医用传感器_重点
- 格式:doc
- 大小:2.26 MB
- 文档页数:15
1、医用传感器的主要用途:提供信息、监护、生化检验、自动控制、参与治疗2、医用传感器应具有以下特性:尽可能高的信噪比,以便于在干扰和噪声的背景中提取有用的信息良好的精确性,以保证检测出的信号准确、可靠足够快的响应速度,能够跟随生物体信号量的变化良好的稳定性,保持长时间检测飘移很小,输出稳定较好的互换性,调试、维修方便3、传感器的静态特性可以用:y=a0+a1x+a2x^2+a3x^3+……anx^n静态特性指标:测量范围和灵敏度、线性度、迟滞、稳定性、环境特性4、传感器的动态特性一般用常系数线性微分方程作为数学模型5、传感器的动态响应:输入信号从某一状态到另一个稳定状态时输出信号也跟着变化。
输出信号到达新的稳定的稳定状态以前的响应特性叫做瞬态响应,当时间t趋于无穷大时传感器的输出状态叫做稳态响应。
6、传感器的误差:第一种误差源是把传感器放入测量位置的过程造成的。
第二种误差源是传感器的穿在引起的。
第三种误差源是传感器本身的特性引起的误差。
对传感器特性的两个基本要求:输入为零时输出也要为零;对某个确定的输入值,按照对应关系输出的值也是确定的。
7、电阻式传感器:把一些非电量的生物参数转换为具有一定函数关系的电阻变化,从而得到所需要的电量的传感器称为电阻式传感器。
8、应变效应:金属导体或者金属半导体在受到外力作用时其电阻也随之变化称为应变效应。
9、温度补偿:为了进一步补偿温度对测量带来的的影响,获得较高的输出精度,需要采取温度补偿线路,方法之一就是在电源回路用串联二极管进行补偿。
10、电容式传感器:将被测的非电量转换成电容变化的器件或装置,称为电容式传感器。
11、电容式传感器的误差分析:减小环境温度、温度变化说产生的误差。
消除和减小边缘效应,适当减小极间距,可减小边缘效应减小的影响。
消除和减小寄生电容,如驱动电缆法和整体屏蔽法。
漏电阻的影响,防止和减小外界干扰或采用差动结构。
12、电容式传感器的医学应用:电容式压力传感器及血压测量、直流极化型电容传感器及呼吸测量、电容式位置传感器及心电图测量13、电感式传感器:一种建立在电磁感应的基础上,利用线圈的自感L和互感M的变化来实现测量的一种装置。
医用传感器原理范文1.血氧传感器血氧传感器可以测量血液中的氧饱和度,是一种常见的医用传感器。
其工作原理基于红外光的吸收特性。
传感器中包含有红外光发射器和接收器。
红外光会穿透皮肤并被血红蛋白吸收,而经过皮肤的红外光量与被吸收的红外光量成反比,从而可以计算出血氧饱和度。
2.心电图传感器心电图传感器是用于测量心脏电活动的传感器。
其原理基于心脏产生的微弱电流信号。
传感器通过皮肤上的电极将心电信号捕捉并放大,然后将信号传输给测量设备进行分析和展示。
心电图传感器可以检测心脏的心率、心律和心脏病变等信息。
3.血压传感器血压传感器可以测量血液在动脉中的压力,用于诊断和监测高血压等疾病。
传感器中通常包含一个充气袖带和一个压力传感器。
测量时,袖带被充气至一定压力,然后缓慢放气。
当血液通过动脉时,可以通过传感器检测到脉搏的脉压信号,从而测量出血压值。
4.温度传感器温度传感器可以测量人体的体温,是一种常见的医疗传感器。
根据不同的原理,温度传感器可以分为接触式和非接触式两种。
接触式温度传感器使用物理接触的方式测量体温,如体温计。
非接触式温度传感器则通过红外辐射检测人体辐射的热能并计算出体温值。
5.呼吸传感器呼吸传感器可以测量人体的呼吸频率和呼吸深度,可以用于监测患者的呼吸状况。
呼吸穿感器的原理主要有声音传感和压力传感。
声音传感器可以检测到胸部和腹部腺体的声音变化,从而监测呼出和呼入的气流量。
压力传感器则通过测量胸部和腹部的压力变化来计算呼吸频率和呼吸深度。
这些是医用传感器中几种常见的工作原理,不同的传感器具有不同的适用范围和精度。
医用传感器的应用有助于实时监测患者的生物参数,并提供给医生及时而准确的数据,帮助提高疾病诊断、治疗和护理的效果。
