时2.1数列的概念与简单表示法约2课时2.2等差数列约2课时2.3等差数列的前n项和约2课时2.4等比数列约2课时2.5等比数列的前n项和约2课时问题与小结约2课时四、评价建议1、重视对学生数学学习过程的评价关注学生在数列知识学习过程中,是否对所呈现的现实问题情境充满兴趣;在学习过程中,能否发现数列的等差关系或等比关系,体会等差数列、等比数列与一次函数、指数函数的关系。
1.1.1正弦定理●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程 一.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? 二.讲授新课[探索研究]在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, 则sin sin sin a b c c A B C=== 从而在直角三角形ABC 中,sin sin sin a b cA B C==思考1:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,(1)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a 从而sin sin abAB=sin cC=A c B(2)当∆ABC 是钝角三角形时,以上关系式仍然成立。
高中数学新课改教案(必修五)新郑三中高二数学备课组2009年8月数学5 第一章解三角形章节总体设计(一)课标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。
通过本章学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
(二)编写意图与特色1.数学思想方法的重要性数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。
本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。
在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。
”设置这些问题,都是为了加强数学思想方法的教学。
2.注意加强前后知识的联系加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。
数学5 第一章解三角形章节总体设计(一)课标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。
通过本章学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
(二)编写意图与特色1.数学思想方法的重要性数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。
本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。
在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。
”设置这些问题,都是为了加强数学思想方法的教学。
2.注意加强前后知识的联系加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。
新课标人教A版高中数学必修5教案完整版一、教学目标1.了解函数的基本概念,能够将现实中的问题转化为函数的形式。
2.理解函数的性质,掌握常用函数的性质及图像特征。
3.能够利用函数的性质,解决实际问题。
二、教学重点1.函数的基本概念;2.常用函数的性质;3.利用函数解决实际问题。
三、预备知识1.初中数学基本概念;2.函数概念的初步了解。
四、教学内容第一节函数基本概念1.函数的定义;2.定义域、值域和对应关系;3.奇偶性、周期性、单调性等基本性质。
第二节常用函数及其性质1.幂函数、指数函数、对数函数、三角函数等;2.函数的图像特征及性质。
第三节函数的应用1.函数与方程的联系;2.应用题解法:建立函数模型,求解实际问题。
五、教学方法本节课采用“导入-讲解-演示-练习-总结”等教学方法,其中:1.导入:通过举例子,引导学生了解相关概念。
2.讲解:深入浅出,分析函数性质及应用。
3.演示:通过实例,引导学生理解函数的应用。
4.练习:课后布置作业,帮助学生掌握相关知识。
5.总结:概括本节课所学知识,为下一步教学打下基础。
六、教学过程导入教师通过一个实际问题,引导学生思考如何把问题转化为函数的形式,如:某人5年前的年龄是现在年龄的2倍减3年,建立相关函数模型。
讲解1.函数的定义:函数是一种对应关系,它将定义域内的每一个元素都对应唯一的一个值。
2.函数的基本概念:定义域、值域及对应关系等。
3.常用函数的性质及图像:函数的奇偶性、周期性和单调性等。
其中幂函数、指数函数、对数函数、三角函数等为常用函数。
4.函数的应用:函数与方程的联系以及实际问题的应用,通过建立函数模型,解决实际问题。
演示老师通过现实中的例子,引导学生理解函数的应用,如:电费问题、最小二乘法问题等。
练习1.要求学生掌握函数的基本概念及性质;2.要求学生了解常用函数及其图像特征,掌握函数的基本变换和应用;3.练习题包括基础练习题和应用题,要求学生灵活掌握函数的应用。
普通高中课程标准实验教科书数学(人教A版)必修 5等差数列(第1课时)1、设计思想:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
2、教材分析:【教学目标】1.知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。
2.过程与方法在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3.情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。
