人教版八年级数学下册平均数
- 格式:pptx
- 大小:4.90 MB
- 文档页数:61
20.1.1 平均数(第二课时)【课标内容】研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们做出合理的推断和预测.【教材分析】本节课是人教版八年级数学下册第20章《数据的分析》中,第一节的内容.主要让学生认识数据统计中加权平均数,是一堂概念性较强的课,也是学生学会分析数据,作出决策的基础.本节课的内容与学生生活密切相关,能直接指导学生的生活实践.【学情分析】本节课以前在小学已经接触过,概念教学中,主要以生活实例为背景,从具体的事实上抽象出统计量的概念,通过统计量的计算与确定的练习帮助学生理解并巩固概念;在教学活动中主要是以问题的方式启发学生,以生动有趣的实例吸引与激励学生;在整个过程中采用情境教学法.【教学目标】1.加深对加权平均数的理解,会根据频数分布表求加权平均数,从而解决一些实际问题2.经历探索加权平均数的应用过程,体验和理解统计的基本思想,学会频数分布表中应用加权平均数的方法.3.乐于接触社会环境中的数学信息,了解数学对促进社会进步和发展人类理解精神的作用.【重点难点】教学重点:根据频数分布表求加权平均数教学难点:加权平均数的概念及计算.【教学方法】五步教学法【教具准备】学案多媒体课件,展台【课时安排】2课时【教学过程】一、预学自检互助点拨1.自学课本P113—115页内容回答问题(1)请同学读P140探究问题,依据统计表可以读出哪些信息(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数5指什么呢?(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系.二、合作互学 探究新知例1:下表是校女子排球队队员的年龄分布:求校女子排球队队员的平均年龄(可使用计算器).解:答:校女子排球队队员的平均年龄为14.7岁 三、自我检测 成果展示1.某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表)(7.142541216515414113岁≈+++⨯+⨯+⨯+⨯=x该公司每人所创年利润的平均数是多少万元?2.下表是截至到2002年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?四、应用提升 挑战自我1.某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表 (1).第二组数据的组中值是多少?(2).求该班学生平均每天做数学作业所用时间五、经验总结 反思收获本节课你学到了什么?写出来【板书设计】频数组中值【备课反思】本节课是平均数的第二课时,主要是让学生体会运用样本平均数去估计总体平均数的意义,除了会运用样本平均数估计总体平均数外,在教学中还应增强数学应用意识。
《平均数》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)一组数据3,5,7,m,n的平均数是7,则m,n的平均数是()A.6B.7C.8D.102.(5分)一列数4,5,6,4,4,7,x的平均数是5,则x的值为()A.4B.5C.6D.73.(5分)某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为()分.A.85B.86C.87D.884.(5分)小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1235方案2325方案3 2.5 2.55则最省钱的方案为()A.方案1B.方案2C.方案3D.三个方案费用相同5.(5分)数据60,70,40,30这四个数的平均数是()A.40B.50C.60D.70二、填空题(本大题共5小题,共25.0分)6.(5分)某校九年级甲班40名学生中,5人13岁,30人14岁,5人15岁.则这个班级学生的平均年龄是.7.(5分)西安市某一周的日最高气温(单位:℃)分别为:35,33,36,33,32,32,37,这周的日最高气温的平均值是℃.8.(5分)如果数据3、2、x、﹣3、1的平均数是2,那么x的值是.9.(5分)某校生物小组7人到校外采集标本,其中2人每人采集到3件,3人每人采集到4件,2人每个采集到5件,则这个小组平均每人采集标本件.10.(5分)小辉期中考试语文、数学、英语三科的平均分为90分,语文得了86分,英语得了91分,他把数学成绩忘记了,他的数学成绩应该为分.三、解答题(本大题共5小题,共50.0分)11.(10分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表:小组研究报告小组展示答辩甲918078乙817485丙798391(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?12.(10分)下列各数是10名学生的数学考试成绩:82,83,78,66,95,75,56,93,82,81先估算他们的平均成绩,然后在此基础上计算平均成绩,由此检验你的估值能力.13.(10分)甲、乙、丙三位同学参加“华罗庚杯数学竞赛”培训.三个培训段的考试成绩如表:现要选拨一人参赛:甲乙丙代数858570几何928083综合758590(1)若按三次平均成绩选拔,应选谁参加?(2)若三次成绩按3:3:4的比例计算,应选谁参加?(3)若三次成绩按20%,30%,50%计算,应选谁参加?14.(10分)数据x1,x2,x3,…,x n的平均数是a,数据y1,y2,y3,…,y n的平均数是b,探讨:(1)数据x1+x2+…+x n+y1+y2+…+y n的平均数;(2)数据x1+10,x2+10,…,x n+10的平均数;(3)数据2x1+3y1,2x2+3y2,…,2x n+3y n的平均数;(4)由上面的探讨,总结出一般规律.15.(10分)一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85788573乙73808283(1)如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强,听、说、读、写成绩按照2:1:3:4的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?《平均数》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)一组数据3,5,7,m,n的平均数是7,则m,n的平均数是()A.6B.7C.8D.10【分析】数据3,5,7,m,n的平均数是7,即已知这几个数的和是7×5,则可求出m+n,这样就可得到它们的平均数.【解答】解:∵数据3,5,7,m,n的平均数是7,∴3+5+7+m+n=7×5,∴m+n=35﹣3﹣5﹣7=20,∴m,n的平均数是10.故选:D.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.2.(5分)一列数4,5,6,4,4,7,x的平均数是5,则x的值为()A.4B.5C.6D.7【分析】根据平均数是计算公式即可得出结论.【解答】解:∵数据4,5,6,4,4,7,x的平均数是5,∴(4+5+6+4+4+7+x)÷7=5,解得x=5,故选:B.【点评】本题考查的是平均数的求法及运用,熟记计算公式是解本题的关键.3.