第1课时 二次根式的加减
- 格式:ppt
- 大小:1.30 MB
- 文档页数:11
二次根式的加减二次根式是代数中常见的一种形式,它可以表达为√n的形式,其中n是一个非负实数。
在代数学中,我们常常需要对二次根式进行加减运算。
本文将探讨二次根式的加减规则以及一些实际问题的应用。
一、二次根式的加法对于两个相同的二次根式√n的相加运算,我们可以简化为2√n。
例如,√3 + √3 = 2√3。
对于两个不同的二次根式√m 和√n 的相加运算,我们需要考虑它们的根数是否相同。
如果根数相同,即两个二次根式的根数都为m,那么它们可以合并为(√m + √n)。
例如,√5 + √5 = 2√5。
如果根数不同,我们无法直接合并它们。
在这种情况下,我们可以先将它们的根数调整为相同的形式,然后再进行合并。
例如,√2 + √3,我们可以通过乘以一个1的形式来调整根数,即(√2 + √3) * (1) = (√2 + √3) * (√3/√3) = (√2 * √3 + √3 * √3) / √3 = (√6 + 3) / √3 = (√6/√3 + 3/√3) = (√6/√3 + 3√3/√3) = (√6 + 3√3) / √3 = (√6/√3 + 3√3/√3) = (√6 + 3√3) / √3 = (√6/√3 + 3√3/√3) = √6/√3 + 3√3/√3 = (√6 + 3√3) / √3。
二、二次根式的减法对于两个相同的二次根式√n的相减运算,我们可以简化为0。
例如,√4 - √4 = 0。
对于两个不同的二次根式√m 和√n 的相减运算,我们的方法与二次根式的加法类似。
我们需要调整它们的根数,使它们变为相同的形式,然后再进行运算。
例如,√7 - √3,我们可以通过乘以一个1的形式来调整根数,即(√7 - √3) * (1) = (√7 - √3) * (√7/√7) = (√7 * √7 - √3 * √7) /√7 = (7 - √21) / √7。
三、二次根式的应用二次根式在实际问题的求解中经常出现。
3.3二次根式的加减(1) (教案)备课时间: 主备人:【学习目标】:1、了解同类二次根式的概念,掌握判断同类二次根式的方法2、能正确合并同类二次根式,进行二次根式的加减运算【重点难点】:重点:同类二次根式的概念及掌握合并同类二次根式的方法难点:同类二次根式的概念【预习指导】1、什么是同类项?2、如何进行整式的加减运算?3、计算:(1)2x-3x+5x (2)2223a b ba ab +- 4、下列3组二次根式,各有什么共同特征?(1)2,23,22 ,215,232…… (2)3,35 ,36,317,3132…… (3)2,8,18,32,21…… ,称为同类二次根式。
思考:(1)要进行二次根式加减运算,它们具备什么特征才能进行合并?(2)怎样合并同类二次根式:(3)二次根式加减运算的步骤:【典型例题】例1 :计算:1、23 + 32 - 22 + 32、12 + 18 - 8 - 323、40 - 1015 + 10例2:如图,两个圆的圆心相同,面积分别为8㎝2、18㎝2,求圆环的宽度(两圆半径之差)【课堂练习】1、计算:(1)36-5-216+25+2; (2)27-45-20+75;(3)4ab +5ab -23ab -ab 4(a ≥0,b ≥0)(4)2a a 2-323a 8+6a 52a2(a >0)2、(1)两个正方形的面积分别为22cm 、82cm ,求这两个正方形边长的和;(2)两个正方形的面积分别为s 2cm 、4s 2cm (s >0),求这两个正方形边长的和;【课外练习】1、计算:(1)23-35-5+55+73;(2)12-27-20+50;(3)x 4+2x 2-21x 8-4x (x ≥0);(4)21-8+21-81;2、计算: (1)50511221313832++--;(2)(3118-2112)-(331-221);。
二次根式的加减法二次根式是数学中的一种特殊类型,由一个根号和一个数构成。
在这篇文章中,我们将讨论二次根式的加减法运算。
通过理解二次根式的性质和运算规则,我们能够有效地计算和简化这类数学表达式。
一、二次根式的定义二次根式是指具有形如√a的数学表达式,其中a为一个非负实数。
根号下的数称为被开方数,√a读作a的二次根。
例如,√4和√9分别等于2和3,因为2²等于4,3²等于9。
这些数都是被开方数的平方根。
二、二次根式的加法与减法原则1. 加法原则:当两个二次根式具有相同的根号下数时,我们可以将它们合并为一个根号下,然后在对应的系数上进行加法运算。
例如,√5 + 2√5 = 3√5解释:这里的√5和2√5具有相同的根号下数5,所以可以将它们合并为3√5。
2. 减法原则:与加法类似,在两个二次根式具有相同的根号下数时,我们可以将它们合并为一个根号下,然后在对应的系数上进行减法运算。
例如,3√7 - √7 = 2√7解释:这里的3√7和√7具有相同的根号下数7,所以可以将它们合并为2√7。
三、示例与应用让我们通过几个示例来进一步了解二次根式的加减法运算。
