随机过程例题
- 格式:ppt
- 大小:585.00 KB
- 文档页数:17
一.填空题(每空2分,共20分)1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为it (e -1)eλ。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为1(sin(t+1)-sin t)2ωω。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从Γ分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e t t X ,,3)(,则 这个随机过程的状态空间212t,t,;e,e 33⎧⎫⎨⎬⎩⎭。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为(n)n P P =。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)ji ij i Ip (n)p p ∈=⋅∑。
8.在马氏链{}n X ,n 0≥中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=≠≤≤==≥(n)ij ij n=1f f ∞=∑,若ii f 1<,称状态i 为非常返的。
9.非周期的正常返状态称为遍历态。
10.状态i 常返的充要条件为(n)iin=0p∞=∑∞。
二.证明题(每题6分,共24分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。
证明:左边=P(ABC)P(ABC)P(AB)P(C AB)P(B A )P(A)P(AB)P(A)===右边2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
随机过程考试试题及答案详解1、(15分)设随机过程C t R t X +⋅=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分布。
(1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。
【理论基础】 (1)⎰∞-=xdt t f x F )()(,则)(t f 为密度函数;(2))(t X 为),(b a 上的均匀分布,概率密度函数⎪⎩⎪⎨⎧<<-=其他,0,1)(bx a a b x f ,分布函数⎪⎩⎪⎨⎧>≤≤--<=b x b x a ab a x a x x F ,1,,0)(,2)(ba x E +=,12)()(2a b x D -=; (3)参数为λ的指数分布,概率密度函数⎩⎨⎧<≥=-0,00,)(x x e x f x λλ,分布函数⎩⎨⎧<≥-=-0,00,1)(x x e x F x λ,λ1)(=x E ,21)(λ=x D ; (4)2)(,)(σμ==x D x E 的正态分布,概率密度函数∞<<-∞=--x e x f x ,21)(222)(σμπσ,分布函数∞<<-∞=⎰∞---x dt ex F xt ,21)(222)(σμπσ,若1,0==σμ时,其为标准正态分布。
【解答】本题可参加课本习题2.1及2.2题。
(1)因R 为]1,0[上的均匀分布,C 为常数,故)(t X 亦为均匀分布。
由R 的取值范围可知,)(t X 为],[t C C +上的均匀分布,因此其一维概率密度⎪⎩⎪⎨⎧+≤≤=其他,0,1)(tC x C t x f ,一维分布函数⎪⎩⎪⎨⎧+>+≤≤-<=t C x t C X C tCx C x x F ,1,,0)(;(2)根据相关定义,均值函数C tt EX t m X +==2)()(; 相关函数2)(231)]()([),(C t s Cst t X s X E t s R X +++==; 协方差函数12)]}()()][()({[),(stt m t X s m s X E t s B X X X =--=(当t s =时为方差函数) 【注】)()()(22X E X E X D -=;)()(),(),(t m s m t s R t s B X X X X -=求概率密度的通解公式|)(|/)(|)(|)()(''y x y f x y y f x f t ==2、(15分)设{}∞<<∞-t t W ),(是参数为2σ的维纳过程,)4,1(~N R 是正态分布随机变量;且对任意的∞<<∞-t ,)(t W 与R 均独立。
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
随机过程综合练习题一、填空题(每空3 分)第一章1.X1,X2, X n是独立同分布的随机变量,X i 的特征函数为g(t),则X1 X2 X n 的特征函数是。