在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】①等差数列的概念;②等差数列的通项公式【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.3、学情分析我所教学的学生是我校高一(382)班的学生(实验班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.【设计思路】1.教法①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.2.学法引导学生首先从三个现实问题(姚明罚球问题、运动鞋尺码问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.【教学过程】一:创设情境,引入新课1.姚明刚进NBA一周训练罚球的个数6000,6500,7000,7500,8000,8500,90002.运动鞋的尺码组成一个什么数列?教师:以上二个问题中的数蕴涵着三列数.学生:1:6000,6500,7000,7500,8000,8500,9000,….2:35,36,37,38,39,40,41,42(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.二:观察归纳,形成定义①6000,6500,7000,7500,8000,8500,9000,….②35,36,37,38,39,40,41,42思考1上述数列有什么共同特点?思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?思考3你能将上述的文字语言转换成数学符号语言吗?教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)三:举一反三,巩固定义1.判定下列数列是否为等差数列?若是,指出公差d.(1)1,1,1,1,1;(2)1,0,1,0,1;(3)2,1,0,1,2;(4)4,7,10,13,16.教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .(设计意图:强化学生对等差数列“等差”特征的理解和应用).2思考4:设数列{a n}的通项公式为a n=3n+1,该数列是等差数列吗?为什么?(设计意图:强化等差数列的证明定义法)四:利用定义,导出通项1.已知等差数列:8,5,2,…,求第200项?2.已知一个等差数列{a n}的首项是a1,公差是d,如何求出它的任意项a n呢?教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)五:应用通项,解决问题1判断100是不是等差数列2,9,16,…的项?如果是,是第几项?2在等差数列{a n}中,已知a5=10,a12=31,求a1,d和a n.3求等差数列3,7,11,…的第4项和第10项教师:给出问题,让学生自己操练,教师巡视学生答题情况.学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)六:反馈练习:教材13页练习1七:归纳总结:1.一个定义:等差数列的定义及定义表达式2.一个公式:等差数列的通项公式3.二个应用:定义和通项公式的应用教师:让学生思考整理,找几个代表发言,最后教师给出补充(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)【设计反思】本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.。
人教A版高中数学必修五全册教案教案:高中数学必修五全册教材:人教A版高中数学必修五教学目标:1.掌握数列概念,能够计算等差数列和等比数列的通项和前n项和;2.理解极限的概念,能够计算函数在其中一点的极限;3.理解一元一次方程、二次方程的根及其性质,能够求解一元一次方程和二次方程;4.理解函数概念,能够绘制简单的函数图像,计算函数值及函数的性质;5.掌握数学应用题的解题方法和技巧。
教学内容:第一单元数列与数学归纳法1.1数列的概念与通项的求法1.2等差数列及其求和公式1.3等比数列及其求和公式第二单元函数与极限2.1函数的概念及表示法2.2函数的图像和性质2.3极限的概念及计算第三单元一元一次方程与不等式3.1一元一次方程与方程的解3.2一元一次方程组与解的性质3.3一元一次不等式及其解第四单元二次函数与一元二次方程4.1二次函数的图像和性质4.2一元二次方程及其性质4.3一元二次方程的解法与应用第五单元测度与图形的性质5.1弧长与扇形面积5.2直线与圆的相交关系5.3平面向量的概念与性质5.4弧度制与角的变化率教学方法:1.通过讲解掌握基本概念与定理,引导学生分析例题,提高解题技巧;2.运用举一反三、归纳法,培养学生的综合运用能力和思维能力;3.坚持理论与实践相结合,通过练习和应用题,巩固知识点和技能;4.引导学生进行思考与讨论,激发学生的兴趣,培养其数学思维。
教学步骤:第一步:导入通过引入相关例子,激发学生的兴趣,预习相关内容,引起学生的思考。
第二步:知识点讲解通过课本中的例题和习题,详细讲解每个知识点的概念、公式、性质、注意事项等。
第三步:练习与讨论学生进行课后习题的练习,老师对错的例题进行解析和讲解,学生之间进行讨论和交流。
第四步:拓展与应用通过一些应用题目,让学生把所学内容应用到实际问题中,提高学生的应用能力。
第五步:总结与归纳对所学内容进行总结归纳,涵盖知识点和解题技巧,为下一节课的学习做好准备。
人教版高中必修五数学教案
课时:第一课时
教学内容:数学基础概念
教学目标:
1.了解数学的起源和发展历史。
2.理解数学基本概念和术语。
3.掌握数学基础知识。
教学重点、难点:
1.数学的起源和发展历史。
2.数学基本概念和术语的理解。
教学方法:讲授、示范演练、讨论
教具准备:教科书、黑板、彩色粉笔
教学过程:
一、导入:用一个问题引导学生思考数学的起源和意义。
二、讲解:介绍数学的起源和发展历史,引导学生了解数学的重要性。
三、讲解:介绍数学的基本概念和术语,引导学生掌握数学基础知识。
四、示范演练:通过例题演练,让学生掌握数学基础知识。
五、讨论:让学生讨论数学在日常生活中的应用,并分享自己的观点。
六、总结:对本节课的内容进行总结,并布置作业。
