位置随动系统教学提纲
- 格式:doc
- 大小:545.50 KB
- 文档页数:14
位置跟随系统课程设计一、教学目标本课程旨在通过位置跟随系统的教学,让学生掌握位置跟随系统的基本概念、原理和应用。
具体目标如下:1.理解位置跟随系统的定义和功能。
2.掌握位置跟随系统的核心技术和基本原理。
3.了解位置跟随系统在不同领域的应用。
4.能够运用位置跟随系统的原理解决实际问题。
5.具备分析位置跟随系统的能力,能够对其进行优化和改进。
6.能够运用位置跟随系统进行创新设计和实践。
情感态度价值观目标:1.培养学生对位置跟随系统的兴趣和好奇心,激发其学习热情。
2.培养学生具备创新精神和团队合作意识,能够积极参与位置跟随系统的研究和应用。
3.培养学生具备社会责任感,认识到位置跟随系统对社会发展的影响,能够将其应用于解决实际问题。
二、教学内容本课程的教学内容主要包括以下几个部分:1.位置跟随系统的定义和功能:介绍位置跟随系统的概念,解释其在不同领域的应用,如交通导航、机器人导航等。
2.位置跟随系统的核心技术和基本原理:讲解位置跟随系统中所涉及的关键技术,如定位技术、跟踪技术等,并阐述其基本原理。
3.位置跟随系统的应用案例分析:通过具体案例分析,让学生了解位置跟随系统在不同领域的实际应用,如车载导航系统、无人机跟踪等。
4.位置跟随系统的创新设计和实践:引导学生进行位置跟随系统的创新设计,培养学生的实践能力和创新精神。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学。
具体包括:1.讲授法:通过教师的讲解,让学生掌握位置跟随系统的基本概念和原理。
2.案例分析法:通过分析实际应用案例,让学生了解位置跟随系统的应用场景和解决实际问题的能力。
3.实验法:学生进行实验,让学生亲自动手操作,加深对位置跟随系统原理的理解。
4.小组讨论法:学生进行小组讨论,培养学生的团队合作意识和解决问题的能力。
四、教学资源为了支持本课程的教学,将选择和准备以下教学资源:1.教材:选择合适的教材,为学生提供系统、全面的学习材料。
第一章位置随动系统的概述1.1 位置随动系统的概念位置随动系统也称伺服系统,是输出量对于给定输入量的跟踪系统,它实现的是执行机构对于位置指令的准确跟踪。
位置随动系统的被控量(输出量)是负载机械空间位置的线位移和角位移,当位置给定量(输入量)作任意变化时,该系统的主要任务是使输出量快速而准确地复现给定量的变化,所以位置随动系统必定是一个反馈控制系统。
位置随动系统是应用非常广泛的一类工程控制系统。
它属于自动控制系统中的一类反馈闭环控制系统。
随着科学技术的发展,在实际中位置随动系统的应用领域非常广泛。
例如,数控机床的定位控制和加工轨迹控制,船舵的自动操纵,火炮方位的自动跟踪,宇航设备的自动驾驶,机器人的动作控制等等。
随着机电一体化技术的发展,位置随动系统已成为现代工业、国防和高科技领域中不可缺少的设备,是电力拖动自动控制系统的一个重要分支。
1.2 位置随动系统的特点及品质指标位置随动系统与拖动控制系统相比都是闭环反馈控制系统,即通过对输出量和给定量的比较,组成闭环控制,这两个系统的控制原理是相同的。
对于拖动调速系统而言,给定量是恒值,要求系统维持输出量恒定,所以抗扰动性能成为主要技术指标。
对于随动系统而言,给定量即位置指令是经常变化的,是一个随机变量,要求输出量准确跟随给定量的变化,因而跟随性能指标即系统输出响应的快速性、灵敏性与准确性成为它的主要性能指标。
位置随动系统需要实现位置反馈,所以系统结构上必定要有位置环。
位置环是随动系统重要的组成部分,位置随动系统的基本特征体现在位置环上。
根据给定信号与位置检测反馈信号综合比较的不同原理,位置随动系统分为模拟与数字式两类。