2.E E(X Y) 。
3.X 的特征函数为g(t),Y aX b,则Y的特征函数为。
4.条件期望E(X Y)是的函数,(是or不是)随机变量。
5.X1,X2, X n是独立同分布的随机变量,X i 的特征函数为g i(t),则X1 X 2 X n 的特征函数是。
6.n 维正态分布中各分量的相互独立性和不相关性。
第二章7.宽平稳过程是指协方差函数只与有关。
8.在独立重复试验中,若每次试验时事件 A 发生的概率为p(0 p 1),以X(n)记进行到n次试验为止 A 发生的次数,则{X(n),n 0,1,2, }是过程。
9.正交增量过程满足的条件是。
10.正交增量过程的协方差函数C X (s,t) 。
第三章11.{X(t), t ≥0}为具有参数0 的齐次泊松过程,其均值函数为;方差函数为。
12.设到达某路口的绿、黑、灰色的汽车的到达率分别为1, 2 ,3且均为泊松过程,它们相互独立,若把这些汽车合并成单个输出过程(假定无长度、无延时),相邻绿色汽车之间的不同到达时间间隔的概率密度是,汽车之间的不同到达时刻间隔的概率密度是。
13.{X(t), t ≥0}为具有参数0的齐次泊松过程,( t)n e n! 14.n15.240000 16.复合;17.71 4eP X(t s) X(s) n14.设{X(t), t ≥0} 是具有参数0的泊松过程,泊松过程第n 次到达时间W n的数学期望15.在保险的索赔模型中,设索赔要求以平均 2 次/月的速率的泊松过程到达保险公司.若每次赔付金额是均值为10000 元的正态分布,求一年中保险公司的平均赔付金额。
16.到达某汽车总站的客车数是一泊松过程,每辆客车内乘客数是一随机变量.设各客车内乘客数独立同分布,且各辆车乘客数与车辆数N(t) 相互独立,则在[0 ,t]内到达汽车总站的乘客总数是(复合or 非齐次)泊松过程.17.设顾客以每分钟 2 人的速率到达,顾客流为泊松流,求在2min 内到达的顾客不超过 3 人的概率是.第四章18.无限制随机游动各状态的周期是。
第二章 随机过程分析1.1 学习指导 1.1.1 要点随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。
1. 随机过程的概念随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。
可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。
2. 随机过程的分布函数和概率密度函数如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。
ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤x 1],随机过程ξ(t )的一维分布函数为F 1(x 1, t 1) = P [ξ(t 1) ≤x 1] (2-1)如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为1111111(,)(, ) (2 - 2)∂=∂F x t f x t x对于任意时刻t 1和t 2,把ξ(t 1) ≤x 1和ξ(t 2) ≤x 2同时成立的概率{}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤称为随机过程ξ(t )的二维分布函数。
如果2212122121212(,;,)(,;,) (2 - 4)F x x t t f x x t t x x ∂=∂⋅∂存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ(t )的二维概率密度函数。
对于任意时刻t 1,t 2,…,t n ,把{}n 12n 12n 1122n n ()(),(),,() (2 - 5)=≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ(t )的n 维分布函数。
如果n n 12n 12n n 12n 12n 12n(x )() (2 - 6)∂=∂∂∂F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,,存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ(t )的n 维概率密度函数。
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
第一章随机过程的基本概念1.设随机过程X(t)=X cosω0t,-∞ <t< +∞,其中ω0是正常数,而X是标准正态变量。