教学反思:本节课主要介绍了数学的基础概念和发展历史,通过讲解、示范演练和讨论,让学生深入理解数学的重要性和应用价值。
在未来的教学中,应该注重培养学生的数学思维和解决问题的能力。
第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理从容说课本章内容是处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系有密切的联系,与已知三角形的边和角相等判定三角形全等的知识也有着密切的联系.教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.教学重点1.正弦定理的概念;2.正弦定理的证明及其基本应用.教学难点1.正弦定理的探索和证明;2.已知两边和其中一边的对角解三角形时判断解的个数.教具准备直角三角板一个三维目标一、知识与技能1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.二、过程与方法1.让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系;2.引导学生通过观察、推导、比较,由特殊到一般归纳出正弦定理;3.进行定理基本应用的实践操作.三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.培养学生探索数学规律的思维能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一.教学过程导入新课师如右图,固定△ABC的边CB及∠B,使边AC绕着顶点C转动.师思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系?生显然,边AB 的长度随着其对角∠C 的大小的增大而增大. 师能否用一个等式把这种关系精确地表示出来?师在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系.如右图,在Rt △ABC 中,设BC =A ,AC =B ,AB =C ,根据锐角三角函数中正弦函数的定义,有c a =sin A ,c b =sin B ,又sin C =1=c c ,则c simCc B b A a ===sin sin .从而在直角三角形ABC 中,simCcB b A a ==sin sin . 推进新课[合作探究]师那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析) 生可分为锐角三角形和钝角三角形两种情况:如右图,当△ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =A sin B =B sin A ,则B b A a sin sin =,同理,可得BbC c sin sin =.从而Cc B b A a sin sin sin ==. (当△ABC 是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成) 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即CcB b A a sin sin sin ==. 师是否可以用其他方法证明这一等式?生可以作△ABC 的外接圆,在△ABC 中,令BC =A ,AC =B ,AB =C ,根据直径所对的圆周角是直角以及同弧所对的圆周角相等,来证明CcB b A a sin sin sin ==这一关系. 师很好!这位同学能充分利用我们以前学过的知识来解决此问题,我们一起来看下面的证法.在△ABC 中,已知BC =A ,AC =B ,AB =C ,作△ABC 的外接圆,O 为圆心,连结BO 并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到 ∠BAB′=90°,∠C =∠B′,∴sin C =sin B′=RcB C 2sin sin ='=. ∴R Cc2sin =. 同理,可得R B bR A a 2sin ,2sin ==.∴R Cc B b A a 2sin sin sin ===. 这就是说,对于任意的三角形,上述关系式均成立,因此,我们得到等式CcB b A a sin sin sin ==. 点评:上述证法采用了初中所学的平面几何知识,将任意三角形通过外接圆性质转化为直角三角形进而求证,此证法在巩固平面几何知识的同时,易于被学生理解和接受,并且消除了学生所持的“向量方法证明正弦定理是唯一途径”这一误解.既拓宽了学生的解题思路,又为下一步用向量方法证明正弦定理作了铺垫. [知识拓展]师接下来,我们可以考虑用前面所学的向量知识来证明正弦定理.从定理内容可以看出,定理反映的是三角形的边角关系,而在向量知识中,哪一知识点体现边角关系呢? 生向量的数量积的定义式A ·B =|A ||B |C osθ,其中θ为两向量的夹角.师回答得很好,但是向量数量积涉及的是余弦关系而非正弦关系,这两者之间能否转化呢?生 可以通过三角函数的诱导公式sinθ=Co s(90°-θ)进行转化. 师这一转化产生了新角90°-θ,这就为辅助向量j 的添加提供了线索,为方便进一步的运算,辅助向量选取了单位向量j,而j 垂直于三角形一边,且与一边夹角出现了90°-θ这一形式,这是作辅助向量j 垂直于三角形一边的原因.师在向量方法证明过程中,构造向量是基础,并由向量的加法原则可得AB CB AC =+而添加垂直于AC 的单位向量j 是关键,为了产生j 与AB、AC 、CB 的数量积,而在上面向量等式的两边同取与向量j 的数量积运算,也就在情理之中了.师下面,大家再结合课本进一步体会向量法证明正弦定理的过程,并注意总结在证明过程中所用到的向量知识点.点评: (1)在给予学生适当自学时间后,应强调学生注意两向量的夹角是以同起点为前提,以及两向量垂直的充要条件的运用.(2)要求学生在巩固向量知识的同时,进一步体会向量知识的工具性作用. 向量法证明过程:(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j与CB 的夹角为90°-C .