(5分)某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为()分.A.85B.86C.87D.88【分析】根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:根据题意得,吴老师的综合成绩为90×60%+85×40%=88(分),故选:D.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.4.(5分)小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1235方案2325方案3 2.5 2.55则最省钱的方案为()A.方案1B.方案2C.方案3D.三个方案费用相同【分析】求出三种方案混合糖果的单价,比较后即可得出结论.【解答】解:方案1混合糖果的单价为,方案2混合糖果的单价为,方案3混合糖果的单价为=.∵a>b,∴<<,∴方案1最省钱.故选:A.【点评】本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.5.(5分)数据60,70,40,30这四个数的平均数是()A.40B.50C.60D.70【分析】根据算术平均数的定义计算可得.【解答】解:这四个数的平均数是=50,故选:B.【点评】此题考查了平均数,掌握平均数的计算公式是本题的关键;平均数是指在一组数据中所有数据之和再除以数据的个数.二、填空题(本大题共5小题,共25.0分)6.(5分)某校九年级甲班40名学生中,5人13岁,30人14岁,5人15岁.则这个班级学生的平均年龄是14.【分析】根据加权平均数的计算方法是求出该班所有人数的总岁数,然后除以总学生数即可.【解答】解:根据题意得:=14(岁),答:这个班级学生的平均年龄是14岁;故答案为:14.【点评】此题考查了加权平均数,本题易出现的错误是求13,14,15这三个数的平均数,对平均数的理解不正确.7.(5分)西安市某一周的日最高气温(单位:℃)分别为:35,33,36,33,32,32,37,这周的日最高气温的平均值是34℃.【分析】先求出这7天总的最高温度和,再除以7天,即可得出这周的日最高气温的平均值.【解答】解:这周的日最高气温的平均值是=34(℃),故答案为:34.【点评】此题考查了平均数,熟练掌握平均数的计算公式是解题的关键,是一道基础题.8.(5分)如果数据3、2、x、﹣3、1的平均数是2,那么x的值是7.【分析】根据平均数的计算公式直接解答即可.【解答】解:∵数据3、2、x、﹣3、1的平均数是2,∴=2,解得:x=7,故答案为:7.【点评】此题主要考查了算术平均数的求法,解答此题的关键是要明确:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.9.(5分)某校生物小组7人到校外采集标本,其中2人每人采集到3件,3人每人采集到4件,2人每个采集到5件,则这个小组平均每人采集标本4件.【分析】运用加权平均数公式即可求解.【解答】解:由题意,可得这个小组平均每人采集标本:=4(件).故答案为4.【点评】本题考查的是加权平均数的求法.熟记公式是解决本题的关键.10.(5分)小辉期中考试语文、数学、英语三科的平均分为90分,语文得了86分,英语得了91分,他把数学成绩忘记了,他的数学成绩应该为93分.【分析】根据题意可以求得三科的总成绩,从而可以求得数学成绩.【解答】解:由题意可得,他的数学成绩为:90×3﹣(86+91)=93(分),故答案为:93.【点评】本题考查算术平均数,解答本题的关键是明确题意,求出相应的数学成绩.三、解答题(本大题共5小题,共50.0分)11.(10分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表:小组研究报告小组展示答辩甲918078乙817485丙798391(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?【分析】(1)根据算术平均数的定义计算可得;(2)根据加权平均数的定义计算可得.【解答】解:(1)∵==83,==80,==84,∴从高分到低分确定小组的排名顺序为:丙、甲、乙;(2)甲:91×40%+80×30%+78×30%=83.8,乙:81×40%+74×30%+85×30%=80.1,丙:79×40%+83×30%+91×30%=83.5,∴甲组成绩最高.【点评】本题主要考查平均数,解题的关键是掌握算术平均数和加权平均数的定义.12.(10分)下列各数是10名学生的数学考试成绩:82,83,78,66,95,75,56,93,82,81先估算他们的平均成绩,然后在此基础上计算平均成绩,由此检验你的估值能力.【分析】把超过80的部分用正数表示,不足90的部分用负数来表示,然后再根据进行计算即可.【解答】解:估计这10名同学的平均成绩为80分.把他们成绩超过80的部分记作正数,不足80的部分记作负数.这10位学生的分数分别记为:+2,+3,﹣2,﹣14,+15,﹣5,﹣24,+13,+2,+1.80+(2+3﹣2﹣14+15﹣5﹣24+13+2+1)÷10=80﹣0.9=79.1.答:这10名学生的平均成绩是79.1,我估计的分值与此很接近.【点评】本题主要考查的是算术平均数,有理数的加法、正负数,引入正负数进行简便计算是解题的关键.13.(10分)甲、乙、丙三位同学参加“华罗庚杯数学竞赛”培训.三个培训段的考试成绩如表:现要选拨一人参赛:甲乙丙代数858570几何928083综合758590(1)若按三次平均成绩选拔,应选谁参加?(2)若三次成绩按3:3:4的比例计算,应选谁参加?(3)若三次成绩按20%,30%,50%计算,应选谁参加?【分析】(1)根据平均数的定义求出甲、乙、丙三位同学的平均数,进一步判定即可求解;(2)三次成绩按3:3:4的比例计算求出加权平均数后判断即可;(3)三次成绩按20%,30%,50%的比例计算求出加权平均数后判断即可.【解答】解:(1)(85+92+75)÷3=84,(85+80+85)÷3=83,(70+83+90)÷3=81,∵84>83>81,∴若按三次平均成绩选拔,应选甲参加;(2)85×+92×+75×=25.5+27.6+30=83.1,85×+80×+85×=25.5+24+34=83.570×+83×+90×=21+24.9+36=81.9∵83.5>83.1>81.9,∴若三次成绩按3:3:4的比例计算,应选乙参加;(3)85×20%+92×30%+75×50%=17+27.6+37.5=82.1,85×20%+80×30%+85×50%=17+24+42.5=83.570×20%+83×30%+90×50%=14+24.9+45=83.9∵83.9>83.5>82.1,∴若三次成绩按20%,30%,50%计算,应选丙参加.【点评】考查了加权平均数,权的表现形式,一种是比的形式,另一种是百分比的形式,权的大小直接影响结果.14.(10分)数据x1,x2,x3,…,x n的平均数是a,数据y1,y2,y3,…,y n的平均数是b,探讨:(1)数据x1+x2+…+x n+y1+y2+…+y n的平均数;(2)数据x1+10,x2+10,…,x n+10的平均数;(3)数据2x1+3y1,2x2+3y2,…,2x n+3y n的平均数;(4)由上面的探讨,总结出一般规律.【分析】(1)由题意得出x1+x2+x3+…+x n=na,y1+y2+…+y n=nb,再依据平均数的定义计算(x1+y1+x2+y2+…+x n+y n)÷n=(na+nb)÷n可得答案;(2)根据平均数的定义知x1+10,x2+10,…,x n+10的平均数为×(x1+10+x2+10+…+x n+10),据此可得.