医用传感器1. 引言医用传感器是在医疗领域中应用的一种重要设备,用于测量与监测人体相关的生理参数和环境条件。
它可以收集各种信号,如心率、血氧饱和度、体温等,并通过传感器将这些信号转换为可读取的数字信号。
医用传感器在各个医疗领域中起着至关重要的作用,帮助医生进行诊断、治疗与监护工作。
本文将介绍医用传感器的分类、应用领域和发展前景。
2. 医用传感器分类根据其测量参数的不同,医用传感器可以分为多种类型。
2.1 生理参数传感器生理参数传感器用于测量与人体的生理参数相关的信号。
常见的生理参数传感器有心率传感器、血压传感器、血氧饱和度传感器等。
这些传感器通过检测身体的生理变化来判断患者的身体健康状况,并提供数据供医生进行分析和诊断。
2.2 环境参数传感器环境参数传感器用于测量与环境有关的参数,如温度、湿度、气压等。
这些传感器可以用于监测手术室、病房等医疗环境的温湿度情况,确保患者的生活质量和医疗环境的安全。
2.3 医用成像传感器医用成像传感器用于医学影像的获取和分析,如X射线传感器、超声波传感器等。
这些传感器可以帮助医生诊断疾病、进行手术和治疗,并提供准确的影像数据供医疗团队进行评估和决策。
3. 医用传感器的应用领域医用传感器在医疗领域的应用非常广泛,涵盖了多个领域。
3.1 临床监护医用传感器可以用于监测患者的生理参数,如心率、血压、血氧饱和度等。
通过实时监测和记录这些参数,医生可以了解患者的健康状况,并及时采取相应的治疗措施。
3.2 疾病诊断医用传感器可以帮助医生进行疾病的诊断和评估。
例如,心电图传感器可以检测心脏的电活动,帮助医生判断是否存在心脏病。
血糖传感器可以监测患者的血糖水平,用于糖尿病的诊断和治疗。
3.3 康复护理医用传感器可以用于康复护理的监测和辅助。
例如,肌肉传感器可以帮助康复患者监测肌肉的活动和力量变化,指导康复训练的进行。
运动传感器可以记录患者的运动轨迹和姿势,帮助评估康复效果。
3.4 远程医疗医用传感器可以与互联网和移动通信技术结合,实现远程医疗的应用。
1.传感器定义,重要性P1-P2 +PPT传感器的定义:能感受或响应规定的测量并按照一定规律转换成可用信号输出的器件或装置。
重要性:各个学科的发展与传感器技术有十分密切的关系。
例如:工业自动化、农业现代比、航天技术、军事工程、机器人技术、资源开发、海洋探测、环境监测、安全保卫、医疗诊断、交通运输、家用电器等方面都与传感器技术密切相关。
这些技术领域的发展都离不开传感器技术的支持,同时也是传感器技术发展的强大动力。
离开传感器就没有我们今天的生活。
2.医用传感器定义。
PPT能够感知多数为非电量的生物信息并将其转换成电学量的器件或装置。
3.为何转换成电信号P2 +PPT反映生命的信息绝大多数属于非电量,其放大和处理是十分困难的。
而医学传感器把生物信号换成电信号,经放大器及预处理器进行信号放大和预处理,然后经A/D转换器进行采样,将模拟信号转变为数字信号,输入计算机,然后通过各种数字信号处理算法进行信号分析处理,得到有意义的结果4.传感器,换能器,执行器的关系传感器:这种装置用来感知被监测系统的参数,它能把特定的被测参数的信息(包括物理量、化学量和生物量等)按一定规律转换为某种便于处理,易于传输的信号(如电信号、光信号等)。
换能器:它是一种装置,这种装置可将能量从一个域(如电能)变换到另一个域(如超声波),反之亦然。
推广来讲,它可将能量从一种类型转变成另一种类型。
因此对transducer确切翻译应为换能器。
执行器:它也是一种装置,这种装置接收电能后可对系统状态施加影响,如电机(它可施加扭矩)、水泵(它施加压力或改变流体速度)、电动移动工作台等。
5.医疗哪三个环节需要传感器,举例诊断(心音、血压、脉搏、呼吸、体温等信息)、治疗(自动呼吸机、电子价值)、监护(监视体温、脉搏、动脉压、静脉压、呼吸和心电等一系列参数的而变化情况),三个环节都离不开传感器。
6.传感器的基本分类一.传感器按其敏感的工作原理,可以分为物理型、化学型和生物型三大类。