由向量的加法原则可得AB CB AC =+,为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到AB j CB AC j •=+•)(由分配律可得AB j CB j AC •=•+.∴|j|ACCo s90°+|j|CBCo s(90°-C )=|j|ABCo s(90°-A ).∴A sin C =C sin A . ∴CcA a sin sin =. 另外,过点C 作与CB 垂直的单位向量j,则j 与AC 的夹角为90°+C ,j 与AB 的夹角为90°+B ,可得BbC c sin sin =. (此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j 与AC 的夹角为90°-C ,j与AB 的夹角为90°-B )∴CcB b A a sin sin sin ==. (2)△ABC 为钝角三角形,不妨设A >90°,过点A 作与AC 垂直的单位向量j,则j 与AB的夹角为A -90°,j 与CB 的夹角为90°-C .由AB CB AC =+,得j·AC+j·CB =j·AB ,即A ·Co s(90°-C )=C ·Co s(A -90°),∴A sin C =C sin A . ∴CcA a sin sin =另外,过点C 作与CB 垂直的单位向量j,则j 与AC 的夹角为90°+C ,j 与AB 夹角为90°+B .同理,可得C cB b sin sin =. ∴Cc B b simA a sin sin ==(形式1). 综上所述,正弦定理对于锐角三角形、直角三角形、钝角三角形均成立. 师在证明了正弦定理之后,我们来进一步学习正弦定理的应用. [教师精讲](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使A =ksin A ,B =ksin B ,C =ksin C ;(2)C cB b A a sin sin sin == 等价于CcA aB bC c B b A a sin sin ,sin sin ,sin sin === (形式2). 我们通过观察正弦定理的形式2不难得到,利用正弦定理,可以解决以下两类有关三角形问题.①已知三角形的任意两角及其中一边可以求其他边,如BAb a sin sin =.这类问题由于两角已知,故第三角确定,三角形唯一,解唯一,相对容易,课本P 4的例1就属于此类问题. ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如B baA sin sin =.此类问题变化较多,我们在解题时要分清题目所给的条件.一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形. 师接下来,我们通过例题评析来进一步体会与总结. [例题剖析]【例1】在△ABC 中,已知A =32.0°,B =81.8°,A =42.9 c m,解三角形.分析:此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边B ,若求边C ,再利用正弦定理即可.解:根据三角形内角和定理, C =180°-(A +B )=180°-(32.0°+81.8°)=66.2°; 根据正弦定理,b =ooA B a 0.32sin 8.81sin 9.42sin sin =≈80.1(c m); c =osin32.02.66sin 9.42sin sin oA C a =≈74.1(c m). [方法引导](1)此类问题结果为唯一解,学生较易掌握,如果已知两角和两角所夹的边,也是先利用内角和180°求出第三角,再利用正弦定理.(2)对于解三角形中的复杂运算可使用计算器.【例2】在△ABC 中,已知A =20c m ,B =28c m ,A =40°,解三角形(角度精确到1°,边长精确到1 c m ).分析:此例题属于B sin A <a <b 的情形,故有两解,这样在求解之后呢,无需作进一步的检验,使学生在运用正弦定理求边、角时,感到目的很明确,同时体会分析问题的重要性. 解:根据正弦定理,sin B =2040sin 28sin oa Ab =≈0.899 9. 因为0°<B <180°,所以B ≈64°或B ≈116°.(1)当B ≈64°时, C =180°-(A +B )=180°-(40°+64°)=76°,C =ooA C a 40sin 76sin 20sin sin =≈30(c m). (2)当B ≈116°时, C =180°-(A +B )=180°-(40°+116°)=24°,C =ooA C a 40sin 24sin 20sin sin =≈13(c m). [方法引导]通过此例题可使学生明确,利用正弦定理求角有两种可能,但是都不符合题意,可以通过分析获得,这就要求学生熟悉已知两边和其中一边的对角时解三角形的各种情形.当然对于不符合题意的解的取舍,也可通过三角形的有关性质来判断,对于这一点,我们通过下面的例题来体会.变式一:在△ABC 中,已知A =60,B =50,A =38°,求B (精确到1°)和C (保留两个有效数字). 分析:此题属于A ≥B 这一类情形,有一解,也可根据三角形内大角对大边,小角对小边这一性质来排除B 为钝角的情形.解:已知B <A ,所以B <A ,因此B 也是锐角.∵sin B =6038sin 50sin oa Ab =≈0.513 1,∴B ≈31°. ∴C =180°-(A +B )=180°-(38°+31°)=111°.∴C =ooA C a 38sin 111sin 60sin sin =≈91. [方法引导]同样是已知两边和一边对角,但可能出现不同结果,应强调学生注意解题的灵活性,对于本题,如果没有考虑角B 所受限制而求出角B 的两个解,进而求出边C 的两个解,也可利用三角形内两边之和大于第三边,两边之差小于第三边这一性质进而验证而达到排除不符合题意的解.变式二:在△ABC 中,已知A =28,B =20,A =120°,求B (精确到1°)和C (保留两个有效数字). 分析:此题属于A 为钝角且A >B 的情形,有一解,可应用正弦定理求解角B 后,利用三角形内角和为180°排除角B 为钝角的情形.