四川大学大学物理-2002答案
- 格式:pdf
- 大小:171.79 KB
- 文档页数:2
四川大学2002年攻读硕士学位研究生入学考试试题考试科目:机械设计科目代号:567#适用专业:机械制造及其自动化、机械电子工程、机械设计及理论(试题共6页)(答案必须写在试卷上,写在试题上不给分)--------------------------------------------------------------------------一、单项选择:将下列各题的正确号码填在横线上。
(每题2分,共20分)1、受拉螺栓联接若螺栓所受预紧力为F',在受轴向工作载荷F时,其剩余预紧力为F",则螺栓所受的总拉力F。
为。
(1)F0=F'+F;(2)F0=F'+F"+F;(3)F0=F+F";(4)F0=F"+F'2、对于受循环变应力作用的零件,影响疲劳强度的主要因素是。
(1)最大应力;(2)平均应力;(3)应力幅;(4)最小应力3、链传动的瞬时传动比若要等于常数,则它的主要条件是。
(1)z2=z1;(2)z2=z1,且中心距α是链节距p的整数倍。
(3)z2=3z1;(4)大链轮齿数z z是小链齿数z1的整数倍。
4、减速蜗杆传动中,用来计算传动比i是错误的。
(1)i=w1/w2;(2)i=d2/d1;(3)i=n1/n2;(4)i=z2/z15、花键静联接的强度主要取决于强度。
(1)齿根剪切;(2)齿侧接触;(3)齿根弯曲;(4)齿侧挤压6、滑动轴承的条件性计算中,限制PV值是为了。
(1)防止加速磨损;(2)防止过度磨损;(3)防止轴承温升过高;(4)防止出现过大的摩擦阻力矩。
7、配对齿轮副1、2的工作接触应力σH1、σH2之间的关系为。
(1)仅节点处σH1=σH2;(2)任意啮合位置处σH1=σH2;(3)σH1≥σH2;(4)σH1≤σH28、齿轮的弯曲强度,当,则齿根弯曲强度增加。
(1)模数不变,齿数增多时;(2)模数不变,中心距增大时;(3)齿数不变,模数加大时;(4)模数不变,齿轮直径加大时。
2002年普通高等学校招生全国统一考试(辽宁卷) 15.B【解析】由质子带一个单位正电荷,中子不带电,设质子中u夸克、d夸克个数分别是x、y(x、y取正整数),则x×23+y×(−13)=1,解得x=2、y=1;设中子中u夸克、d夸克个数分别是m、n(m、n取正整数),m×(23)+n×(−13)=0,解得m=1、n=2,故B正确.16.C【解析】设碰撞前A球的速度为v0,两个弹性小球发生正碰,当两者速度相同时,弹性势能最大,由动量守恒得mv0=2mv,由机械能守恒得E p=12mv02−12·2mv2,解得v0=2√E pm,故C正确.17.D【解析】电容器在电路中与等效电源并联,两端电压等于AB端感应电动势,所以当导体棒匀速滑动时,电容器两端电压不变,所以I2=0,电阻R中电流不为零,故AB错误;加速滑动时,电容器两端电压随导体棒速度的增大而增加,电容器持续充电,充电电流不为零,通过电阻的电流也不为零,故C错误D正确.18.B【解析】由力的图像分析可知,在时间0∼t1内,质点向正方向做加速度增大的加速运动;在时间t1∼t2内,质点向正方向做加速度减小的加速运动;在时间t2∼t3内,质点向正方向做加速度增大的减速运动;在时间t3∼t4内,质点向正方向做加速度减小的减速运动,t4时刻速度为零,因此t2时刻质点的速度最大,故B正确.19.B【解析】观察门外情况时,作出光路图如图所示,由几何关系得sinα=√r2+l2,由光的折射规律得n=sinθsinα,所以视场角θ=√r2+l2,故B正确.20.D【解析】当变阻器R5滑动触点向a端移动时,变阻器接入电路的电阻减小,电路中的总电阻减小,总电流增大,电源内电压增大,路端电压减小,故电压表测量路端电压示数U减小,R1、R3两端电压随总电流增大而增大,所以外电路并联部分电压减小,通过电流表所在支路的电流I减小,电流I示数减小,故D正确.26.1.5×103N.【解析】将运动员看做质量为m的质点,从ℎ1高处下落,刚接触网时速度的大小为v1=√2gℎ1(向下)①,弹跳后到达的高度为ℎ2,刚离网时的速度的大小为v2=√2gℎ2(向上)②,速度的改变量为Δv=v1+v2(向上)③以a表示加速度,Δt表示接触时间,则Δv=aΔt④,接触过程中运动员受到向上的弹力F和向下的重力mg,由牛顿第二定律得F−mg=ma⑤,由以上各式解得F=mg+m√2gℎ2+√2gℎ1Δt⑥,代入数值得F=1.5×103N⑦.27.1r√2mUetanθ2.【解析】电子在磁场中沿圆弧ab运动,圆心为C,半径为R,以v表示电子进入磁场时的速度,m、e分别表示电子的质量和电量,在加速电场中运动时,由动能定理得eU=12mv2①,由洛伦兹力提供向心力得evB=mv2R②,由几何关系得tanθ2=rR③,由以上各式解得B=1r√2mUetanθ2④29.Ⅰ.(1)见解析;(2)见解析.【解析】Ⅰ.