常用医用传感器原理介绍一、X射线CT传感器从传感器的名字,马上就想到“人体断层图象”。
X射线的波长比电磁波、光波的波长更短,能量更大,对人体的穿透性很强。
CT这个词,是Couputer Tomography(计算机断层检查装置)两个英文词的词头。
当X射线通过人体后,利用传感器检查X射线的强度,作为输出信号。
然后,借助计算机,作成人体切片图象。
图3-1是X射线CT的简图。
用X射线CT照射,若X射线在人体组织某部分被吸收,根据传感器输出的大小,可将人体内的异常情况(出血、肿瘤等),以图象方式检测出来。
为了缩短摄影时间,提高分辨率,对原来的CT装置进行了改进。
现在的CT,只需X射线管和X射线检测器作旋转运动,便能进行高速扫描。
图3-2(a)表示只有X射线管和传感器部分旋转的情形,图3-2(b)表示实际得到的头部断层图象的例子。
检测X射线用的光敏二极管的构造示于图3-3。
在硅的Pin光电二极管的表面,密布将X射线变成光的闪烁体。
二、用硅压力传感器的电子血压计日本40岁以上的成年人中有三分之一的人患有高血压病,可以说是一种国民病。
因此,各个家庭中的血压计的普及率和体温计一样高。
本节叙述用硅压力传感器制作的电子血压计。
图3-4是电子血压计的简图。
为了测量压力差,硅压力传感器利用薄膜上形成的扩散层的压电电阻组成电桥进行测量。
最常见的测量血压的方法是腕带压力在最高血压和最低血压之间会产生一种K音(特殊的声音),由此可以听到脉搏的跳动。
利用微音器听K音的开始和结束,测量这时腕带内空气压力和大气压力的差作为血压值。
测量K音用的传感器是小型微音器,抗噪音能力弱。
心脏运动产生的P音(动脉压波)也和K音一样表现为硅传感器的输出。
因此,电子血压计将硅压力传感器P音的输出作为晶体管的门信号来测量K音。
通过测量P音产生的周期,可以测量1分钟的脉搏次数。
图3-5表示在测量血压时各种信号的变化状态,图中K音出现时,P1的压力Y3为最高血压;K音消失时,P2的压力Y4为最低血压。
什么是医用传感器?医用传感器的用途有哪些?传感器原理是什么?什么是医用传感器?医用传感器的用途有哪些?接下来,就带你了解一下吧!医学的产生是伴随着传感器的产生而来的。
华佗、扁鹊所代表的中医理论中的望、闻、问、切,就是运用了人类天生的传感器:触觉、听觉、视觉、自身的感觉;追求精确的西方医学更是为此研发了一套又一套的科学仪器,从传统的听筒、钳子、小锤到如今的内窥镜、CT、B超,再到如今已经应用临床的各种手术机器人,可以说医用传感器延伸了医生的感觉器官,把定性的感觉扩展为定量的检测,是医疗设备的关键器件。
随着信息技术时代的到来,医用传感器作为临床医学诊断的”口舌”,在临床医学中诊断、治疗、监护和康复等各个阶段都必不可少且意义重大,成为制约高水平先进医疗设备发展的关键技术,也是每个国家都优先发展的先锋技术,可以说,医用传感器技术的每一次进步都将带来临床医学的突破性进展。
随着科学技术的日新月异,传感器在医疗领域的应用,可谓是包罗万象,应有尽有。
如今年四月迅速在网络走红的电子胶囊内镜。
又如挪威一家初创公司于2017年7月推出的心脏病患者可穿戴设备,就内置了一个能实时收集患者生理数据并上传至云端,在发生异常情况时迅速报警的传感器。
而美国加州大学伯克利分校也于2017年7月研制出耳戴式3D打印传感器,用于测量人体核心温度。
智能手表和健康及健身手环,医疗终端,云端等。
近年来,针对不同疾病和创伤患者开发的传感器可谓不胜枚举,而现代的创新医疗器械产品背后,大都离不开现代的传感器功劳。
一、什么是医用传感器?医用传感器是应用于生物医学领域的一部分传感器,是把人体的生理信息转换成为与之有确定函数关系的电信息的变换装置。
它所拾取的信息是人体的生理信息,而它的输出常以电信号来表现。
人体生理信息有电信息和非电信息两大类,从分布来说有体内的(如血压等各类压力),也有体表的(如心电等各类生物电)和体外的(如红外、生物磁等)。
二、传感器原理传感器是将物理量(机械量,力学量等)的变化转化成电学量变化的一种装置。