解:∵sin B =28120sin 20sin oa Ab =≈0.618 6, ∴B ≈38°或B ≈142°(舍去).∴C =180°-(A +B )=22°. ∴ C =︒︒=120sin 22sin 28sin sin A C a ≈12. [方法引导](1)此题要求学生注意考虑问题的全面性,对于角B 为钝角的排除也可以结合三角形小角对小边性质而得到.(2)综合上述例题要求学生自我总结正弦定理的适用范围,已知两角一边或两边与其中一边的对角解三角形.(3)对于已知两边夹角解三角形这一类型,将通过下一节所学习的余弦定理来解. 师为巩固本节我们所学内容,接下来进行课堂练习: 1.在△ABC 中(结果保留两个有效数字), (1)已知C =3,A =45°,B =60°,求B ;(2)已知B =12,A =30°,B =120°,求A . 解:(1)∵C =180°-(A +B )=180°-(45°+60°)=75°,CcB b sin sin =, ∴B =︒︒=75sin 60sin 3sin sin C B c ≈1.6.(2)∵BbA a sin sin =,∴A =︒︒=120sin 30sin 12sin sin B A b ≈6.9. 点评:此题为正弦定理的直接应用,意在使学生熟悉正弦定理的内容,可以让数学成绩较弱的学生进行在黑板上解答,以增强其自信心. 2.根据下列条件解三角形(角度精确到1°,边长精确到1): (1)B =11,A =20,B =30°;(2)A =28,B =20,A =45°; (3)C =54,B =39,C =115°;(4)A =20,B =28,A =120°.解: (1) ∵B bA a sin sin =. ∴sin A =1130sin 20sin ︒=b B a ≈0.909 1. ∴A 1≈65°,A 2≈115°.当A 1≈65°时,C 1=180°-(B +A 1)=180°-(30°+65°)=85°,∴C 1=︒︒=30sin 85sin 11sin sin sin 1B C b ≈22. 当A 2≈115°时,C 2=180°-(B +A 2)=180°-(30°+115°)=35°,∴C 2=︒︒=30sin 35sin 11sin sin 2B C b ≈13. (2)∵sin B =2845sin 20sin ︒=a Ab ≈0.505 1, ∴B 1≈30°,B 2≈150°.由于A +B 2=45°+150°>180°,故B 2≈150°应舍去(或者由B <A 知B <A ,故B 应为锐角). ∴C =180°-(45°+30°)=105°.∴C =︒︒=45sin 105sin 28sin sin A C a ≈38. (3)∵Cc B b sin sin =, ∴sin B =54115sin 39sin ︒=c C b ≈0.654 6. ∴B 1≈41°,B 2≈139°.由于B <C ,故B <C ,∴B 2≈139°应舍去. ∴当B =41°时,A =180°-(41°+115°)=24°,A =︒︒=115sin 24sin 54sin sin C A c ≈24. (4) sin B =20120sin 28sin ︒=a A b =1.212>1. ∴本题无解.点评:此练习目的是使学生进一步熟悉正弦定理,同时加强解三角形的能力,既要考虑到已知角的正弦值求角的两种可能,又要结合题目的具体情况进行正确取舍.课堂小结通过本节学习,我们一起研究了正弦定理的证明方法,同时了解了向量的工具性作用,并且明确了利用正弦定理所能解决的两类有关三角形问题:已知两角、一边解三角形;已知两边和其中一边的对角解三角形. 布置作业(一)课本第10页习题1.1 第1、2题. (二)预习内容:课本P 5~P 8余弦定理 [预习提纲](1)复习余弦定理证明中所涉及的有关向量知识. (2)余弦定理如何与向量产生联系.(3)利用余弦定理能解决哪些有关三角形问题.正弦定理1.正弦定理:2.证明方法:3.利用正弦定理,能够解决两类问题:CcB b A a sin sin sin == (1)平面几何法 (1)已知两角和一边 (2)向量法 (2)已知两边和其中一边的对角1.1.2余弦定理从容说课课本在引入余弦定理内容时,首先提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,使学生能够形成良好的知识结构.设置这样的问题,是为了更好地加强数学思想方法的教学.比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,通过向量知识给予证明,引起学生对向量知识的学习兴趣,同时感受向量法证明余弦定理的简便之处.教科书就是用了向量的方法,发挥了向量方法在解决问题中的威力.在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.由上可知,余弦定理是勾股定理的推广”.还要启发引导学生注意余弦定理的各种变形式,并总结余弦定理的适用题型的特点,在解题时正确选用余弦定理达到求解、求证目的.启发学生在证明余弦定理时能与向量数量积的知识产生联系,在应用向量知识的同时,注意使学生体会三角函数、正弦定理、向量数量积等多处知识之间的联系.教学重点余弦定理的发现和证明过程及其基本应用.教学难点1.向量知识在证明余弦定理时的应用,与向量知识的联系过程;2.余弦定理在解三角形时的应用思路;3.勾股定理在余弦定理的发现和证明过程中的作用.教具准备投影仪、幻灯片两张第一张:课题引入图片(记作1.1.2A)如图(1),在Rt△ABC中,有A2+B2=C2问题:在图(2)、(3)中,能否用b、c、A求解a?第二张:余弦定理(记作1.1.2B)余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.形式一: a2=b2+c2-2bcco s A,b2=c2+a2-2caco s B,c2=a2+b2-2abco s C,形式二:co s A=bc ac b22 22-+,co s B=ca ba c22 22-+,co s C=ab cb a22 22-+.三维目标一、知识与技能1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法;2.