总结后可得位置随动系统的主要特征如下:1.位置随动系统的主要功能是使输出位移快速而准确地复现给定位移。
2.必须具备一定精度的位置传感器,能准确地给出反映位移误差的电信号。
3.电压和功率放大器以及拖动系统都必须是可逆的。
4.控制系统应能满足稳态精度和动态快速响应的要求,其中快速响应中,更强调快速跟随性能。
自动控制原理课程设计——位置随动系统
在工业自动化领域,位置随动系统扮演着重要的角色。
它能够使驱动装置根据指令精确地移动到指定位置,并保持稳定。
位置随动系统的核心是自动控制系统,该系统通过反馈机制实时监测和调整驱动装置的位置。
在位置随动系统中,通常采用步进电机或伺服电机作为驱动装置。
这些电机能够根据控制系统的指令精确地转动一定的角度,从而实现位置的精确控制。
为了确保系统的稳定性,通常会采用闭环控制,即通过位置传感器实时监测电机的位置,并将位置信息反馈给控制系统。
在自动控制原理课程设计中,学生需要了解并掌握位置随动系统的基本原理、组成和实现方法。
学生需要自行设计并实现一个简单的位置随动系统,通过实验验证系统的性能和稳定性。
在设计过程中,学生需要考虑系统的硬件组成、控制算法的选择和实现、传感器选择和校准、系统调试和优化等方面的问题。
学生需要通过理论分析和实验验证相结合的方法,不断优化和完善系统设计。
通过这个课程设计,学生可以深入了解自动控制原理在实际应用中的重要性,提高自己的动手能力和解决问题的能力。
同时,这个课程设计也可以为学生未来的学习和工作打下坚实的基础。
摘要随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并且输入量是随机的,不可预知的,主要解决有一定精度的位置跟随问题,如数控机床的刀具给进和工作台的定位控制,工业机器人的工作动作,导弹制导、火炮瞄准等。
在现代计算机集成制造系统(CIMC)、柔性制造系统(FMS)等领域,位置随动系统得到越来越广泛的应用。
位置随动系统要求输出量准确跟随给定量的变化,输出响应的快速性、灵活性和准确性为位置随动系统的主要特征。
本次课程设计研究的是位置随动系统的超前校正,并对其进行分析。
关键词:随动系统超前校正相角裕度目录1 位置随动系统原理 (2)1.1 位置随动系统原理图 (2)1.2 各部分传递函数 (2)1.3 位置随动系统结构框图 (4)1.4 位置随动系统的信号流图 (4)1.5 相关函数的计算 (4)1.6 对系统进行MATLAB仿真 (5)2 系统超前校正 (6)2.1 校正网络设计 (6)2.2 对校正后的系统进行Matlab仿真 (8)3 对校正前后装置进行比较 (9)3.1 频域分析 (9)3.2 时域分析 (9)4 总结及体会 (10)参考文献 (12)位置随动系统的超前校正1 位置随动系统原理1.1 位置随动系统原理图图1-1 位置随动系统原理图系统工作原理:位置随动系统通常由测量元件、放大元件、伺服电动机、测速发电机、齿轮系及绳轮等组成,采用负反馈控制原理工作,其原理图如图1-1所示。
在图1-1中测量元件为由电位器Rr 和Rc 组成的桥式测量电路。
负载固定在电位器Rc 的滑臂上,因此电位器Rc 的输出电压Uc 和输出位移成正比。
当输入位移变化时,在电桥的两端得到偏差电压ΔU=Ur-Uc ,经放大器放大后驱动伺服电机,并通过齿轮系带动负载移动,使偏差减小。
当偏差ΔU=0时,电动机停止转动,负载停止移动。
此时δ=δL ,表明输出位移与输入位移相对应。
测速发电机反馈与电动机速度成正比,用以增加阻尼,改善系统性能。
成绩课程设计报告课程设计名称:自动控制原理课程设计题目:位置随动系统的分析与设计姓名专业学号指导教师2012年12月24日设计任务书引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。