(3)把2x l+3y1,2x2+3y2,2x3+3y3…2x n+3y n的平均数的式子用a和b表示出来即可;(4)一般规律为:mx1+ny1,mx2+ny2,…,mx n+ny n的平均数为ma+nb.【解答】解:(1)∵数据x1,x2,…x n的平均数为a,数据y1,y2,…y n的平均数为b,∴x1+x2+x3+…+x n=na,y1+y2+…+y n=nb,∴数据x1+y1,x2+y2,…x n+y n的平均数为(x1+y1+x2+y2+…+x n+y n)÷n=(na+nb)÷n=a+b.(2)数据x1+10,x2+10,…,x n+10的平均数为×(x1+10+x2+10+…+x n+10)==a+10;(3)∵x1,x2,x3,…,x n的平均数是a,数据y1,y2,y3,…,y n的平均数是b,∴(2x1+3y1+2x2+3y2+2x3+3y3+…+2x n+3y n)÷n=[2(x1+x2+x3+•+x n)+3(y1+y2+y3+…+y n)]÷n=2a+3b.(4)由以上可得mx1+ny1,mx2+ny2,…,mx n+ny n的平均数为ma+nb.【点评】本题考查了平均数的计算.本题说明了一组数据若是由两组数据的和或倍数组成,则数据的平均数是这两组数据的平均数的和或倍数.15.(10分)一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85788573乙73808283(1)如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强,听、说、读、写成绩按照2:1:3:4的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?【分析】(1)根据平均数的计算公式计算可得;(2)根据加权平均数的公式计算可得.【解答】解:(1)∵=×(85+78+85+73)=80.25,=×(73+80+82+83)=79.5,∴应录取甲;(2)∵==79.5,==80.4,∴此时应录取乙.【点评】本题考查加权平均数,解题的关键是明确题意,找出所求问题需要的条件,会计算加权平均数.。
第二十章数据的分析20.1.1平均数第二课时一、教学目标1.核心素养通过进一步学习算术平均数、加权平均数的概念,加深对加权平均数的理解,初步掌握统计解决问题的基本方法,培养学生收集数据提取信息的能力,学会构建模型分析数据,解释数据蕴含的结论.2.学习目标(1)1.1.1 进一步加深对加权平均数的理解.(2)1.1.2经历探索加权平均数对数据处理的过程,体验对统计基本思想的理解过程,学会频数分布表中应用加权平均数的方法.(3)1.1.3能根据频数分布直方图计算平均数,能正确有效应用平均数知识解决问题,提高分析解决问题的能力.3.学习重点根据频数分布表求加权平均数,根据频数分布直方图计算平均数.4.学习难点理解频数、组中值得概念,根据不同特点的频数分布直方图采取相应的处理方法.二、教学设计(一)课前设计1.预习任务阅读教材P128-P130,思考:平均数的意义是什么?如何利用加权平均数的计算公式求一组数据的平均数?2.预习自测1.数据15,23,17,17,22的平均数是_____________,若4,x,5的平均数是7,则3,4,5,x,6五个数的平均数是__________。
2.利用公式x=x/+a计算105,103,101,100,114,108,110,106,98,102的平均数,其中a=___,x/=_______,x=_______。
3.一个班级有45名学生,其中14岁的有16人,15岁的有17人,16岁的有8人,17岁的有4人,那么这个班的平均龄是_________岁。
预习自测参考答案1.18.8,62.100,4.7,104.73.15(二)课堂设计1.知识回顾(1)加权平均数的意义;(2)加权平均数的计算公式2.问题探究问题探究一:加深对加权平均数的理解问题1:某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个人小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?解:(1)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是:(分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是(分),由上可得,甲组的成绩最高.问题2:阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 4151 36 44 46 40 53 37 47 45 46(1)前10株西红柿秧上小西红柿个数的平均数是_____,中位数是_____,众数是_____;(2)若对这20个数按组距为8进行分组,请补全频数分布表及频数分布直方图(3)通过频数分布直方图试分析此大棚中西红柿的长势.解:(1)前10株西红柿秧上小西红柿个数的平均数是(32+39+45+55+60+54+60+28+56+41)÷10=47;把这些数据从小到大排列:28、32、39、41、45、54、55、56、60、60,最中间的数是(45+54)÷2=49.5,则中位数是49.5;60出现了2次,出现的次数最多,则众数是60;故答案为:47,49.5,60;(2)根据题意填表如下:个数分组, 28≤x<36, 36≤x<44, 44≤x<52, 52≤x<60, 60≤x<68频数, 2, 5, 7, 4, 2补图如下:故答案为:5,7,4;(3)此大棚的西红柿长势普遍较好,最少都有28个;西红柿个数最集中的株数在第三组,共7株;西红柿的个数分布合理,中间多,两端少.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.问题3:下图反映了甲、乙两班学生的体育成绩。
20.1 数据的集中趋势20.1.1 平均数第1课时平均数和加权平均数1.知道算术平均数和加权平均数的意义,会求一组数据的算术平均数和加权平均数;(重点)2.理解“权”的差异对平均数的影响,算术平均数与加权平均数的联系与区别,并能利用它们解决实际问题.(难点)一、情境导入在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用.你知道为什么要这样计算吗?例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2,作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占60%”的比例计算(如图).二、合作探究 探究点一:平均数【类型一】 已知一组数据的平均数,求某一个数据如果一组数据3,7,2,a ,4,6的平均数是5,则a 的值是( )A .8B .5C .4D .3解析:∵数据3,7,2,a ,4,6的平均数是5,∴(3+7+2+a +4+6)÷6=5,解得a =8.故选A.方法总结:关键是根据算术平均数的计算公式和已知条件列出方程求解.【类型二】 已知一组数据的平均数,求新数据的平均数已知一组数据x 1、x 2、x3、x4、x5的平均数是5,则另一组新数据x1+1、x2+2、x3+3、x4+4、x5+5的平均数是( )A.6 B.8 C.10 D.无法计算解析:∵x1、x2、x3、x4、x5的平均数为5,∴x1+x2+x3+x4+x5=5×5,∴x1+1、x2+2、x3+3、x4+4、x5+5的平均数为(x1+1+x2+2+x3+3+x4+4+x5+5)÷5=(5×5+15)÷5=8.故选B.方法总结:解决本题的关键是用一组数据的平均数表示另一组数据的平均数.