试求X(t)的一维概率分布解:∵当cosω0t=0 即ω0 t =(k + 1)π 即t=1(k+1)π时2 ω0 2p{x(t)=0}=1若 c o ωs0t≠ 0 即t ≠1 (k+ 1 )π时2ω0F (x, t)= P{X (x)≤ x}= P{X cosω0t ≤ x} 当 c o ωs0t> 0 时此时若 c o ωs0t同理有⎧ x ⎫ 1 x - ξ 22F (x, t)= P⎨X ≤ ⎬ = cosω0t e dξ⎩ cosω0t ⎭ 2π⎰0∂F (x, t ) 1 - x2 1f (x, t)= = e 2 c o 2sω 0t⋅∂x c o sω0tπ< 0 时⎧ x ⎫ ⎧ x ⎫F (x, t)= P⎨X ≥ ⎬ = 1 -P⎨x< ⎬⎩ cosω0t⎭ ⎩ cosω0t⎭1 x e- ξ 2= 1 - cosω0t 2 dξ⎰0- x21f (x, t)= - 2 c o 2sω t ⋅c o ωs0t综上当:cosω0t≠0 即t ≠1 (k+ 1 )π时ω0 21 1 - x2f (x, t) e 2 cos2 ω0t| cosω0 t |π2.利用投掷一枚硬币的试验,定义随机过程为⎧cos πt , 出现正面X (t ) = ⎨⎩ 2t , 出现反面1假定“出现正面”和“出现反面”的概率各为 1 2 。
试确定 X (t ) 的一维分布函数 F (x , 2)和 F (x ,1) ,以及二维分布函数 F (x 1 , x 2 ;12 ,1)解:(1)先求 F (x , 1 )2⎧ π 出现正面 ⎧0⎛ 1 ⎫ ⎪cos 2 , 出现正面显然 X⎪ = ⎨= ⎨1出现反面 ⎝ 2 ⎭ ⎪2 - , 出现反面 ⎩12⎩⎛ 1 ⎫随机变量 X ⎪ 的可能取值只有 0,1 两种可能,于是⎝ 2 ⎭⎧ ⎛ 1 ⎫ ⎫ 1⎧ ⎛ 1 ⎫⎫ 1 P ⎨X⎪ = 0⎬ =P ⎨X⎪ = 1⎬ =⎩ ⎝ 2 ⎭⎭ 2 ⎩ ⎝ 2 ⎭⎭ 2所以⎧ 0 x < 0⎛1 ⎫ ⎪ 1F x ,⎪ =⎨ 0 ≤ x < 1⎝2 ⎭ 2⎪1 x ≥ 1⎩再求 F (x ,1)⎧cos π 出现正面 ⎧-1 出现正面显然 X (1) = ⎨= ⎨⎩2出现反面 ⎩2出现反面p {X (1) = -1}= p {X (1) = 2}= 12所以⎧0x < -1⎪ 1F (x ,1) = ⎪-1 ≤ x < 2⎨ 2⎪⎪1x ≥ 2⎩1(2) 计算 F (x 1 , x 2 ; 2 ,1)1 0 出现正面-1 出现正面X () = ⎨出现反面, X (1) = ⎨出现反面2⎩1⎩2于是⎛ 1 ⎫⎧ ⎛ 1 ⎫ ⎫ F x x 1 , x 2 ; ,1⎪ =p ⎨X ⎪ ≤ x 1 ; X (1) ≤ x 2 ⎬⎝2 ⎭⎩⎝ 2 ⎭⎭⎧0 x 1 < 0- ∞ < x 2 < +∞⎪或 x 1 ≥ 0, x 2 < -1⎪⎪ 10 ≤ x 1 < 1, 2 ≤ x 2= ⎨2 ⎪ 或 x 1> 1,⎪ -1 ≤ x 2 < 2⎪⎩1x 1 > 1,x 2 ≥ 23.设随机过程 {X (t ),-∞ < t < +∞}共有三条样本曲线X (t,ϖ1 ) = 1, X (t,ϖ 2 ) = sin t , X (t,ϖ 3 ) = cos t且 p(ϖ1 ) = p(ϖ 2 ) = p(ϖ 3 ) = 1 , 试求随机过程 X (t ) 数学期望 EX(t) 和相关函数3 R x (t 1,t 2)。
随机过程生灭过程例题
以下是一个简单的随机过程生灭过程的例题:
假设某种细菌的存活时间服从指数分布,平均寿命为10小时。
假设开始时有100个细菌,求出在20小时内全部细菌死亡的概率。
解答:
根据指数分布的性质,细菌存活时间的概率密度函数为 f(t) = λe^(-λt),其中 λ 是细菌死亡率的倒数,也就是平均寿命的倒数。
在本例中,平均寿命为10小时,所以 λ = 1/10。
现在我们要求在20小时内全部细菌死亡的概率。
根据生灭过程的性质,全部细菌死亡的概率等于在20小时内每个细菌都死亡的概率的乘积。
由于每个细菌的存活时间是独立的,所以每个细菌在20小时内死亡的概率为:
P(细菌死亡) = ∫[0,20] λe^(-λt) dt = 1 - e^(-λt) = 1 - e^(-20/10) = 1 - e^(-2)
由于有100个细菌,所以全部细菌死亡的概率为:
P(全部细菌死亡) = [P(细菌死亡)]^100 = [1 - e^(-2)]^100 将数值代入计算,即可得到在20小时内全部细菌死亡的概率。
#00001设ζ,η为相互独立,数字期望均为0、方差均为1的随机变量,令ζ(t )=ζ+ηt ,求ζ(t )的均值、方差和相关函数。
*00001解:;0)()()]([)(1=+==ηξξμtE E t E ttsE E s t tsE E s t E s t R t D t D t D t D t x x +=+++==+=+=+==1)()()()()()]()([),(;1)()()()]([)(22222ηξμξξξηξηξξσ#00002设g(t)为下图所示的以周期为L 的矩形波,η的分布列为令ζ(t)=ηg(t),t ∈R 1,求随机过程ζ(t),t ∈R 1的均值、方差和相关函数。