会利用余弦定理解决两类基本的解三角形问题;3.能利用计算器进行运算.二、过程与方法1.利用向量的数量积推出余弦定理及其推论;2.通过实践演算掌握运用余弦定理解决两类基本的解三角形问题.三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.教学过程导入新课师上一节,我们一起研究了正弦定理及其应用,在体会向量应用的同时,解决了在三角形已知两角、一边和已知两边与其中一边对角这两类解三角形问题.当时对于已知两边夹角求第三边问题未能解决,下面我们来看幻灯片1.1.2A,如图(1),在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面我们根据初中所学的平面几何的有关知识来研究这一问题.在△ABC中,设BC=A,AC=B,AB=C,试根据B、C、A来表示A.师由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构成直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于D,那么在Rt △BDC中,边A可利用勾股定理用CD、DB表示,而CD可在Rt△ADC中利用边角关系表示,DB可利用AB-AD转化为AD,进而在Rt△ADC内求解.解:过C作CD⊥AB,垂足为D,则在Rt△CDB中,根据勾股定理可得A2=CD2+BD2.∵在Rt△ADC中,CD2=B2-AD2,又∵BD2=(C-AD)2=C2-2C·AD+AD2,∴A2=B2-AD2+C2-2C·AD+AD2=B2+C2-2C·AD.又∵在Rt△ADC中,AD=B·CO s A,∴a2=b2+c2-2ab c os A.类似地可以证明b2=c2+a2-2caco s B.c 2=a 2+b 2-2ab c os C .另外,当A 为钝角时也可证得上述结论,当A 为直角时,a 2+b 2=c 2也符合上述结论,这也正是我们这一节将要研究的余弦定理,下面我们给出余弦定理的具体内容.(给出幻灯片1.1.2B ) 推进新课1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.在幻灯片1.1.2B 中我们可以看到它的两种表示形式: 形式一:a 2=b 2+c 2-2bcco s A , b 2=c +a 2-2caco s B , c 2=a 2+b 2-2abco s C . 形式二:bc a c b A 2cos 222-+=,ca b a c B 2cos 222-+=,abc b a C 2cos 222-+=.师 在余弦定理中,令C =90°时,这时co s C =0,所以c 2=a 2+b 2,由此可知余弦定理是勾股定理的推广.另外,对于余弦定理的证明,我们也可以仿照正弦定理的证明方法二采用向量法证明,以进一步体会向量知识的工具性作用. [合作探究]2.向量法证明余弦定理 (1)证明思路分析师 联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边C .由于余弦定理中涉及到的角是以余弦形式出现,从而可以考虑用向量来研究这个问题.由于涉及边长问题,那么可以与哪些向量知识产生联系呢?生 向量数量积的定义式a ·b =|a ||b |co sθ,其中θ为A 、B 的夹角.师 在这一点联系上与向量法证明正弦定理有相似之处,但又有所区别.首先因为无须进行正、余弦形式的转换,也就少去添加辅助向量的麻烦.当然,在各边所在向量的联系上仍然通过向量加法的三角形法则,而在数量积的构造上则以两向量夹角为引导,比如证明形式中含有角C ,则构造CA CB •这一数量积以使出现CO s C .同样在证明过程中应注意两向量夹角是以同起点为前提.(2)向量法证明余弦定理过程:如图,在△ABC 中,设AB 、BC 、CA 的长分别是c 、a 、b . 由向量加法的三角形法则,可得BC AB AC +=, ∴,cos 2)180cos(22)()(22222a B ac c B BC AB AB BC BC AB AB BC AB BC AB AC AC +-=+-︒+=+•+=+•+=•即B 2=C 2+A 2-2AC CO s B . 由向量减法的三角形法则,可得AB AC BC -=,∴22222cos 2cos 22)()(c A bc b AB A AB AC AC AB AB AC AC AB AC AB AC BC BC +-=+•-=+•-=-•-=•即a 2=b 2+c 2-2bcco s A . 由向量加法的三角形法则,可得BC AC CB AC AB -=+=,∴,cos 2cos 22)()(22222a C ba b BC C BC AC AC BC BC AC AC BC AC BC AC AB AB +-=+•-=+•-=-•-=•即c 2=a 2+b 2-2abco s C . [方法引导](1)上述证明过程中应注意正确运用向量加法(减法)的三角形法则. (2)在证明过程中应强调学生注意的是两向量夹角的确定,与属于同起点向量,则夹角为A ;AB 与是首尾相接,则夹角为角B 的补角180°-B ;与是同终点,则夹角仍是角C . [合作探究]师 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?生(留点时间让学生自己动手推出)从余弦定理,又可得到以下推论:bac a b C ac b c a B bc a c b A 2cos ,2cos ,2cos 222222222-+=-+=-+=.师 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系? 生(学生思考片刻后会总结出)若△ABC 中,C =90°,则co s C =0,这时c 2=a 2+b 2.由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.师 从余弦定理和余弦函数的性质可知,在一个三角形中,如果两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果两边的平方和小于第三边的平方,那么第三边所对的角是钝角,如果两边的平方和大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理可以看作是勾股定理的推广.