介电弹性材料驱动器的力电耦合机理及稳定性研究_李博
- 格式:pdf
- 大小:117.76 KB
- 文档页数:1
纯剪切模式介电弹性体发电机发电特性鄂世举;金建华;曹建波;蔡建程;夏文俊【摘要】为研究介电弹性体发电机的发电特性,基于COMSOL有限元软件建立了在纯剪切拉伸方式下的介电弹性体发电机有限元仿真机电耦合模型.该模型基于Y eo h超弹性材料本构,同时耦合发电机膜内静电力,根据可变电容理论对发电机电容变化及发电效果进行研究.设计了可Y向预拉伸的纯剪切拉伸装置,并在不同预拉伸条件下对发电机薄膜样本进行了拉伸实验,分析了其电容变化及发电效果.对比了仿真数据与实验结果,仿真模型的电容变化与实验测得的电容变化情况基本吻合,仿真模型一个周期内的输出电压变化与实验测得的电压变化基本吻合.实验及仿真结果表明,在相同的拉伸条件下,Y向预拉伸增大了初始电容及电容变化速率,且当Y向预拉伸λ=1时的上升电压为83 V,而λ=2时的上升电压达到252 V,改善了发电性能.本文提出的介电弹性体发电机新的研究方法为发电机样机设计提供了新的思路.【期刊名称】《光学精密工程》【年(卷),期】2018(026)007【总页数】11页(P1708-1718)【关键词】有限元建模;纯剪切;Y向预拉伸;机电特性【作者】鄂世举;金建华;曹建波;蔡建程;夏文俊【作者单位】浙江师范大学工学院 ,浙江金华321004;浙江师范大学工学院 ,浙江金华321004;浙江师范大学工学院 ,浙江金华321004;浙江师范大学工学院 ,浙江金华321004;浙江师范大学工学院 ,浙江金华321004【正文语种】中文【中图分类】TP394.1;TH691.91 引言电活性聚合物(Electroactive Polymer, EAP)是一种新型的功能性材料,可广泛应用于驱动器、传感器和发电领域[1-4]。
介电弹性体(Dielectric Elastomer,DE)是EAP材料中最具代表性的一类,包括聚丙烯酸酯、硅橡胶及天然橡胶等,具有变形大、质量轻、能量密度高及柔顺性好等特点。
压电材料的研究和应用现状一、概述压电材料是一类具有压电效应的特殊功能材料,它们能够将机械能转化为电能,或者将电能转化为机械能。
自1880年居里兄弟发现压电效应以来,压电材料在科学研究和工业应用中就占据了重要地位。
随着科技的飞速发展,压电材料的研究和应用已经深入到众多领域,如传感器、换能器、振动控制、声波探测、生物医学等。
在压电材料的研究方面,科研人员一直致力于探索新型压电材料,优化其性能,拓宽其应用范围。
目前,压电材料的研究重点主要集中在压电陶瓷、压电聚合物、压电复合材料等领域。
这些新型压电材料在压电常数、介电常数、机械品质因数等关键指标上不断取得突破,为压电材料的应用提供了更多可能性。
在应用方面,压电材料在传感器和换能器领域的应用尤为广泛。
例如,压电传感器可用于检测压力、加速度、振动等物理量,广泛应用于工业自动化、航空航天、环境监测等领域。
压电换能器则可用于声波的发射和接收,广泛应用于声呐、超声检测、通信等领域。
压电材料在振动控制、声波探测、生物医学等领域也展现出广阔的应用前景。
压电材料作为一种重要的功能材料,在科学研究和工业应用中发挥着不可替代的作用。
随着科学技术的不断进步,压电材料的研究和应用必将迎来更加广阔的天地。
1. 压电材料的定义与特性压电材料是一种特殊的功能材料,具有将机械能转化为电能或将电能转化为机械能的能力。
这类材料在受到外力作用时,其内部正负电荷中心会发生相对位移,从而产生电势差,这种现象称为“压电效应”。
反之,当压电材料置于电场中时,材料会发生形变,这种现象称为“逆压电效应”。
压电材料的这种特性使得它们在许多领域都有广泛的应用,如传感器、换能器、振动控制等。
压电材料的特性主要包括压电常数、介电常数、机械品质因数等。
压电常数反映了材料的压电效应强弱,是衡量压电材料性能的重要指标。
介电常数则描述了材料在电场作用下的电荷存储能力。
机械品质因数则反映了材料在振动过程中的能量损耗情况。
介电弹性体驱动单元的动态特性分析赵政弘;帅长庚;张世轲【摘要】In order to analyze the dynamic behavior of the actuating unit of dielectric elastomer (DE) under different electric voltage,a second-order ordinary differential motion equation was derived based on thermodynamics and Ogden strain energy function considering the influence of material nonlinearity,dielectric variation and inertial effects.Besides,the dynamic response of the actuating unit was obtained,and the influence of geometry was investigated as well.The results indicate that the