*00002解:0]21)1(21)[()]([)]([)(1=⋅-+===t g t g E t E t ηξμ)()()()()()]()([),();()()()]([)]([)(22222s g t g E s g t g s g t g E s t R t g E t g t g D t D t x x ==⋅==⋅===ηηηηηξσ#00003设⎩⎨⎧-=内呼叫次数为奇数在内科叫次数为偶数在],0[,1],0[,1t t t ς且在时间(t 0,t 0+t)内发生k 次呼叫的概率与t 0无关并且为)(,!)()(1R t k t et P ktk ∈⋅=-λλ 其中λ>0,k=0,1,2,…。
求:(1)P{在(0,t )呼叫次数为偶数},(2)ξt 的均值函数;(3) ξt 的相关函数。
*00003解:(1)P{在[0,5]内发生偶数次“随机点”}t t t e t p t p t tλλλλλcosh 3}!4)(!2)(1{)()(4220--=+++=++=(2)显然tt t t t t t e e e t t e te t e E λλλλλλλλλλξ2)sinh (cosh sinh )1(cosh 1)(------=⋅=-=⋅-+⋅= (3)||22121),(t t X e t t R --=λ#00004证明贝努里试验构成一个齐次马氏链,并求齐次马氏链的一步转移概率矩阵。
随机过程复习一、回答: 1 、 什么是宽平稳随机过程?2 、 平稳随机过程自相关函数与功率谱的关系?3 、 窄带随机过程的相位服从什么分布?包络服从什么分布?4 、什么是白噪声?性质?二、计算:1 、随机过程 X (t) Acos t + Bsin t ,其中 是常数, A 、B 是相互独 立统计的高斯变量, 并且 E[A]=E[B]=0 , A2 ]=E[ B 2 ]= 2 。
求: X (t)E[ 的数学期望和自相关函数?2 、判断随机过程 X (t )A cos( t) 是否平稳?其中 是常数,A 、 分别为均匀分布和瑞利分布的随机变量,且相互独立。
af ( )12;f A ( a)a2e 2 2a 023 、求随机相位正弦函数 X (t)A cos( 0 t) 的功率谱密度, 其中 A 、 0是常数, 为[0,2 ]内均匀分布的随机变量。
4 、求用 X (t ) 自相关函数及功率谱表示的 Y (t ) X (t) cos(0 t)的自相关函数及谱密度。
其中, 为[0,2 ]内均匀分布的随机变量, X (t ) 是与 相互独立的随机过程。
5 、设随机过程 { X (t ) Acos( 0t Y),t} ,其中 0 是常数, A 与 Y是相互独立的随机变量, Y 服从区间 (0,2 ) 上的均匀分布, A 服从瑞利分布,其概率密度为x 2x2e 2 2x 0f A (x)0 x 0试证明 X (t ) 为宽平稳过程。
解:( 1) m X (t) E{ Acos(0 t Y)} E( A)E{cos( 0t Y )}x 2x22e 2 2 dxy)dy 0 与 t 无关2 cos( 0t 0( 2) X 2 (t)E{ X 2 (t )}E{ A cos( 0t Y)}2E( A 2 ) E{cos 2 ( 0t Y )} E( A 2 )3x2tE( A 2)x1 2t2e 2 2dt , 2 e 22dx2tttte 2 2|0e 2 2 dt2 2e 2 2|0 22所以X2(t )E{ X 2 (t )}(3) R X (t 1,t 2 ) E{[ A cos( 0t 1 Y)][ A cos( 0t 2 Y )]}E[ A 2] E{cos(0t1Y ) cos( 0t 2 Y)}22 2 10t10t 2 y) cos 0 (t 2 t 1)] 1 dy[cos(222cos 0(t 2 t 1 )只与时间间隔有关,所以 X (t ) 为宽平稳过程。
、1.1设二维随机变量(X , F)的联合概率密度函数为:=—i—[l241-ι>⅛= "k"QTh Xl-JF)1.2 设离散型随机变量X服从几何分布:Hm=(Ip)HPJt=U-试求/的特征函数,并以此求其期望E(X)与方差I K X)¾0 = Efr ir) = ∑e⅛ = *)解:一=⅛α-ri M P=√^∑^α-p)t U O-P) ⅛J1—(I-JI)1—q/(O)=α⅛24(1-小丄0<y<x<l苴它试求:在OJu <■ 1时,求I『F)解:J;240 H)JKfc0<y<l Jj2Jf(I_y)3 0<JF<1P 其它^{θ其它当OJXI 时,Aw)2OT(Xy)y<x<l其它所以:-⅛(0)二丄f PZUr=J Er3-(JEIf)3=^^-^=4PPp2.1袋中有一个白球,两个红球,每隔单位时间从袋中任取一球后放回,对每一个确定的t 对应随机变量x(t^3如果对t时取得红球e t如果对t时取得白球试求这个随机过程的一维分布函数族2.2设随机过程 W 加吨MIF)∙ gZ I叫,其中吗是常数,/与F是相互独立的随机变量,F服从区间(°2刘上的均匀分布,/服从瑞利分布,其概率密度为x>0x≤0试证明Xu)为宽平稳过程。