示例1:计算:√8 + 3√2解答:√8 = √4 × 2 = 2√2所以,√8 + 3√2 = 2√2 + 3√2 = 5√2示例2:计算:5√10 - 2√10解答:5√10 - 2√10 = 3√10示例3:计算:√18 + 4√3 - 2√12解答:√18 = √9 × 2 = 3√2√12 = √4 × 3 = 2√3所以,√18 + 4√3 - 2√12 = 3√2 + 4√3 - 2√3 = 3√2 + 2√3四、简化与合并在进行二次根式的加减法运算后,我们可以进一步将结果进行简化与合并。
具体而言,可以将相同根号下数的二次根式合并为一个根号下,并且对应的系数进行加减运算。
例如,2√5 + 3√5 = (2+3)√5 = 5√5在这个步骤中,我们将2√5和3√5合并为5√5,并对应的系数2和3进行加法运算。
二次根式的加减法一、知识概述1、同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式.同类二次根式与整式中的同类项类似.2、二次根式的加减法法则二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.注意:(1)二次根式的加减常分为两大步骤进行,第一步化简;第二步合并;(2)在合并前应注意要先判断清楚它们中哪些二次根式的被开方数是相同的;在合并时类似于以前学过的合并同类项,只需将根号外的因式进行加减,被开方数和根指数不变.3、二次根式的混合运算二次根式的混合运算顺序与有理数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).注意:(1)在运算过程中,每一个根式可以看作是一个“单项式”,多个被开方数不同的二次根式的和可以看作“多项式”;(2)有理数(或整式)中的运算律、运算法则及所有的乘法公式在二次根式的运算中仍然适用;(3)二次根式的运算结果必须是最简二次根式.二、重难点知识1、二次根式的加减法运算实质上是合并同类二次根式,在进行二次根式的加减法时,注意先把各个二次根式化为最简二次根式,再把同类项合并,合并同类二次根式的方法与合并同类项类似.2、二次根式的混合运算中可以与有理数的混合运算及整式的混合运算及分式的运算作比较,使二次根式的混合运算易于理解和掌握,并能合理应用运算律及技巧进行计算.二次根式的除法运算转化为分母有理化的问题,同时可避免错误地使用运算律.三、典型例题讲解例1、计算:.分析:本组题中各个加数都不是最简二次根式,因此需先进行化简,然后再把被开方数相同的根式进行合并.解:.例2、计算:分析:先根据去括号的法则,去掉括号,再进行二次根式的加减运算.总结:解此类问题分为三个步骤:一是去括号,二是化简,三是合并,但在去括号时应注意符号的处置.例3、计算下列各题:.思路:(1)题可仿照单项式乘以多项式的方法进行计算;(2)、(3)题可仿用多项式乘法法则进行计算;(4)题可套用完全平方公式计算.例4、计算下列各题.解:例5、化简:总结:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可交换相邻项的位置,如,结果为-1,继续运算易出现符号上的差错,而把变为,这样则为1,继续运算可避免错误.例6、已知x、y都为正整数,且.求x+y的值.分析:因为只有化简后被开方数相同的二次根式才能合并,而,易知化简后的被开方数必为222,故可设.由此求出正整数a、b即可求出x、y.解:,于是即a+b=3∴a=2,b=1或a=1,b=2,故x=222,y=888或x=888,y=222.∴x+y=1110,总结:几个二次根式化简后被开方数相同,则它们可以合并,本题则是逆用该结论,即几个二次根式能合并成一个二次根式,则它们化简后的被开方数必相同.课外拓展:例、已知a、b是实数,且,问a、b之间有怎样的关系?请推导.思路分析:由特殊探求一般,在证明一般性的过程中,由因导果,从化简条件等式入手,而化简的基本方法是有理化.解:原等式两边分别乘以,得两式相加得,所以.A 卷一、选择题1、下列计算结果正确的是( )A.B.C.D.2、下列计算正确的是( )A.B.C.D.3、下列各式化简结果不正确的是()A.B.C.D.4、下列计算正确的是()A.B.C.D.5、计算等于()A.·1 B.3C.D.6、在数轴上点A表示实数,点B表示,那么离原点较远的点是()A.A B.BC.A、B的中点D.不能确定B 卷二、填空题7、△ABC的三边长为a、b、c,且a、b满足则△ABC的周长的取值范围是______.8、若成立,则xy的值为______.9、若,则______.10、已知正数a、b,有下列结论:(1)若a=1,b=1,则;(2)若,则;(3)若a=2,b=3,则;(4)若a=1,b=5,则.根据以上几个命题提供的信息,请猜想:若a=6,b=7,则______.三、解答题11、计算或化简下列各题:12、计算:13、已知,求代数式的值.14、计算.[15、先观察下列等式,再回答问题:(1)根据上面三个等式提供的信息,请猜想的结果,并进行验证;(2)请按照上面各等式反映的规律,试写出n(n为正整数)表示的等式,并加以验证.一.选择题DDCBDB二.填空题7、△ABC的周长大于6且小于10.8、由题意有x=2,y=3,∴x y=8.9、.10、=13.三.解答题11.12.13..14. 解:(1)配方法:本题中的根式不符合型,我们可根据分式的基本性质,分子、分母都乘以2,将原式变形为(2)换元法:设,两边同时平方得,所以x2=10,又因为x>0,所以,即.15.。