(1)②称出活塞和钩码框架的总质量M;⑤将注射器针筒上的小孔用橡皮帽堵住;(2)由题意知,活塞的横截面积为S=V mL①,由力学平衡条件得p1=p0+(M+m1)gS②,p2=p0+(M+m2)gS③,由玻意耳定律得p1V1=p2V2④,联立解得大气压强p0=LgV m(m2V2−m1V1V1−V2−M)⑤.Ⅰ.(1)2NH4Cl+Ca(OH)2△2NH3↑+CaCl2+2H2O;(2)向下排空气;碱石灰;(3)打开止水夹,挤岀胶头滴管中的水;氨气极易溶解于水,致使烧瓶内气体通迅速减小.(4)打开夹子,用手(或热毛巾等)将烧瓶捂热,氨气受热膨胀,赶出玻璃导管内的空气,氨气与水接触,即发生喷泉.30.6.8×10−2J.【解析】图1中虚线表示A、B球原来的平衡位置,实线表示烧断后重新达到平衡的位置,其中α、β分别表示细线OA、AB与竖直方向的夹角.A球受力如图2所示,重力mg,竖直向下;电场力qE,水平向左;细线OA对A的拉力T1,方向如图所示;细线AB 对A的拉力T2,方向如图,由平衡条件得T1sinα+T2sinβ=qE①,T1cosα=mg+T2cosβ②,B球受力如图3所示,重力mg,竖直向下,电场力qE,水平向右,细线AB对B的拉力T2,方向如图所示,由平衡条件得T2sinβ=qE③,T2cosβ=mg④,联立以上各式并代入数据,得α=0⑤,β=45°⑥,由此可知,A、B球重新达到平衡的位置如图4所示,与原来位置相比,A球的重力势能减少了E A=mgl(1−sin60°)⑦,B球的重力势能减少了E B=mgl(1−sin60°+cos45°)⑧,A球的电势能增加了W A=qElcos60°⑨,B球的电势能减少了W B=qEl(sin45°−sin30°)⑩,两种势能总和减少了W=W B−W A+E A+E B⑪,代入数据解得W=6.8×10−2J⑫.。
习题1.11.解下列不等式(用区间表示).⑴172<-x ,⑵12≥-x ,⑶()()021<--x x ,⑷2212<+<-x ,⑸412<<x ,⑹232322+->+-x x x x .解:⑴1721<-<-x 826<<x 43<<x )(.4,3∈x ⑵1212-≤-≥-x x 或13≤≥x x 或(][).,31,+∞∞-∈ x ⑶2,121-==x x 12<<-x ().1,2-∈x ⑷⎪⎪⎩⎪⎪⎨⎧->+<+221221x x ⇒⎪⎪⎩⎪⎪⎨⎧>++>++02520232x x x x ⇓()()()()⎩⎨⎧>++>++02520232x x x x ⎪⎭⎫ ⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-∈⇒->-<⇒⎪⎪⎩⎪⎪⎨⎧->-<->-<⇒,2325,2325225232 x x x x x x x 或或或解得.⑸2141<<x 当0>x 时,2141<<x .当0<x 时,41212141-<<-⇒<-<x x .综合上述:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--∈21,4141,21 x .⑹不成立时,2323230232222+->+-=+-≥+-x x x x x x x x .考虑0232<+-x x 的情形,232322-+-=+-x x x x −−−−→−原不等式变为().2,1210232323222∈⇒<<⇒<+-⇒+->-+-x x x x x x x x 2.求函数值.⑴()12--=x x x f ,求()()(),0,2,2f f f -⑵()x x x x x f 6116234-+-=,求()()(),4,1,0f f f ⑶()⎪⎩⎪⎨⎧+=,2,12x x x f ,0,0+∞<<≤<∞-x x 求()()(),2,0,2f f f -⑷()x x x f +-=11,求()x f -,()1+x f ,⎪⎭⎫⎝⎛x f 1,⑸设)(a ())(,b b ax x f +=())(,2c x x f =()xa x f =,求()()().hx f h x f x -+=ϕ解:⑴()()(),20,342,02-=-=-=f f f ⑵()()(),244,01,00===f f f ⑶()()(),42,10,52===-f f f ⑷()(),111,21,11+-=⎪⎭⎫ ⎝⎛+-=+-+=-x x x f x x x f x x x f ⑸)(a ()(),a hbax b h x a x =--++=ϕ)(b ()(),222h x hx h x x +=-+=ϕ)(c ()(),1ha a h a a x h x x h x -=-=+ϕ3.求函数的定义域.