探究点二:加权平均数【类型一】以频数分布表提供的信息计算加权平均数某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是( )A.6.2小时B.6.4小时C.6.5小时D.7小时解析:根据题意得(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时),故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选B.方法总结:计算加权平均数时,要首先明确各项的权,再将已知数据代入加权平均数公式进行计算.【类型二】以频数分布直方图提供的信息计算加权平均数小明统计本班同学的年龄后,绘制如右频数分布直方图,这个班学生的平均年龄是( ) A.14岁 B.14.3岁C.14.5岁 D.15岁解析:该班同学的年龄和为13×8+14×22+15×15+16×5=717岁.平均年龄是717÷(8+22+15+5)=14.34≈14.3(岁).故选B.方法总结:利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【类型三】以百分数的形式给出各数据的“权”某招聘考试分笔试和面试两种,其中笔试按40%、面试按60%计算加权平均数作为总成绩,小华笔试成绩为90分,面试成绩为85分,那么小华的总成绩是( ) A.87分B.87.5分C.88分D.89分解析:∵笔试按40%、面试按60%,∴总成绩为90×40%+85×60%=87(分).故选A.方法总结:笔试和面试所占的百分比即为“权”,然后利用加权平均数的公式计算.【类型四】以比的形式给出各数据的“权”小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A.255分B.84分C.84.5分D.86分解析:根据题意得85×22+3+5+80×32+3+5+90×52+3+5=17+24+45=86(分).故选D.方法总结:“权”的表现形式,一种是比的形式,如5∶3∶2;另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%.“权”的大小直接影响结果.【类型五】加权平均数的实际应用学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.解析:(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后比较计算结果,结果大的胜出.解:(1)x乙=(73+80+82+83)÷4=79.5,∵80.25>79.5.∴应选派甲;(2)x甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,x乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4.∴应选派乙.方法总结:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,“权”的差异对结果会产生直接的影响.三、板书设计1.平均数与算术平均数2.加权平均数“权”的表现形式这节课,大多数学生在课堂上表现积极,并且会有自己的思考,有的同学还能把不同意见发表出来,师生在课堂上的交流活跃,学生的学习兴趣较高.在这种前提下,简便算法的推出就水到渠成了.教学设计也努力体现新课改的新理念,如培养学生数学的思维能力,教会学生从生活中学习数学,课内外结合等等.。
人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案一. 教材分析平均数和加权平均数是初中数学八年级下册的教学内容,主要让学生了解平均数的定义和性质,掌握加权平均数的计算方法。
本节课通过引入实际问题,引导学生探讨平均数的求法,进而引出加权平均数的概念,并通过例题讲解和练习,使学生熟练掌握加权平均数的计算方法。
二. 学情分析学生在七年级已经学习了算术平均数的概念,对本节课的内容有一定的认知基础。
但部分学生对概念的理解不够深入,对实际问题的分析能力有待提高。
此外,学生在运算能力方面也存在差异,部分学生对复杂运算的计算过程不够熟练。
三. 教学目标1.理解平均数的定义和性质,掌握加权平均数的计算方法。
2.能运用加权平均数解决实际问题,提高分析问题和解决问题的能力。
3.培养学生的运算能力和合作精神,提高学生的数学素养。
四. 教学重难点1.重点:加权平均数的计算方法。
2.难点:对实际问题中权重的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究平均数的定义和性质。
2.通过实例分析,让学生了解加权平均数的应用,培养学生的实际问题解决能力。
3.利用小组合作学习,让学生在讨论中巩固知识,提高合作意识。
4.采用讲练结合的方法,对学生进行有针对性的辅导,提高学生的运算能力。
六. 教学准备1.准备相关的实际问题,用于引导学生探讨平均数的概念。
2.准备PPT课件,展示平均数和加权平均数的定义和性质。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如成绩统计、商品销售等,引导学生思考如何求解这些问题的平均值。
通过讨论,让学生回顾算术平均数的概念,为新课的学习做好铺垫。
2.呈现(15分钟)讲解平均数的定义和性质,引导学生理解平均数的概念。
通过PPT课件展示加权平均数的定义,让学生了解加权平均数与算术平均数的关系。
同时,讲解加权平均数的计算方法,让学生掌握计算加权平均数的基本步骤。
人教版八年级下册数学《算术平均数》教学设计一、教学目标1. 理解算术平均数的概念与计算方法;2. 能够应用算术平均数解决实际生活中的问题;3. 培养学生的数据分析与解决问题的能力。
二、教学准备1. 教材:人教版八年级下册数学教材;2. 教辅资料:与算术平均数相关的练题、实际问题等;3. 教具:黑板、彩色粉笔、计算器。
三、教学步骤与内容安排步骤一:导入与导入1. 激发学生研究的兴趣,介绍算术平均数的重要性和应用背景;2. 复相关的基础知识,如求和与除法的计算方法。
步骤二:引入算术平均数的概念1. 定义算术平均数,解释其含义;2. 通过示例计算,让学生理解算术平均数的计算方法。
步骤三:算术平均数的计算方法1. 介绍算术平均数的计算公式;2. 给出一些简单的练题,让学生巩固计算方法。
步骤四:算术平均数的应用1. 引入实际生活中的问题,如平均成绩、平均消费等;2. 让学生通过计算算术平均数解决这些问题。
步骤五:拓展与巩固1. 设计一些挑战性的问题,让学生自主思考和解决;2. 分享学生的解题思路,进行讨论和总结。
四、教学评价与反思1. 通过学生的课堂表现、练题的完成情况和答题准确率,评价学生对算术平均数的理解与应用能力;2. 及时给予学生肯定和建议,帮助其进一步提高。
五、教学延伸1. 鼓励学生运用算术平均数的思想方法解决更复杂的问题;2. 提供更多的实际应用案例,培养学生的数据分析与解决问题的能力。
以上是《算术平均数》教学设计的大致内容安排,根据实际教学情况可进行适当调整和创新。
通过此教学设计,希望能引导学生全面理解算术平均数的概念与计算方法,并能灵活运用于实际生活中的问题解决。