它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。
一. 设计题目:位置随动系统的分析与设计 二.系统说明: 该系统结构如下图所示其中:放大器增益为Ka=15,电桥增益6K ε=,测速电机增益2t k =,Ra=7Ω,La=10mH,J=0.005kg.m/s 2,J L =0.03kg.m/s 2,f L =0.08,C e =1,Cm=3,f=0.1,K b =0.2,i=0.02 三.系统参量 系统输入信号:)(t 1θ 系统输出信号:)(t 2θ 四.设计指标1.在单位斜坡信号x(t)=t 作用下,系统的稳态误差01.0≤ss e ;2.开环截止频率30>c w ;3.相位裕度︒>40c γ;五. 基本要求:1. 建立系统数学模型——传递函数;2. 利用频率特性法分析系统:(1)根据要求的稳态品质指标,求系统的开环增益值;(2)根据求得的值,画出校正前系统的Bode图,并计算出幅值穿越频率、相位裕量,以检验性能指标是否满足要求。
若不满足要求,则进行系统校正。
3.利用频域特性法综合系统:(1)画出串联校正结构图,分析并选择串联校正的类型(超前、滞后和滞后-超前校正);(2)确定校正装置传递函数的参数;(3)画出校正后的系统的Bode图,并校验系统性能指标。
若不满足,则重新确定校正装置的参数。
4.完成系统综合前后的有源物理模拟电路:六、课程设计报告:1.报告内容(包括课程设计的主要内容、基本原理以及课程设计过程中参数的计算过程和分析过程);(1)课程设计计算说明书一份;(2)原系统组成结构原理图一张(自绘);(3)系统分析,综合用精确Bode图各一张;(4)系统综合前后的模拟图各一张。
位置随动系统课程设计引言:位置随动系统是一种能够根据外部环境和任务需求自动调整位置和姿态的系统。
在本文中,我将介绍一个关于位置随动系统的课程设计。
通过这个课程设计,学生们将能够深入了解位置随动系统的原理、设计和应用,并通过实践项目提升他们的实践能力和团队合作能力。
一、引入位置随动系统位置随动系统是一种智能系统,能够通过传感器和控制算法实现自动调整位置和姿态。
它可以广泛应用于工业生产、医疗器械、机器人等领域,提高生产效率和工作质量。
二、课程设计目标本课程设计的主要目标是让学生们了解位置随动系统的基本原理和设计方法,培养他们的创新思维和实践能力。
通过项目实践,学生们将能够独立设计和实现一个简单的位置随动系统,并通过团队合作完成一个应用案例。
三、课程设计内容1. 位置随动系统原理介绍:学生们将学习传感器原理、控制算法和运动规划等基础知识,了解位置随动系统的工作原理。
2. 设计与建模:学生们将学习如何设计和建模一个位置随动系统,包括选择合适的传感器、控制器和执行器,以及进行系统建模和仿真。
3. 控制算法设计:学生们将学习如何设计合适的控制算法,以实现位置和姿态的自动调整,并优化系统的性能。
4. 系统实现与调试:学生们将利用硬件平台和软件工具,实现他们设计的位置随动系统,并进行调试和优化。
5. 应用案例实践:学生们将以小组为单位,选择一个实际应用场景,设计和实现一个位置随动系统的应用案例,并进行演示和评估。
四、课程设计亮点1. 实践导向:本课程设计注重实践能力的培养,通过项目实践,学生们将能够将所学知识应用于实际问题的解决。
2. 团队合作:学生们将以小组为单位进行项目实践,培养他们的团队合作和沟通能力。
3. 创新思维:学生们将面临真实的问题和挑战,在解决问题的过程中培养创新思维和解决问题的能力。
五、总结通过本课程设计,学生们将能够全面了解位置随动系统的原理、设计和应用,并通过实践项目提升他们的实践能力和团队合作能力。