⑴,12xx y +=⑵,112-=x y ⑶,112xy -=⑷,11922-+-=x x y ⑸(),721lg x y -=⑹,sin 1xy π=⑺,12arccosxxy +=⑻(),ln ln x y =⑼,22x x y -+=⑽()⎪⎩⎪⎨⎧≤≤<≤<-=.21,,10,1,0,12x e x x x x x f x解:⑴01≠+x .1-≠⇒x ⑵.1012±≠−−→−≠-x x 解得⑶.11012<<-−−→−>-x x 解得⑷092≥-x ①012>-x ②联立①②解得:.3113≤<-<≤-x x 或⑸.30721<⇒>-x x ⑹).,2,1,0(,),2,1,0(,0sin ⋅⋅⋅±±=≠⇒⋅⋅⋅±±=≠⇒≠k k x k k x x πππ⑺.1311121≤≤-−−→−≤+≤-x x x 解得⑻.10ln >⇒>x x ⑼.21022≤≤-−−→−≥-+x x x 解得⑽①0<x 时R x ∈,结合前提:,0<x ②10<≤x 时0≠x ,结合前提:,10<<x ③21≤≤x 时R x ∈,结合前提:.21≤≤x 综合上诉:定义域为.200≤<<x x 或4.求下列函数的定义域和值域.⑴x y sin =,⑵()x y 1-=,⑶().cos 21lg x y -=解:⑴()),,2,1,0(,1220sin ⋅⋅⋅±±=+≤≤⇒≥k k x k x ππ.10≤≤y⑵.1),(12±=+=y n m m nx 为整数⑶),,2,1,0(,2352321cos 0cos 21⋅⋅⋅±±=+<<+⇒<⇒>-k k x k x x ππππ.3lg 3cos 210,3cos 211,1cos 1≤⇒≤-<≤-≤-≤≤-y x x x 5.下列函数是否表同一函数?为什么?⑴()()x x x x f lg 2lg 2==ϕ与,⑵()()2x x x x f ==ϕ与,⑶()()1==x xxx f ϕ与.解:⑴()x f 定义域0,02≠>x x ,()x ϕ定义域0>x ,定义域不同,∴否⑵()()0,≥∈x R x f ϕ,值域不同,∴否⑶()x f 定义域0≠x ,()x ϕ定义域R x ∈,定义域不同,∴否6.判断下列函数在所示区间内的增减性.⑴x y cos =()π≤≤x 0,⑵x y ln =()+∞<<x 0,⑶2xy =().0≤<∞-x 解:⑴根据图像判断,单调减⑵根据图像判断,单调增⑶根据图像判断,单调减7.指出下列函数的奇偶性.⑴()33x x x f -=,⑵()x x f 2cos 4=,⑶()x x x f sin =,⑷()12+=x x f ,⑸()xe xf =,⑹()()()323211x x x f ++-=,⑺()x xx f +-=11ln ,⑻()1212+-=x x x f ,⑼().cos sin x x x f -=解:⑴定义域R x ∈,R x ∈-∀,()33x x x f +-=-()x f -=,∴奇函数⑵定义域R x ∈,R x ∈-∀,()()()x f x x x f ==-=-2cos 42cos 4,∴偶函数⑶定义域R x ∈,R x ∈-∀,()()()x f x x x x x f ==--=-sin sin ,∴偶函数⑷定义域R x ∈,R x ∈-∀,()()()x f x x x f =+=+-=-1122,∴偶函数⑸定义域R x ∈,R x ∈-∀,()()x f ee xf x x≠==--1,同理()()x f x f -≠-,∴非奇非偶⑹定义域R x ∈,R x ∈-∀,()()()()x f x x x f =-++=-323211,∴偶函数⑺定义域()()11011011-<>⇒>+-⇒>+-x x x x x x或,()()+∞-∞-∈-∀,11, x ,()()()()()[]()x f xxx x x x x x x f -=+--=+---=--+=-+=-11ln 1ln 1ln 1ln 1ln 11ln ,∴奇函数⑻定义域R x ∈,R x ∈-∀,()()x f x f xx x x xx x xx x -=+--=+-=+-=+-=---121221212212211212,∴奇函数⑼定义域R x ∈,R x ∈-∀,()()()xx x x x f cos sin cos sin --=---=-()()()()x f x f x f x f -≠-≠-,,∴非奇非偶8.证明()21ln xx y ++=为奇函数.证:先求定义域:xx x x x x x +>++∴=>+2221,1 01,0,0;01,02,022>++=+≤>++>=+>x x x x x x x x x x x 即时即时综合上述:012>++x x 恒成立,又012>+x ,∴定义域为R x ∈.R x ∈-∀,()()221ln 1ln x x x x yyxx xx +++++-=+=-=()()[]x x x x -+++=2211ln ()01ln 1ln 22==-+=x x ,xx xx yy=-=-=∴,∴()21ln xx y ++=为奇函数,得证9.