解:( 1)⑷+F)} q啊诚如+ f)}= 与无关(2)枚F(M 仪加血I(Q/伽说如")汁F(才),f _ t t⅛(Q) =-J PQ ÷g)= -te^t∣Γ÷p ^dt =-2σ1e^i∣Γ=2σ3所以必U)啟0⑴卜"(3)R lM壊M∞¼⅛+Hl∕∞Ψ⅛+y)]}=豺]£{oKs(A +Γ)∞<β(A +Γ)}=2^Jtt 2{α≈(0A + β⅛+ y)-rasfflfc A)I^⅛心’皿叫仏Z L)只与时间间隔有关,所以XU)为宽平稳过程2.3设随机过程 X(t)=Ucos2t,其中U是随机变量,且 E(U)= 5, D(U)= 5.求: (1)均值函数;(2)协方差函数;(3)方差函数2.4设有两个随机过程 X(t)=Ut2, Y(t)=Ut3,其中U是随机变量,且D(U) = 5.试求它们的互协方差函数2.5设代B是两个随机变量,试求随机过程X(t) =At ∙3B,t∙ T =(」:「:)的均值函数和自相关函数若A, B相互独立,且A~ N(1,4), B ~U (0,2),则mχ (t)及Rχ(t1,t2)为多少?3.1 一队学生顺次等候体检。
应用随机过程markov链经典例题
随机过程是指随机事件随时间的推移而发生的过程,而马尔可夫过程则是一种特殊的随机过程,其特点是未来状态的概率只取决于当前状态,而与过去状态无关。
经典的马尔可夫链例题是假设某个小球在三个盒子之间随机跳跃,每次跳跃只能移动到相邻的盒子,且概率相等。
问当小球在盒子1时,经过n次跳跃后恰好回到盒子1的概率是多少
首先,我们可以用矩阵表示小球在不同盒子之间跳跃的概率。
假设矩阵P表示小球从一个盒子跳到另一个盒子的概率,即:
P = [0 1/2 1/2; 1/2 0 1/2; 1/2 1/2 0]
其中,第i行第j列的元素表示小球从盒子i跳到盒子j的概率。
例如,P(1,2)表示小球从盒子1跳到盒子2的概率为1/2。
接下来,我们需要用这个矩阵来计算小球从盒子1跳跃n次后回到盒子1的概率。
假设矩阵P的n次方为P^n,则小球从盒子1跳跃n次后回到盒子1的概率为P^n(1,1)。
例如,当n=2时,P^2为:
P^2 = [1/2 1/4 1/4; 1/4 1/2 1/4; 1/4 1/4 1/2]
则小球从盒子1跳跃2次后回到盒子1的概率为P^2(1,1)=1/2。
因此,当小球在盒子1时,经过n次跳跃后恰好回到盒子1的概率为P^n(1,1)。
我们可以通过不断计算矩阵P的幂来得到不同次数下的概率。
习题一1. 某战士有两支枪,射击某目标时命中率分别为0.9及0.5,若随机地用一支枪,射击一发子弹后发现命中目标,问此枪是哪一支的概率分别为多大?2. 设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>+0012x x x A求:(1)常数A; (2)分布函数F (x );(3)随机变量Y =lnX 的分布函数及概率分布。
3. 设随机变量(X, Y )的概率密度为 f (x , y) = Asin (x + y ), 0≤x ,y ≤2π 求:(1) 常数A ;(2)数学期望EX ,EY ; (3) 方差DX ,DY ;(4) 协方差及相关系数。
4. 设随机变量X 服从指数分布⎩⎨⎧<≥=-00)(x x ke x f kx()0>k求特征函数)(x ϕ,并求数学期望和方差。
5. 设随机变量X 与Y 相互独立,且分别服从参数为λ1 和λ2的泊松分布,试用特征函数求Z = X +Y 随机变量的概率分布。
6.一名矿工陷进一个三扇门的矿井中。
第一扇门通到一个隧道,走两小时后他可到达安全区。
第二扇门通到又一隧道,走三个小时会使他回到这矿井中。
第三扇门通到另一隧道,走五个小时后,仍会使他回到这矿井中。
假定矿井中漆黑一团,这矿工总是等可能地在三扇门中选择一扇,让我们计算矿工到达安全区的时间X 的矩母函数。
7. 设 (X , Y ) 的分布密度为(1) ⎩⎨⎧<<<<=其他,,010,10xy 4),(y x y x φ(2)⎩⎨⎧<<<<=其他,,010,10xy 8),(y x y x φ问X ,Y 是否相互独立?8. 设(X ,Y )的联合分布密度为问: (1)α, β取何值时X ,Y 不相关; (2)α,β取何值时相互独立。
习题二1.设有两个随机变量X 、Y相互独立,它们的概率度分别为)(x f X 和)(y f Y ,定义如下随机过程:Yt X t Z +=)(,R t ∈试求)(t Z 的均值函数)(t m 和相关函数),(21t t R 。