现在,三角函数把几何中关于三角形的定性结果都变成可定量计算的公式了.师 在证明了余弦定理之后,我们来进一步学习余弦定理的应用(给出幻灯片1.1.2B )通过幻灯片中余弦定理的两种表示形式我们可以得到,利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角.这类问题由于三边确定,故三角也确定,解唯一,课本P 8例4属这类情况. (2)已知两边和它们的夹角,求第三边和其他两个角.这类问题第三边确定,因而其他两个角唯一,故解唯一,不会产生类似利用正弦定理解三角形所产生的判断取舍等问题.接下来,我们通过例题来进一步体会一下. [例题剖析]【例1】在△ABC 中,已知B =60 c m ,C =34 c m ,A =41°,解三角形(角度精确到1°,边长精确到1 c m ).解:根据余弦定理,a 2=b 2+c 2-2bcco s A =602+342-2·60·34co s41°≈3 600+1 156-4 080×0.754 7≈1 676.82,所以A ≈41 c m.由正弦定理得sin C =4141sin 34sin ︒⨯=a A c ≈41656.034⨯≈0.544 0, 因为C 不是三角形中最大的边,所以C 是锐角.利用计数器可得C ≈33°,B =180°-A -C =180°-41°-33°=106°.【例2】在△ABC 中,已知a =134.6 c m ,b =87.8 c m ,c =161.7 c m ,解三角形. 解:由余弦定理的推论,得co s A =7.1618.8726.1347.1618.872222222⨯⨯-+=-+bc a c b ≈0.554 3,A ≈56°20′;co s B =7.1616.13428.877.1616.1342222222⨯⨯-+=-+ca b a c ≈0.839 8,B ≈32°53′;C =180°-(A +B )=180°-(56°20′+32°53′)=90°47′.[知识拓展] 补充例题:【例1】在△ABC 中,已知a =7,b =10,c =6,求A 、B 和C .(精确到1°)分析:此题属于已知三角形三边求角的问题,可以利用余弦定理,意在使学生熟悉余弦定理的形式二.解:∵725.0610276102cos 222222=⨯⨯-+=-+=bc a c b A , ∴A ≈44°.∵c os C =140113107261072222222=⨯⨯-+=-+ab c b a ≈0.807 1,∴C ≈36°.∴B =180°-(A +C )=180°-(44°+36°)=100°. [教师精讲](1)为保证求解结果符合三角形内角和定理,即三角形内角和为180°,可用余弦定理求出两角,第三角用三角形内角和定理求出.(2)对于较复杂运算,可以利用计算器运算.【例2】在△ABC 中,已知a =2.730,b =3.696,c =82°28′,解这个三角形(边长保留四个有效数字,角度精确到1′).分析:此题属于已知两边及其夹角解三角形的类型,可通过余弦定理形式一先求出第三边,在第三边求出后其余角求解有两种思路:一是利用余弦定理的形式二根据三边求其余角,二是利用两边和一边对角利用正弦定理求解,但根据1.1.1斜三角形求解经验,若用正弦定理需对两种结果进行判断取舍,而在0°~180°之间,余弦有唯一解,故用余弦定理较好. 解:由c 2=a 2+b 2-2abco s C =2.7302+3.6962-2×2.730×3.696×co s82°28′, 得c ≈4.297.∵c os A =297.4696.32730.2297.4696.32222222⨯⨯-+=-+bc a c b ≈0.776 7,∴A ≈39°2′.∴B =180°-(A +C )=180°-(39°2′+82°28′)=58°30′.[教师精讲]通过例2,我们可以体会在解斜三角形时,如果正弦定理与余弦定理都可选用,那么求边用两个定理均可,求角则用余弦定理可免去判断取舍的麻烦. 【例3】在△ABC 中,已知A =8,B =7,B =60°,求C 及S △ABC .分析:根据已知条件可以先由正弦定理求出角A ,再结合三角形内角和定理求出角C ,再利用正弦定理求出边C ,而三角形面积由公式S △ABC =21ac sin B 可以求出. 若用余弦定理求C ,表面上缺少C ,但可利用余弦定理b 2=c 2+a 2-2caco s B 建立关于C 的方程,亦能达到求C 的目的. 下面给出两种解法. 解法一:由正弦定理得︒=60sin 7sin 8A , ∴A 1=81.8°,A 2=98.2°, ∴C 1=38.2°,C 2=21.8°.由Ccsin 60sin 7=︒,得c 1=3,c 2=5, ∴S △ABC =36sin 211=B ac 或S △ABC =310sin 212=B ac .解法二:由余弦定理得b 2=c +a 2-2caco s B ,∴72=c +82-2×8×cco s60°, 整理得c 2-8c +15=0, 解之,得c 1=3,c 2=5.∴S △ABC =36sin 211=B ac 或S △ABC = 310sin 212=B ac . [教师精讲]在解法一的思路里,应注意由正弦定理应有两种结果,避免遗漏;而解法二更有耐人寻味之处,体现出余弦定理作为公式而直接应用的另外用处,即可以用之建立方程,从而运用方程的观点去解决,故解法二应引起学生的注意.综合上述例题,要求学生总结余弦定理在求解三角形时的适用范围;已知三边求角或已知两边及其夹角解三角形,同时注意余弦定理在求角时的优势以及利用余弦定理建立方程的解法,即已知两边、一角解三角形可用余弦定理解之. 课堂练习1.在△ABC 中:(1)已知c =8,b =3,b =60°,求A ; (2)已知a =20,b B =29,c =21,求B ; (3)已知a =33,c =2,b =150°,求B ; (4)已知a =2,b =2,c =3+1,求A .解: (1)由a 2=b 2+c 2-2bcco s A ,得a 2=82+32-2×8×3co s60°=49.∴A =7.(2)由ca b a c B 2cos 222-+=,得021202292120cos 222=⨯⨯-+=B .∴B =90°.。