设()x f 为定义在()+∞∞-,内的任意函数,证明()()()x f x f x F -+=1为偶函数,()()()x f x f x F --=2为奇函数.证:①()()()()()()011=---+-=--x f x f x f x f x F x F ,即()()x F x F 11=-,∴偶函数②()()()()()()022=--+--=+-x f x f x f x f x F x F ,即()()x F x F 22-=-,∴奇函数10.求下列周期函数的最小正周期.⑴2sinx y =,⑵x y 2cos =,⑶x n B x n A y λλcos sin +=,⑷x x x y 3sin 312sin 21sin ++=,⑸x y 2sin =.解:⑴)⋅⋅⋅±±=+=⎪⎭⎫⎝⎛+=,2,1,0(,24sin 22sin 2sink k x k x x ππ,1=k 取得最小正周期π4.⑵()()),2,1,0(,2cos 22cos 2cos ⋅⋅⋅±±=+=+=k k x k x x ππ,1=k 取最小正周期π.⑶()()πϕλϕλλλk x n B A x n B A x n B x n A 2sin sin cos sin 2222+++=++=+),2,1,0((tan ,2sin 22⋅⋅⋅±±==⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛++=k a bn k x n B A ϕϕλπλ,1=k 时取得最小正周期λπn 2.⑷x sin 的最小正周期π2,x 2sin 21最小正周期π,x 3sin 31最小正周期π32.π2是32,,2πππ的倍数,∴y 是周期函数,最小正周期是π2.⑸),2,1,0(,21)(2cos 212cos 212122cos 1sin 2⋅⋅⋅±±=++-=-=-=k k x x x x π,1=k 时取最小正周期π.11.证明[]x x y -=为周期函数,并求它的最小正周期.证:①Z x ∈时,[]0=-=-=x x x x y ,为周期函数,周期为R x ∈∀,②Z x ∉时,令)(,为小数部分为整数部分,b a b a x +=,[]ba b a x x y =-+=-=Z T ∈∀,()T x f +的小数部分也为b .即()()x f T x f =+,∴y 为周期函数,周期为Z T T ∈,,综合上述:R x ∈,[]x x y -=为周期函数,周期为Z T T ∈,,最小正周期为1.12.写出由下列函数组构成的复合函数,并求复合函数的定义域.⑴(),1,arcsin 2x v v y -==⑵,1,ln 2x u u y -==⑶,2,log ,2122x x v v u u y a +===⑷.tan ,log ,12x v v u u y a ==+=解:⑴(),1arcsin 2x y -=().20111,112≤≤−−→−≤-≤-≤≤-x x v 解得⑵().1101,1ln 22<<-−−→−>--=x x x y 解得⑶,2log 2122x x y a +=.20022-<>⇒>+x x x x 或⑷,tan log 12x y a +=).,2,1,0(,20tan ⋅⋅⋅±±=+<<⇒>k k x k x πππ13.⑴设()(),2,2xx x x f ==ϕ求()[]x f ϕ和()[]x f ϕ,⑵设(),11xx f -=求()[]x f f ,⑶设(),2312+-=+x x x f 求().x f 解:⑴()[]()()[],2,4222x xx x f x f ===ϕϕ⑵()[],11111xx xx f f -=--=⑶()()(),615112++-+=+x x x f 令()().65,65,122+-=+-=+=x x x f t t t f x t14.求下列函数的反函数及反函数的定义域.⑴()+∞<≤=x x y 02,⑵)0112≤≤--=x x y ,⑶11-=x y ,⑷110+=x y ,⑸xxy +-=11,()⎪⎩⎪⎨⎧+∞<<≤≤<<∞-=.4 ,2,41 ,,1 , 62x x x x x y x 解:⑴,,x y y x ==,0≥x ⑵,1,122x y y x --=--=,10≤≤x ⑶,0,1,1≠+=+=x xx y y y x ⑷,0,1lg ,1lg >-=-=x x y y x ⑸,1,11,11-≠+-=+-=x xx y y y x ⑹⎪⎩⎪⎨⎧+∞<<≤≤<<-∞=,16,log ,161,,1,2x x x x x x y 注:先逆推y ,再值域对应定义域。
一、 单项选择题:1. 北京正负电子对撞机中电子在周长为L 的储存环中作轨道运动。
已知电子的动量是P ,则偏转磁场的磁感应强度为: ( C )(A) eL P π; (B) eL P π4; (C) eLP π2; (D) 0。