人教版八年级下册第1课时加权平均数(179)1.一次考试中,甲组12人的平均分数为70分,乙组8人的平均分数为80分,那么这两组20人的平均分数为.2.某班有学生52人,期末数学考试平均成绩是72分,有两名同学下学期要转学,已知他俩的成绩分别为70分和80分,求他俩转学后该班的数学平均分.3.某公司招聘一名工作人员,对甲、乙两名应聘者进行笔试与面试,他们的成绩(百分制)如下表所示.若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩.从他们的成绩看,谁将被录取?4.学校广播站要招聘1名记者,小亮和小丽报名参加了3项素质测试,成绩如下:将写作能力、普通话水平、计算机水平这三项的总分由原先按3∶5∶2计算,变成按5:3∶2计算,则总分变化情况是()A.小丽成绩增加的多B.小亮成绩增加的多C.两人成绩均不变化D.变化情况无法确定5.如图是根据今年某校九年级学生体育考试跳绳的成绩绘制成的统计图.如果该校九年级共有200名学生参加了这项跳绳考试,根据该统计图给出的信息,可得这些同学跳绳考试的平均成绩为个.6.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分(单位:分)如下表:(1)根据三项得分的平均数,从高到低确定三名应聘者的排名顺序;(2)该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,请你说明谁将被录用.7.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A,B,C,D,E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评,结果如下表所示:演讲答辩得分表(单位:分)民主测评统计表规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;综合得分=演讲答辩分×(1−a)+民主测评分×a(0.5⩽a⩽0.8).(1)当a=0.6时,甲的综合得分是多少?(2)当a在什么范围内时,甲的综合得分高?当a在什么范围内时,乙的综合得分高?8.7名学生的体重(单位:kg)分别是40,42,43,45,47,47,58,则这组数据的平均数是()A.44B.45C.46D.479.为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()A.25元B.28.5元C.29元D.34.5元10.某校调査了20名男生某一周参加篮球运动的次数,调査结果如下表所示,那么这20名男生该周参加篮球运动次数的平均数是()A.3B.3.5C.4D.4.511.某中学举行校园歌手大赛,7位评委给选手小明的评分如下表:若比赛的计分方法如下:去掉一个最高分,去掉一个最低分,其余分数的平均值作为该选手的最后得分,则小明的最后得分为()A.9.56分B.9.57分C.9.58分D.9.59分12.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期数学学期综合成绩是分.13.某次射击训练中,一小组的成绩(单位:环)如下表所示,已知该小组的平均成绩为8环,那么成绩为9环的人数是.参考答案1.【答案】:74分=74(分),【解析】:这两组20人的平均分数=12×70+8×8012+8故答案为74分.2.【答案】:52×72=3744(分),3744−70−80=71.88(分).50答:他俩转学后该班的数学平均分是71.88分【解析】:先算出52个人的总分数,再求出50人的总分数,最后除以总人数50=88.2,3.【答案】:甲的平均成绩为87×6+90×46+4=87.4,乙的平均成绩为91×6+82×46+4因为甲的平均成绩大于乙的平均成绩,所以甲会被录取【解析】:先分别算出甲、乙的平均成绩,平均成绩较高者将被录取4.【答案】:B【解析】:当写作能力、普通话水平、计算机水平这三项的总分按3∶5∶2计算时,=74.7(分),小亮的成绩是90×3+75×5+51×23+5+2=74.4(分),小丽的成绩是60×3+84×5+72×23+5+2当写作能力、普通话水平、计算机水平这三项的总分按5∶3∶2计算时,=77.7(分),小亮的成绩是90×5+75×3+51×25+3+2=69.6(分),小丽的成绩是60×5+84×3+72×25+3+2故写作能力、普通话水平、计算机水平这三项的总分由原先按3∶5∶2计算,变成按5∶3∶2计算,小亮的成绩变化是77.7−74.7=3(分),小丽的成绩变化是69.6−74.4=−4.8(分),故小亮成绩增加的多5.【答案】:175.5【解析】:22%×180+27%×170+26%×175+25%×178=175.5(个)6(1)【答案】x ¯甲=83+79+903=84(分); x ¯乙=85+80+753=80(分); x ¯丙=80+90+733=81(分).∴排名顺序为甲、丙、乙【解析】:代入求平均数公式求出三人的平均成绩,比较得出的结果(2)【答案】由题意可知,只有甲不符合规定.∵x′¯乙=85×60%+80×30%+75×10%=82.5(分),x′¯丙=80×60%+90×30%+73×10%=82.3(分), ∴乙将被录用【解析】:由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出总分,比较得出结果7(1)【答案】甲的演讲答辩得分=90+92+943=92(分),甲的民主测评得分=40×2+7×1+3×0=87(分),当a =0.6时,甲的综合得分=92×(1−0.6)+87×0.6=36.8+52.2=89(分)【解析】:由题意可知:分別计算出甲的演讲答辩得分以及甲的民主测评得分,再将a =0.6代入公式计算可以求得甲的综合得分(2)【答案】∵乙的演讲答辩得分=89+87+913=89(分),乙的民主测评得分=42×2+4×1+4×0=88(分),∴乙的综合得分=89(1−a)+88a .由(1)知甲的综合得分=92(1−a)+87a .当92(1−a)+87a >89(1−a)+88a 时,a <0.75,又∵0.5⩽a ⩽0.8,∴当0.5⩽a<0.75时,甲的综合得分高;当92(1−a)+87a<89(1−a)+88a时,a>0.75,又∵0.5⩽a⩽0.8,∴当0.75<a⩽0.8时,乙的综合得分高【解析】:同(1)一样先计算出乙的演讲答辩得分以及乙的民主测评得分,得出乙的综合得分,再与甲的综合得分比较,得出两位同学哪一位当选为班长8.【答案】:C【解析】:平均数为(40+42+43+45+47+47+58)÷7=322÷7=469.【答案】:C【解析】:根据题意得:(40×5+20×3+15×2)÷(5+3+2)=29(元),即混合后什锦糖的售价应为每千克29元.故选 C10.【答案】:C【解析】:根据题意得:(2×2+2×3+10×4+6×5)÷20=4,即平均数为4.故选 C11.【答案】:C【解析】:去掉一个9.8分和一个9.4分,然后计算剩余五个数的平均数,所以小=9.58(分).故选C明的最后得分=9.5+9.7+9.8+9.4+9.5512.【答案】:88=88(分)【解析】:90×3+90×3+85×43+3+413.【答案】:3【解析】:设成绩为9环的人数为x,则(3×7+4×8+9x)÷(3+4+x)=8,解得x=3。
20.1.1 平均数(第2课时)教学设计
一、教材分析:
1、地位作用:这节课时学生在第一课时学习了平均数的基础上,对平均数的进一步深入拓展,通过本节课的学习,让学生平均数的运算由一般的加权平均数扩大到特殊的加权平均数的运算,为统计知识的学习奠定良好的基础。
2、教学目标:
(1)、熟练掌握平均数的计算方法;
(2)、运用加权平均数进行有关计算.
(3)、数学思考:通过实践,培养学生的计算、归纳能力.
3、教学重、难点
教学重点:①探究加权平均数的运算方法;②运用加权平均数的运算性质解决问题.
教学难点:探究加权平均数的运算方法.
突破难点的方法:通过加权平均数的运算,让学生归纳加权平均数的运算方法.