高中数学必修五教案【最新4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、规章制度、员工手册、创业计划、企划方案、心得体会、法律文书、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts, such as summary reports, speeches, rules and regulations, employee manuals, entrepreneurial plans, planning plans, insights, legal documents, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!高中数学必修五教案【最新4篇】作为一名教师,时常需要用到教案,编写教案助于积累教学经验,不断提高教学质量。
人教A版高中数学必修五全册教案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教A版高中数学必修五全册教案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教A版高中数学必修五全册教案(word版可编辑修改)的全部内容。
人教A 版高中数学必修五全册教案1.1.1正弦定理●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数.●教学过程一.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B,使边AC 绕着顶点C 转动。
思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大.能否用一个等式把这种关系精确地表示出来?二。
讲授新课[探索研究]在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关B C A系。
如图,在Rt ∆ABC 中,设BC=a,AC=b ,AB=c , 根据锐角三角函数中正弦函数的定义, 有sin a A c =,sin b B c =,又sin 1c C c==,则sin sin sin ab cc A B C ===从而在直角三角形ABC 中,sin sin sin a bcA B C ==思考1:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,(1)当∆ABC 是锐角三角形时,设边AB 上的高是CD,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B =, C 同理可得sin sin c b C B =, b a 从而sin sin abA B =sin cC= A c B (2)当∆ABC 是钝角三角形时,以上关系式仍然成立。
1
AB AC CB =+)CB + j AC j CB =⋅+⋅
()cos 900cos -=+j AB A j CB ∴sin sin =c A a C ,即
sin sin =
A C
sin C
a b =c =a b =c b
=sin A
sin C
sin sin b A a B
=
B
≈
116
C A B
=-+≈-+=
180()180(40116)24
b ,则
()()
2
22
2c c c a b a b
a b a b
=⋅=--=+-⋅ c
b
B
A
a
8A
3
sin a b A = 1
ABC 是钝角三角形随堂练习2]
1sin S bc A ==
sin sin sin a b c A B C ++++2
sin a
A
==
ABC中,根据已知的边和对应角,运用哪个定理比
运用该定理解题还需要那些边和角呢?请学生回答。
分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理
解:根据正弦定理,得
2
解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、
D 两点
BCA=α,
,∠CDB=γ,∠BDA =δ,在∆ADC 和∆BDC 中,应用正 AC = )](180sin[)sin(δγβδγ++-︒+a = )sin()sin(δγβδγ+++a
= sin γa = sin γa
分析:求AB长的关键是先求AE,在 ACE中,如能求出
筑物顶部A的距离CA,再测出由C点观察A的仰角,就可以计算出AE的长。
解:选择一条水平基线HG,使H、G、B三点在同一条直线
1
问题与情境及教师活动
大家能设计出解题方案吗?(给时间给学生讨论思,则关键需要求出哪条边呢?边,再根据∠BAD=α求得。
BCA=90︒+β,∠ABC =90)
1500454sin(0454sin 150cos 3.27'-'''︒︒︒︒934sin 0454sin 150cos 3.27'
'
'︒︒︒
师:欲求出CD,大家思考在哪个三角形中研究比较适合呢?生:在∆BCD中
师:在∆BCD中,已知BD或BC都可求出
的长?
生:BC边
Ⅲ.课堂练习
1
∆
∠θ
∆
1
5
432n
a n 1
=
1
1
5
432n
a n 1
=
1
了一个数列项与项数的函数关系。
如数列的通项公式为
;
为纵坐标,即以
S
S a
S S
1a
a +-n -n 321-
n S
S
a
a a a ++++ 321
=
-n
-
401-
)1
(4
5
-
3
21
p
n
m a
a
a
a+
=
+
a
a
a
a+
=
+
S
S a
a
⎨
⎧≥-=-)
2()1(11n S S n S n n
项和的公式研究
()[(1)(1)]pn qn r p n q n r ++--+-+2()
pn p q -+n
1
-n n a a
⇔
n a 1+∈N
n
a<
a
1
11)()n n b q +=11n n n -+(0)
a a a n k =>>p n m p n m a
a a a ,,,。