21.3二次根式的加减(共5课时)第一课时:二次根式的加减教学过程 一、课堂引入(1)现有一块长7.5dm 、宽5 dm 的木板,能否采用如教科书图21.3-1所示的方式,在这块木板上截出两个面积分别是8 dm 2和18 dm 2的正方形木板?(2(3)下列计算是否正确?为什么?采用分组讨论,自主探究的方式来解决问题,提高学生自主学习的能力.==;=④=例1 计算 ; 练习13(1(2(例2 计算练习2四、小结本节课你学到了什么知识?你有什么认识? 五、课后作业:教科书第16页第1、2题. 学22+例计算:223-练习计算:(1(()第二课时:利用二次根式化简的数学思想解应用题.二、探索新知例1.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)ACQ P例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?分析:此框架是由AB、BC、BD、AC组成,所以要求钢架的钢材,•只需知道这四段的长度.三、巩固练习教材P17 3四、应用拓展例3.若最简根式3a是同类二次根式,求a、b的值.(•同类二次根式就是被开方数相同的最简二次根式)五、归纳小结本节课应掌握运用最简二次根式的合并原理解决实际问题.作业设计一、选择题一、1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(•结果用最简二次根式)A...以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A.. D.二、填空题二、1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,•鱼塘的宽是_______m.(结果用最简二次根式)2.已知等腰直角三角形的直角边的边长为,•那么这个等腰直角三角形的周长是________.(结果用最简二次根式)三、综合提高题1.若最简二次根式2n是同类二次根式,求m、n 的值.2.同学们,我们以前学过完全平方公式a2±2ab+b2=(a±b)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=(2,5=2,你知道是谁的二次根式呢?下面我们观察:-1)2=2-2·1·+12反之,(-1)2∴=)2求:(1(2(3(4,则m、n与a、b的关系是什么?并说明理由.第三课时:含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;教学过程一、复习引入学生活动:请同学们完成下列各题:1.计算(1)(2x+y)·zx (2)(2x2y+3xy2)÷xy2.计算(1)(2x+3y)(2x-3y)(2)(2x+1)2+(2x-1)2二、探索新知例1.计算:(1)+(2)()÷例2.计算(1))((2)))三、巩固练习课本P练习1、217四、归纳小结:本节课应掌握二次根式的乘、除、乘方等运算.21.3 二次根式的加减(第四课时能力提高)一、知识梳理,基础练习1.的值是( ).A .203.323C .23.2032 ).A .2B .3C .4D .1 二、填空题1.(-122)2的计算结果(用最简根式表示)是________.2.((1+2-()2的计算结果(用最简二次根式表示)是_______.3.若-1,则x 2+2x+1=________.4.已知a 2b-ab 2=_________.三、能力提高例1.已知x b a -=2-x a b-,其中a 、b 是实数,且a+b ≠0,练习12.当的值.(结果用最简二次根式表示)四课外延伸1.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,•这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.练习:下列各组二次根式中,是同类二次根式的是().A. B.与.与 D与2.互为有理化因式:•互为有理化因式是指两个二次根式的乘积可以运用平方差公式(a+b)(a-b)=a2-b2,同时它们的积是有理数,不含有二次根式:如为有理化因式.________;的有理化因式是_________.的有理化因式是_______.3.分母有理化是指把分母中的根号化去,通常在分子、•分母上同乘以一个二次根式,达到化去分母中的根号的目的.练习:把下列各式的分母有理化(2;(3(4(14.其它材料:如果n==________.。