2. 在磁感应强度为B ρ的均匀磁场中,取一边长为a 的立方形闭合面,则通过该闭合面的磁通量的大小为: ( D )(A) B a 2; (B) B a 22; (C) B a 26; (D) 0。
3.半径为R 的长直圆柱体载流为I , 电流I 均匀分布在横截面上,则圆柱体内(R r 〈)的一点P 的磁感应强度的大小为 ( B )(A) r I B πμ20=; (B) 202R Ir B πμ=; (C) 202r I B πμ=; (D) 202RI B πμ=。
4.单色光从空气射入水中,下面哪种说法是正确的 ( A )(A) 频率不变,光速变小; (B) 波长不变,频率变大;(C) 波长变短,光速不变; (D) 波长不变,频率不变.5.如图,在C 点放置点电荷q 1,在A 点放置点电荷q 2,S 是包围点电荷q 1的封闭曲面,P 点是S 曲面上的任意一点.现在把q 2从A 点移到B 点,则 (D )(A) 通过S 面的电通量改变,但P 点的电场强度不变;(B) 通过S 面的电通量和P 点的电场强度都改变;(C) 通过S 面的电通量和P 点的电场强度都不变;(D) 通过S 面的电通量不变,但P 点的电场强度改变。
6.如图所示,两平面玻璃板OA 和OB 构成一空气劈尖,一平面单色光垂A C直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将 ( C )(A) 干涉条纹间距增大,并向O 方向移动;(B) 干涉条纹间距减小,并向B 方向移动;(C) 干涉条纹间距减小,并向O 方向移动;(D) 干涉条纹间距增大,并向O 方向移动.7.在均匀磁场中有一电子枪,它可发射出速率分别为v 和2v 的两个电子,这两个电子的速度方向相同,且均与磁感应强度B 垂直,则这两个电子绕行一周所需的时间之比为 ( A )(A) 1:1; (B) 1:2; (C) 2:1; (D) 4:1.8.如图所示,均匀磁场的磁感强度为B ,方向沿y 轴正向,欲要使电量为Q的正离子沿x 轴正向作匀速直线运动,则必须加一个均匀电场E u r ,其大小和方向为 ( D )(A) E = B ,E u r 沿z 轴正向; (B) E =v B ,E u r 沿y 轴正向; (C) E =B ν,E u r 沿z 轴正向; (D) E =B ν,E u r 沿z 轴负向。
2002川大高等代数及答案四川大学2002年攻读硕士学位研究生入学考试题一、(本题满分24分,每小题8分) 解答下列各题.51. 证明多项式f (x ) =x -5x +1在有理数域Q 上不可约.证明:由s a n =1、r a 0=1,又(s , r ) =1r有的可能值为±1,带入验证有f (1) =-3、f (-1) =5s故f (x ) 不含有理根,则f (x ) 只能分解为二次多项式和三次多项式的乘积232232有f (x ) =(x +a 1x +1)(x +b 1x +c 1x +1) 或f (x ) =(x +a 2x -1)(x +b 2x +c 2x -1)⎧a 1+b 1=0⎧a 2+b 2=0⎪a b +c +1=0⎪a b +c -1=0⎪111⎪222 得方程⎨a 1c 1+b 1+1=0和⎨a 2c 2-b 2-1=0,两方程无解⎪⎪⎪⎩a 1+c 1+5=0⎪⎩a 2+c 2-5=05故f (x ) =x -5x +1在有理数域Q 上不可约22. 设A 为n 阶方阵且A +A =2E . 其中E 为n 阶单位矩阵. 证明:r (A -E ) +r (A +2E ) =n ,其中r (A ) 表示矩阵A 的秩.证明:r (A -E ) +r (A +2E ) =r (E -A ) +r (A +2E ) ≥r [(E -A ) +(A +2E )]=r (3E ) =n 即r (A -E ) +r (A +2E ) ≥n ①2由A +A =2E ,得(A -E )(A +2E ) =O有A +2E 的列向量全部是方程(A -E ) X =θ的解,有r (A +2E ) ≤n -r (A -E ) 即r (A -E ) +r (A +2E ) ≤n ②由①、②,得r (A -E ) +r (A +2E ) =n23. 设n 维线性空间V 上的线性变换T满足:T=T. 证明:T+E可逆,其中E为恒等变换.证明:取V 的一组基ε1, ε2, , εn令T在这组基下的矩阵为T ,有T+E在这组基下的矩阵为T +E2由T =T ,得T 的特征值为1、0,有T +E 的特征值为2、1,则T +E ≠0故T +E 可逆,则T+E可逆⎡-13-10⎤2002A 二(本题满分12分)设A =⎢,求. ⎥2116⎣⎦λ+1310=(λ-1)(λ-2) =0 ,有A 的特征值为1、2 解:λE -A =-21λ-1410=当λ=1时,有E -A =-21-00基础解系有n -r (E -A ) =1个向量构成,α1=(5, -7)’151010=当λ=2时,有2E -A =-21-00基础解系有n -r (2E -A ) =1个向量构成,α2=(2, -3)’-12002-1=P -1A 2002P =Λ2002 令可逆矩阵P =(α1, α2) ,有P AP =Λ,有(P AP )2002A 有200352132⎡15-7⋅2⎡⎤⎡⎤⎡⎤=P Λ2002P -1=⎢=⎢⎥⎢⎥2002⎥⎢2002-7-32-7-5-21+21⋅2⎣⎦⎣⎦⎣⎦⎣10-5⋅22003⎤⎥-14+15⋅22002⎦三、(本题满分12分)设V 是数域F 上的三维线性空间. 