二、教学准备:多媒体课件、导学案
三、教学过程
k个数的加权平均数,其中。
人教版数学八年级下册20.1.1《平均数》说课稿一. 教材分析《平均数》是人教版数学八年级下册第20章第1节的内容。
本节课主要介绍了平均数的定义、性质和求法,以及平均数在实际生活中的应用。
教材通过丰富的实例,引导学生认识平均数,探究平均数的性质,培养学生运用平均数解决实际问题的能力。
二. 学情分析八年级的学生已经掌握了整数、分数和小数的知识,具备了一定的逻辑思维和运算能力。
但他们对平均数的理解可能仅停留在表面,对其性质和求法不够了解。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生深入理解平均数,提高他们运用平均数解决实际问题的能力。
三. 说教学目标1.知识与技能:理解平均数的定义,掌握平均数的性质和求法,能运用平均数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,探究平均数的性质,提高学生的逻辑思维能力。
3.情感态度与价值观:培养学生对数学的兴趣,使他们认识到数学在生活中的重要作用。
四. 说教学重难点1.重点:平均数的定义、性质和求法。
2.难点:平均数的性质和求法,以及运用平均数解决实际问题。
五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、实物模型和数学软件辅助教学。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何求解平均数,激发学生的学习兴趣。
2.探究平均数的定义:让学生观察、分析实例,引导学生发现平均数的性质,总结出平均数的定义。
3.讲解平均数的性质:通过实例和数学推理,讲解平均数的性质,让学生加深对平均数的理解。
4.学习平均数的求法:引导学生运用公式法和列举法求解平均数,巩固所学知识。
5.应用拓展:让学生运用平均数解决实际问题,提高他们运用数学知识解决问题的能力。
6.总结:对本节课的内容进行总结,强调平均数在实际生活中的重要作用。
七. 说板书设计板书设计如下:八. 说教学评价本节课的评价主要从学生的知识掌握、能力培养和情感态度三个方面进行。
人教版八年级下册数学《20.1.1平均数》课时练学校:_______姓名:_______班级:_______考号:________一、单选题1.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么所求出平均数与实际平均数的差是().-D.3-A.0.5B.3C.0.52.若将7个数按照从小到大的顺序排成一列,中间的数恰是这7个数的平均数,前4个数的平均数是25,后4个数的平均数是35,则这7个数的和为()A.175B.210C.240D.2453.已知一组数据a1,a2,a3,a4,a5的平均数为5,则另一组数据a1+5,a2-5,a3+5,a4-5,a5+5的平均数为()A.4B.5C.6D.104.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次.射击成绩统计如下:从射击成绩的平均数评价甲、乙两人的射击水平,则()命中环数(单位:环)78910甲命中相应环数的次数2201乙命中相应环数的次数1310A.甲比乙高B.甲、乙一样C.乙比甲高D.不能确定5.某种品牌水果糖的售价为15元/kg,酥糖的售价为18元/kg.现将两种糖均匀混合,为了估算混合糖的售价,称了10份糖,每份糖1kg,其中水果糖的质量(单位:kg)如下:0.58,0.52,0.59,0.49,0.60,0.55,0.56,0.49,0.52,0.54.你认为这种糖比较合理的定价为()A.16.6元/kg B.16.4元/kg C.16.5元/kg D.16.3元/kg6.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A .1.95元B .2.15元C .2.25元D .2.75元二、填空题7.小方的数学平时成绩为84分,期中成绩为80分,学校按平时、期中、期末成绩之比为3∶3∶4的比例计算学期的总评成绩,他计划总评成绩要达到85分,则期末考试他至少要得到______分.8.某同学使用计算器求30个数据的平均数时,错将其中的一个数据105输入为150,那么由此求出的平均数比实际平均数多____.9.已知7,4,5和x 的平均数是6,则x =_________.10.一组数据a ,b ,c ,d ,e 的平均数是7,则另一组数据a +2,b +2,c +2,d +2,e +2的平均数为________.11.某校招聘教师,规定综合成绩由笔试成绩和面试成绩构成,其中笔试占60%,面试占40%,有一名应聘者的综合成绩为84分,笔试成绩是80分,则面试成绩为______分.12.为了了解学生课业负担情况,某市在城区几所学校中随机抽取了50名初三学生,调查他们每天完成作业所用时间,并将抽查结果绘制成了如图所示的统计图,请计算这50名初三学生平均每天完成作业所用时间为_______分钟.三、解答题13.某便利店为了了解20:00~21:00去该店购物的顾客人数,随机抽查了10天该时间段的顾客人数,结果如下:14231625232826272325根据以上数据,请你估计20:00~21:00去该便利店购物的顾客人数.14.设一组数据12n x x x ,,,¼的平均数为m ,求下列各组数据的平均数:()121333n x x x ++¼+,,,;()122222n x x x ¼,,,.15.某校八年级一班有学生50人,八年级二班有学生45人,期末数学测试中,一班学生的平均分为81.5分,二班学生的平均分为83.4分,这两个班95名学生的平均分是多少?16.某班进行个人投篮比赛,受污染的表记录了在规定时间内投进n 个球的人数分布情况,同时,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均每人投进2.5个球,问投进3个球和4个球的各有多少人?进球数n012345投进n 个球的人数127____________217.小明想调查某个高速公路入口处每天的汽车流量(单位:辆).一天,他从上午8:00~11:00在该入口处,每隔相等的一段时间作一次统计,共统计了8次,数据如下:记录的次数第一次第二次第三次第四次第五次第六次第七次第八次3min 内通过的汽车流量5150646258555553试估计:这天上午这3h 内共有多少车次通过该入口?18.某学校考察各个班级的教室卫生情况时包括以下几项:黑板、门窗、桌椅、地面.一天,三个班级的各项卫生成绩(单位:分)分别如下:黑板门窗桌椅地面一班95909085二班90958590三班85909590(1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%,10%,35%,40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的评分方案,哪一个班的卫生成绩最高?参考答案1.D 2.B 3.C 4.B 5.B 6.C 7.89.58.1.59.810.911.9012.8813.解:1(1423316252282627)2310´+´++´+++=(人).答:20:0021:00~去该便利店购物的顾客人数为23人.14.【解析】设一组数据12n x x x ,,,¼的平均数是m ,即12nx x x x m n++¼+==,则12n x x x mn ++¼+=.()121n x x x mn ++¼+= ,123333n x x x mn n \++++¼++=+,12333n x x x \++¼+,,,的平均数是33mn nm n+=+;()122n x x x mn ++¼+= ,122222n x x x mn \++¼+=,12222n x x x \¼,,,的平均数是22mnm n=.15.【解析】由题意知,这两个班的平均成绩=(83.4×45+81.5×50)÷(45+50)=82.4(分).答:这两个班95名学生的平均分是82.4分.16.9;3;【解析】设投进3个球的有x 人,投进4个球的有y 人.依题意得.()()3452 3.52{217234 2.5127x y x y x y x y ++´´++´+´++´++++==,整理得6{318 x yx y-+==,解得9 {3 xy==.答:投进3个球的有9人,投进4个球的有3人.17.解:每3min的平均汽车流量为:()51506462585555538=56+++++++¸(辆).所以,可以估计这天上午这3h通过该入口的车次大约为:()563603=3360´´¸(车次),答:这天上午3h内共有3360车次通过该入口.18.解:(1)一班的成绩=95×15%+90×10%+90×35%+85×40%=88.75分;二班的成绩=90×15%+95×10%+85×35%+90×40%=88.75分;三班的成绩=85×15%+90×10%+95×35%+90×40%=91分;∴三班的成绩最高.(2)若将黑板、门窗、桌椅、地面按10%,35%,15%,40%的比例计算各班卫生成绩:∵一班的加权平均成绩=9510%9035%9015%8540%88.5´+´+´+´=,二班的加权平均成绩=9010%9535%8515%9040%91´+´+´+´=,三班的加权平均成绩=8510%9035%9515%9040%90.25´+´+´+´=,∵9190.2588.5>>;∴二班的卫生成绩最高.。
