C
M└
●
B O
D
∴当圆沿着直径CD对折时,点A与点B ⌒ ⌒ 重合, ⌒ AC和BC重合, ⌒ AD和BD重合.
⌒ =BC, ⌒ AD ⌒ =BD. ∴AC
⌒
垂径定理 定理: 垂直于弦的直径平分弦, 并且平分弦所对的两条弧.
C
几何语言:如图∵ CD是直径, CD⊥AB,
B O
A
M└
●
∴AM=BM,
C
解:如图,设半径为R,
在Rt⊿AOD中,由勾股定理,得
1 1 AD AB 37.4 18.7, 2 2 OD OC DC R 7.2.
AB=37.4, CD=7.2
7.2
A
18.7
D
B
R
R-7.2
OA2 AD2 OD2 , 即R2 18.72 ( R 7.2)2 .
结论
可推得
① CD是直径 ② CD⊥AB
③AM=BM,
⌒ ⌒ ④AC=BC,
⌒ ⑤AD=BD. ⌒
垂径定理
理由是: 连接OA,OB, 则OA=OB.
在Rt△OAM和Rt△OBM中, A ∵OA=OB,OM=OM, ∴Rt△OAM≌Rt△OBM. ∴AM=BM. ∴点A和点B关于CD对称. ∵⊙O关于直径CD对称,
赵州桥主桥拱的半径是多少?
问题 : 你知道赵州桥吗?它是1300多年前我国隋代建造的 石拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆 弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点 到弦的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?
实践探究
把一个圆沿着它的任意一条直径对折,重 复几次,你发现了什么?由此你能得到什 么结论?