证明:不存在V 的线性变换T使⎡01-2⎤⎡110⎤⎢-12-2⎥B =⎢011⎥A =得T在V 的两组基下的矩阵分别为:⎢⎥和⎢⎥⎢⎢⎣001⎥⎦⎣001⎥⎦证明:反证法,设存在这样的矩阵A 、B .由A 、B 为同一线性变换T在V 的两组基下的矩阵,则有A ≅Bλ-1022=(λ-1) 3,有A 的特征值为1、1、1 λ-11-121-12000 0λE -A =1λ-2当λ=1时,有E -A =1-12=00000故特征值1对应n -r (E -A ) =2个线性无关的特征值向量①λ-1λE -B =0-10-1=(λ-1) 3,有B 的特征值为1、1、1 λ-0-10-1 0λ-1当λ=1时,有E -B =0000故特征值1对应n -r (E -B ) =1个特征向量②由①、②与A ≅B 矛盾,则假设矛盾故不存在V 的线性变换T使得T在V 的两组基下的矩阵分别A 、B4443四(本题满分12分) 设α, β, γ是三次方程x +3x -1=0的根,求α+β+γ的值.4444解:令x 1=α、x 2=β、x 3=γ,x 1+x 2+x 3的首项为x 1,有x 14322x 20121x 300010-00-00-0→σ14-0σ2σ3σ4=σ141-00-00-0→σ13-1σ2σ3σ4=σ12σ2σσσσ=σ→σσσσ=σ1σ3→2-22-00-00-012342-11-11-00-0123422444422有x 1+x 2+x 3=σ1+a σ1σ2+b σ2+c σ1σ3取x 1=1、x 2=1、x 3=0,有σ1=2,σ2=1,σ3=0 有4a +b =-14 ①取x 1=1、x 2=2、x 3=0,有σ1=3,σ2=2,σ3=0 有18a +4b =-64 ②取x x ,有σ121=2=x 3=11=C 3=3,σ2=C 3=3,有9a +3b +c =-26 ③由①、②、③,得a =-4、b =2、c =4有x 4444221+x 2+x 3=σ1-4σ1σ2+2σ2+4σ1σ3由方程x 3+3x -1=0根与系数的关系得,σ1=0、得α4+β4+γ4 =18五、(本题满分16分)利用正交变换将实二次型f (x 1, x 2, x 3) =x 1x 2+x 1x 3+x 2x 3化为标准形. 并写出相应的正交变换和标准形. ⎡⎢011⎤⎢22⎥解:二次型矩阵为A =⎢1⎢201⎥2⎥⎢11⎥⎢⎣220⎥⎥⎦σC 33=3=1σ2=3、σ3=1λλE -A =-121-2-1212λ-1λ-12111-=-λ-222-λ001211-=(λ+) 2(λ-1)221λ+2-11A 的特征值为-、-、122111--22211-E -A =000当λ=-时,有22000-1n -r (-E -A ) =2个线性无关的向量构成,α1=(1, -1, 0)’ 、α2=(1, 0, -1)’ 基础解系由21当λ=1时,有-E -A =-121-212121-111-2213-=024001-123-4 0-基础解系由n -r (E -A ) =1个向量构成,α3=(1, 1, 1)’ 把α1、α2、α3正交化β1=α1=(1, -1, 0)’ β2=α2-(α2, β1) 111β1=α2-β1=(, , -1)’(β1, β1) 222(α3, β1) (α3, β2)β3=α3-β1-β2=α3=(1, 1, 1)’(β1, β1) (β2, β2)γ1=β12β3β6113=(1, -1, 0)’ 、γ2=2=(, , -1)’ 、γ3==(1, 1, 1)’ β12β2222β3312122f (x , x , x ) =-y -y +y C =(γ, γ, γ) 令正交矩阵123123 123,有X =CY ,即有22-1六、(本题满分12分,每小题6分)设A 、B 是n 阶实正交矩阵,t 为矩阵A B 的特征根-1的重数. 证明:(1)det(AB ) =1的充要条件是t 为偶数. (2)A +B 的秩r (A +B ) =n -t .