初中数学人教版八年级下册实用资料第二十章 数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时 平均数(1)1.使学生理解并掌握数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.重点会求加权平均数.难点对“权”的理解.一、复习导入某校八年级共有班级 1班 2班 3班 4班参考人数 40 42 45 32平均成绩 80 81 82 79x =14×(79+80+81+82)=80.5 平均数的概念及计算公式:一般地,如果有n 个数x 1,x 2,x 3,…,x n ,则有x =x 1+x 2+x 3+…+x n n,其中x 叫做这n 个数的平均数,读作“x 拔”.二、讲授新课问题: 一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(应试者 听 说 读 写甲 85 78 85 73乙 73 80 82 83(1)(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?对于问题(1),根据平均数公式,甲的平均成绩为:85+78+85+734=80.25, 乙的平均成绩为73+80+82+834=79.5. 因为甲的平均成绩比乙高,所以应该录取甲.对于问题(2),听、说、读、写成绩按照2∶1∶3∶4的比确定,这说明各项成绩的“重要程度”有所不同,读、写的成绩比听、说的成绩更加“重要”.因此,甲的平均成绩为85×2+78×1+85×3+73×42+1+3+4=79.5, 乙的平均成绩为73×2+80×1+82×3+83×42+1+3+4=80.4. 因为乙的平均成绩比甲高,所以应该录取乙.上述问题(1)是利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要.而问题(2)是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的2,1,3,4分别称为听、说、读、写四项成绩的权,相应的平均数79.5,80.4分别称为甲和乙的听、说、读、写四项成绩的加权平均数.一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w n w 1+w 2+…+w n叫做这n 个数的加权平均数.三、例题讲解【例1】教材第112页例1【例2】为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行了测量,结果如下表:(单位:小时寿命 450 550 600 650 700只数 20 10 30 15 25解:这些灯泡的平均使用寿命为:x =450×20+550×10+600×30+650×15+700×2520+10+30+15+25=597.5(小时) 四、巩固练习1.在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为________.【答案】2x 1+3x 2+4x 3+5x 4x 1+x 2+x 3+x 42.某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶________环.【答案】ax +by a +b五、课堂小结师:这节课你学到了什么新知识?生1:数据的权和加权平均数的概念.生2:掌握加权平均数的计算方法.……平均数是统计中的一个重要概念,新教材注重学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念,基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值.第2课时 平均数(2)1.加深对加权平均数的理解.2.会根据频数分布表求加权平均数,解决一些实际问题.3.会用计算器求加权平均数的值.重点根据频数分布表求加权平均数.难点根据频数分布表求加权平均数.一、复习导入采用教材原有的引入问题,设计的几个问题如下:(1)请同学们阅读教材中的探究问题,依据统计表可以读出哪些信息?(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数5指什么呢?(4)如果每组数据在本组中分布较为均匀,每组数据的平均值和组中值有什么关系? 设计意图(1)主要是想引出根据频数分布表求加权平均数近似值的计算方法;(2)加深了对“权”的意义的理解:当利用组中值近似取代一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权;二、例题精讲【例2】某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).解:这个跳水队运动员的平均年龄为x =13×8+14×16+15×24+16×28+16+24+2≈14(岁). 【例3】某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了50只灯泡.它们的使用使用寿命/x/h 600≤x<1000 1000≤x<1400 1400≤x<1800 1800≤x<2200 2200≤x<2600灯泡只数 5 10 12 17 6分析:估计这批灯泡的平均使用寿命.解:根据表格,可以得出各小组的组中值,于是x =800×5+1200×10+1600×12+2000×17+2400×650=1672, 即样本平均数为1672.因此,可以估计这批灯泡的平均使用寿命大约是1672 h .三、巩固练习某校为了了解学生做课外作业所用时间的情况,对学生做课外作业所用时间进行调查,下表是该校八年级某班.所用时间t(分钟) 人 数0<t≤10 410<t≤20 620<t≤30 1430<t≤40 1340<t≤50 950<t≤60 4求:(1)(2)该班学生平均每天做数学作业所用的时间.【答案】解:(1)15(2)该班学生平均每天做数学作业所用时间为x =5×4+15×6+25×14+35×13+45×9+55×44+6+14+13+9+4=30.8(分钟) 四、课堂小结1.加权平均数的应用.2.根据频数分布表求加权平均数.3.学会用计算器求加权平均数的值.在统计中算术平均数常用于表示对象的一般水平,它是描述数据集中程度的一个统计量,它可以反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出组与组之间的差别,可见平均数是统计中的一个重要概念.基于这一认识,这节课注重了以下几个方面:一、在现实生活情境中引入,注重数学与生活的联系.二、创造有效的数学学习方式,理解平均数的意义,学会平均数的算法.20.1.2 中位数和众数第1课时 中位数和众数(1)认识中位数和众数,并会求出一组数据的众数和中位数.重点认识中位数、众数这两种数据代表.难点利用中位数、众数分析数据信息,做出决策.一、复习导入前面已经和同学们研究了平均数这个数据代表.它在分析数据的过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据的过程中又起到怎样的作用.二、讲授新课 月收 入/元 45000 18000 10000 5500 5000 3400 3000 1000 人数 1 1 1 3 6 1 11 1(2)若用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?师:同学们知道如何计算这个公司员工月收入的平均数吗?生:根据加权平均数,可以求出这个公司员工月收入的平均数为:45000+18000+10000+5500×3+5000×6+3400+3000×11+10001+1+1+3+6+1+11+1=6276.师:很好!那么用第(1)问中算得的平均数来反映该公司全体员工的月收入水平,你认为合理吗?生:不合理.因为在这25名员工中,仅有3名员工的收入在6276元以上,而另外22名员工的收入都在6276元以下.因此,用月收入的平均数反映所有员工的月收入水平不合理.师:这位同学分析得很好!那么应该选择什么数据来反映该公司员工月收入的水平呢?这就要用到本节课要学习的中位数,利用中位数可以更好地反映这组数据的集中趋势.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称位于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.利用中位数分析数据可以获得一些信息.例如,上述问题中将公司25名员工月收入数据由小到大排列,得到的中位数为3400,这说明除去月收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.【例1】教材第117页例4师:刚才我们学习中位数,下面我们再来学习一个反映数据集中趋势的另一众数,一组数据中出现次数最多的数据称为这组数据的众数.当一组数据有较多的重复数据时,众数往往能更好地反映该组数据的集中趋势.【例2】一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示.你尺码/cm22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 11 7 3 1码组成的一组数据的众数.一段时间内卖出的300双女鞋的尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数,进而估计这家鞋店销售哪种尺码的鞋最多.解:由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23.5 cm的鞋销售量最大,因此可以建议鞋店多进23.5 cm的鞋.三、巩固练习1.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8的中位数是________,众数是________.【答案】9 92.一组各不相同的数据23,27,20,18,x,12,它的中位数是21,则x的值是________.【答案】223.数据92,96,98,100,x的众数是96,则其中位数和平均数分别是( )A.97,96 B.96,96.4C.96,97 D.98,97【答案】B4.如果在一组数据中,23,25,28,22出现的次数依次为3,5,3,1,并且没有其他的数据,则这组数据的众数和中位数分别是( )A.24,25 B.23,24C.25,25 D.23,25【答案】C四、课堂小结1.认识了中位数和众数.2.理解了中位数和众数的意义和作用,并能利用它们分析数据信息,做出决策.本次教学中,我通过引导学生在了解中位数和众数的意义之后,让学生利用中位数和众数的知识解决实际问题,沟通了知识与实际生活的联系,让学生体会到中位数与众数知识的实用性.第2课时中位数和众数(2)1.进一步认识到平均数、众数、中位数都是数据的代表.2.了解平均数、中位数、众数在描述数据时的差异.重点了解平均数、中位数、众数之间的差异.难点灵活运用这三个数据代表解决问题.一、复习导入平均数、中位数和众数都可以作为一组数据的代表,是描述一组数据集中趋势的量.它们各有自己的特点,能够从不同的角度提供信息,在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.另外要注意:(1)平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大;(2)众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算也不受极端值的影响;(3)平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应地引起平均数的变动;(4)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势;(5)实际问题中求得的平均数、众数、中位数应带上单位.二、例题讲解【例1得分50 60 70 80 90 100 110 120人数 2 3 6 14 15 5 4 1解:众数90分中位数85分平均数84.6分【例2】公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁) 甲群:13,13,14,15,15,15,16,17,17.乙群:3,4,5,5,6,6,36,55.(1)甲群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映甲群游客年龄特征的是________;(2)乙群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映乙群游客年龄特征的是________.解:(1)15 15 15 众数(2)15 5.5 5,6 中位数【例3】教材第119页例6三、巩固练习职员董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20工资5500 5000 3500 3000 2500 2000 1500(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为应该使用平均数和中位数中的哪一个来描述该公司职工的工资水平?【答案】(1)2091 1500 1500 (2)3288 1500 1500 (3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.四、课堂小结1.了解平均数、中位数、众数之间的差异.2.灵活运用这三个数据代表解决问题.本节课首先从复习平均数、中位数和众数的定义开始,接着列出这三种统计量各自的特点和适用条件,为避免太过抽象,在后面设计的例题中都有这些统计量的应用,培养学生应用数学的意识.20.2 数据的波动程度1.了解方差的定义和计算公式.2.理解方差概念的产生和形成过程.3.会用方差比较两组数据的波动大小.重点方差产生的必要性和应用方差公式解决实际问题.难点理解方差的概念并会运用方差的公式解决实际问题.一、情境导入1.请同学们看下面的问题:(幻灯片出示)农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49 上面两组数据的平均数分别是x 甲≈7.54,x 乙≈7.52,说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.由此可以估计出这个地区种植这两种甜玉米,它们的平均产量相差不大.为了直观地看出甲、乙两种甜玉米产量的分布情况,我们把这两组数据画成下面的图1和图2.师:比较上面的两幅图可以看出,甲种甜玉米在各试验田的产量波动较大,乙种甜玉米在各试验田的产量较集中地分布在平均量附近,从图中看出的结果能否用一个量来刻画呢?这就是我们本节课所要学习的内容——方差.教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).2.方差的概念教师讲解:为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:设在一组数据中,各数据与它们的平均数的差的平方的和的平均数是s 2,那么我们用s 2=1n[(x 1-x)2+(x 2-x)2+…+(x n -x)2] 来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据的方差越大,说明这组数据的波动越大;数据的方差越小,说明这组数据的波动越小,教师要剖析公式中每一个元素的意义,以便学生理解和掌握.在学生理解了方差的概念之后,再回到了引例中,通过计算甲、乙两种甜玉米的方差,根据理论说明哪种甜玉米的产量更好.教师示范:两组数据的方差分别是s 甲2=(7.65-7.54)2+(7.50-7.54)2+…+(7.41-7.54)210≈0.01, s 乙2=(7.55-7.52)2+(7.56-7.52)2+…+(7.49-7.52)210≈0.002. 显然s 甲2>s 乙2,即甲种甜玉米的波动较大,这与我们从图1和图2看到的结果一致.由此可知,在试验田中,乙种甜玉米的产量比较稳定.正如用样本的平均数估计总体的平均数一样,也可以用样本的方差来估计总体的方差.因此可以推测,在这个地区种植乙种甜玉米的产量比甲种的稳定.综合考虑甲、乙两个品种的平均产量和产量的稳定性,可以推测这个地区比较适合种植乙种甜玉米.这样做使学生深刻地体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.二、例题讲解【例1】教材第125页例1【例2】教材第127页例2【例3】(幻灯片出示)已知两组数据:甲:9.9 10.3 9.8 10.1 10.4 10 9.8 9.7乙:10.2 10 9.5 10.3 10.5 9.6 9.8 10.1分别计算这两组数据的方差.让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名学生到黑板计算. 解:根据公式可得x 甲=10+18(-0.1+0.3-0.2+0.1+0.4+0-0.2-0.3) =10+18×0=10 x 乙=10+18(0.2+0-0.5+0.3+0.5-0.4-0.2+0.1) =10+18×0=10 s 甲2=18[(9.9-10)2+(10.3-10)2+…+(9.7-10)2] =18(0.01+0.09+…+0.09) =18×0.44=0.055 s 乙2=18[(10.2-10)2+(10-10)2+…+(10.1-10)2] =18(0.04+0+…+0.01) =18×0.84=0.105 从s 甲2<s 乙2知道,乙组数据比甲组数据波动大.三、巩固练习1.已知一组数据为2,0,-1,3,-4,则这组数据的方差为________.【答案】62.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,7,7经过计算,两人射击环数的平均数相同,但s甲2________s乙2,所以确定________去参加比赛.【答案】>乙四、课堂小结1.知识小结:通过这节课的学习,我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小,而描述一组数据的波动大小的量不止一种,最常用的是方差.2.方法小结:求一组数据方差的方法:先求平均数,再利用平均数求方差.本次教学在解决引例问题时,通过对数据的分析,发现以前学过的统计知识不能解决新问题,引出矛盾,这里设计了小组讨论的环节,让学生在交流中得到启发,进而使学生的思维发生碰撞,产生创新的火花,真正体现“不同的人,在数学上得到不同的发展”.。