证明:(1)由A 、B 是n 阶实正交矩阵,有AB (AB )’ =ABB ‘ A ‘ =E ,则AB 为实正交矩阵-1-1由AA ‘ =E ,得A =A ‘ ,即A B =A ‘ B由A 与A ‘ 对应相同的特征值,则AB 与A ‘ B 对应相同的特征值-1有det(AB ) =det(A ‘ B ) =det(A B )实正交矩阵的特征值只能是1和-1 故det(AB ) =1n -t⋅(-1) t =(-1) t ,则有det(AB ) =1的充要条件是t 为偶数-1-1(2)由A 可逆,有r (A +B ) =r [A (A +B )]=r (E +A B ) =n -t七、(本题满分12分)设α1, α2, , αm 为欧氏空间V 的一组线性无关向量,而β1, β2, , βm 和γ1, γ2, , γm 为V 的两组正交向量组. 假设对每个1≤i ≤m ,βi 和γi 均可以由α1, α2, , αi 线性表出. 证明:存在m 个实数a 1, a 2, , a m 使得βi =a i γi 1≤i ≤m .证明:令W =L (α1, α2, , αm ) ⊆V取W 两组标准正交基ε1, ε2, , εm 、e 1, e 2, , e m有(ε1, ε2, , εm ) =(β1, β2, , βm ) Λ1、(e 1, e 2, , e m ) =(γ1, γ2, , γm ) Λ2 则Λ1、Λ2为对角矩阵,有Λ1、Λ2为对角矩阵-1-11(ε1, ε2, , εm ) =(e 1, e 2, , e m ) A ,有(β1, β2, , βm ) =(γ1, γ2, , γm ) Λ2A Λ-1 ①则A 为正交矩阵由βi 和γi 均可以由α1, α2, , αi 线性表出,有(β1, β2, , βm ) =(α1, α2, , αm ) B 、(γ1, γ2, , γm ) =(α1, α2, , αm ) C-1则B 、C 为上三角矩阵,有C B 为上三角矩阵有(β1, β2, , βm ) =(γ1, γ2, , γm ) C B ②-1-1-1-1由①、②,得Λ2A Λ1=C B ,则A =Λ2C B Λ1有A 为上三角矩阵,则A 为上三角矩阵③-1-1-1-1-1-1由A ‘ =A =(Λ2C B Λ1)’ =Λ1’ B ‘ (C )’ (Λ2)’ ,有A 为下三角矩阵④-1由③、④,得A 为对角矩阵,则A 为对角矩阵-1有(β1, β2, , βm ) =(γ1, γ2, , γm ) Λ2A Λ1=(γ1, γ2, , γm ) Λ-1令Λ=diag (a 1, a 2, , a m ) ,即证βi =a i γi 1≤i ≤m。
大学物理(二)习题参考答案14-2、 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为普适气体常量,则该理想气体的分子数为多少? 解:由理想气体状态方程 N p nkT kT V== 得理想气体的分子数 pV N kT=14-8、温度为0ºC 和100ºC 时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1e V ,气体的温度需是多少?解:(1)232111331.3810273 5.651022w kT J J --==⨯⨯⨯=⨯ (2)23212233 1.3810(273100)7.721022w kT J J --==⨯⨯⨯+=⨯(3)193323322 1.60107.73107.4610233 1.3810w w kT T K K k --⨯⨯=⇒===⨯≈⨯⨯⨯℃ 14-9、某些恒星的温度可达到约1.0×108K ,这是发生聚变反应(也称热核反应)所需的温度。
通常在此温度下恒星可视为由质子组成。
求: (1)质子的平均动能是多大? (2)质子的方均根速率是多大? 解:(1)质子的平均动能为 23815331.3810 1.0102.071022w kT J J --==⨯⨯⨯⨯=⨯ (2) 质子的方均根速率是2161121.5710rps w mv v s m s --===⋅=⨯⋅或1611.5710rpsv s m s --==⋅=⨯⋅ 14-12、解: (1)KK E E N w w N=⇒=A molMN N M =⋅ 5321234.141032108.27102.66 6.0210k mol A E M w J J MN --⨯⨯⨯∴===⨯⨯⨯(2) 21233228.2710400233 1.3810w w kT T K K k --⨯⨯=⇒==≈⨯⨯ 14-17、解:(1)253122522 6.7510 1.35105 2.010mol mol mol M M PV RT P RT M V M E E P M i iV V E RT M P Pa Pa -⎫=⇒=⎪⎪⇒==⎬⎪=⎪⎭⨯⨯==⨯⨯⨯(2)221223333 6.751027.51055 5.4102w kT E E w J J E i i N N kT N ε-⎫=⎪⨯⨯⎪⇒=⋅===⨯⎬⨯⨯⎪==⎪⎭21223227.510 3.621033 1.3810w T K K k --⨯⨯===⨯⨯⨯ 14-18、解:已知,V ,P ,i22mol mol M i E RT M i E PV M PV RT M ⎫=⎪⎪⇒=⎬⎪=⎪⎭15-2解:已知Q,E ∆由,5552.6610 4.1810 1.5210Q E W W Q E J J J =∆+⇒=-∆=⨯-⨯=-⨯,外界对系统做功。
No 4 能量、能量守恒定律一、选择题:1.B解:由功的定义,F力的功为)J (91422524)654()756(=++=+-⋅+-=∆⋅=k j i k j i r F A2.A解:由功的定义,F力的功为⎰⎰⎰+=⋅=y F x F r F A y x d d d200000d d R F y y F x x F RR=+=⎰⎰3.C解:根据机械能守恒定律的表述:常数非保守内外==+E A A , 0,可知,当质点系所受外力和非保守内力作功代数和为零时,系统机械能守恒,故选C 。
对功的概念有以下几种说法:4.C解:根据质点的动能定理:k E W ∆=v t t 间,~21不变, 0,01==∆W E k 所以 减小v t t 间,~320 ,02<<∆W E k增大v t t 间,~430 ,03>>∆W E k5.D解:外力刚向下拉时,弹簧伸长,物体M 未被拉起,直到弹簧伸长0x 时,M 拉起并向上匀速运动。
)m (1.02001020=⨯==k Mg x 于是,物体在整个过程中受力函数为⎩⎨⎧≤≤=≤≤=3.01.0201.00x Mg x kx f 因物体缓慢上升,外力F 的功等于物体受力f 的功,为)J (541d d d 3.01.01.003.00=+=+==⎰⎰⎰x Mg x x k x f A二、填空题:1. k g m 222。
解:设小球刚离开地面时伸长量为0x ,由mg kx =0知kmgx =0在此过程中外力的功为⎰===02202)(21d x k mg x k x x k A2. 450 J 。
解:由图可知,物体受力为⎪⎩⎪⎨⎧≤≤≤≤=631030320)(t t t t F0~3 秒内应用动量定理0d 32033-=⎰mv t t 得 )s m (5.7432320123-⋅=⨯⨯⨯=v3~6 秒内再应用动量定理3663d 10mv mv t -=⎰得)s m (155.75.74)36(1013-⋅=+=+-=v V根据质点的动能定理,6秒内变力的功为)J (45015421021226=⨯⨯=-=mv A3. 25/8mgl 。
2002年普通高等学校招生全国统一考试(全国卷)理科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至5页,第Ⅱ卷6至15页,满分300分。
考试用时150分钟。
第Ⅰ卷(选择题 共20题,每题6分,共120分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
考试结束,将试题卷和答题卡一并交回。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上。
在下列各题的四个选项中,只有一个选项是符合题目要求的。
以下数据可供解题时参考:原子量:H 1 C 12 N 14 O 16 Na 23 P 31 Cl 35.5 Ca 40 Fe 56 Cu 6415.目前普通认为,质子和中子都是由被称为u 夸克和d 夸克的两类夸克组成。
u 夸克带电量为23 e ,d 夸克带电量为-13e ,e 为基元电荷。
下列论断可能正确的是( ) (A )质子由1个u 夸克和1个d 夸克组成,中子由1个u 夸克和2个d 夸克组成(B )质子由2个u 夸克和1个d 夸克组成,中子由1个u 夸克和2个d 夸克组成(C )质子由1个u 夸克和2个d 夸克组成,中子由2个u 夸克和1个d 夸克组成(D )质子由2个u 夸克和1个d 夸克组成,中子由1个u 夸克和1个d 夸克组成16.在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m 。
现B 球静止,A 球向B 球运动,发生正碰。
已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E p ,则碰前A 球的速度等于( )(A )E p m (B )2E p m (C )2E p m (D )22E p m17.图中EF 、GH 为平行的金属导轨,其电阻可不计,R 为电阻器,G 为电容器,AB 为可在EF 和GH 上滑动的导体横杆。
有均匀磁场垂直与导轨平面。
若用I 1和I 2分别表示图中该处导线中的电流,则当横杆AB ( )(A )匀速滑动时,I 1=0,I 2=0(B )匀速滑动时,I 1≠0,I 2≠0(C )加速滑动时,I 1=0,I 2=0(D )加速滑动时,I 1≠0,I 2≠017.(天津)一束光线从折射率为1.5的玻璃内射向空气,在界面上的入射角为45°。