dynamic response amplitude of DE actuating unit is determined by the electric field.When increasing the static electric strength,the amplitude increases while the frequency decreases.And when increasing the frequency of harmonic electric strength,the actuating unit shows a resonate effect and the resonant frequency decreases with the increase of harmonic electric strength.%针对不同电压载荷情况下介电弹性体驱动单元的动态特性,考虑材料非线性、介电常数变化和惯性效应等因素的影响,从热力学能量转化的角度得到了基于Ogden应变能函数的介电弹性体驱动单元的二阶常微分运动方程,并分析了系统的动态响应及模型几何尺寸的影响.结果表明:介电弹性体驱动单元动态响应的振幅由电场强度决定.在恒定场强下,随着电场强度幅值的增大,驱动单元的振幅将随之增大、振动频率将随之减小;在简谐场强下,随着电场强度频率的增大,驱动单元将发生共振,且共振频率将随电场强度的增大而减小.【期刊名称】《材料科学与工程学报》【年(卷),期】2018(036)001【总页数】4页(P31-34)【关键词】介电弹性体;驱动单元;动态特性;数值模拟【作者】赵政弘;帅长庚;张世轲【作者单位】海军工程大学振动与噪声研究所,船舶振动噪声重点实验室,湖北武汉430033;海军工程大学振动与噪声研究所,船舶振动噪声重点实验室,湖北武汉430033;海军工程大学振动与噪声研究所,船舶振动噪声重点实验室,湖北武汉430033【正文语种】中文【中图分类】TB3811 引言介电弹性体(DE)是指在外加电场载荷激励下能够产生较大变形的电活性聚合物(EAP)材料,是一种具有巨大发展潜力的新型智能材料。
新型电致活化材料—介电弹性体的驱动特性研究欧阳杰;胡意立【摘要】In order to solve the problems of shortage in new technology area, such as actuator, artificial muscle,bio-robot etc. , the electroac-tive polymeric materials -electric-acrylic elastomer was investigated. The analysis of the driver characteristics of dielectric elastomer was done. Through experiments, the main factors of affecting E-ACE material active zone (electrode coating regional) area strain were researched. The relationships between active zone area strain and these influencing factors were found out . Thereby appropriate conditions which can get required active zone area strain were determined according to relationships between them. The results show that: whether uniaxial pre-stretching or the uniform and non-uniform biaxial pre-stretching, the general trend of the effects of the active zone area strain are increased first and then decreased with the amount of stretching increases. The active zone area strain is increased with increasing applied voltage, reduced with the active zone and the window radius ratio increasing. By analyzing the experimental results, it shows that search for suitable conditions on the active zone to generate the required area strain is very important.%为解决微型致动器、人造肌肉、仿生机器人等新型科技研究领域短缺问题,将电活性聚合物材料—介电弹性体应用于新型驱动器研究中,开展了对弹性体材料驱动特性的相关分析.通过实验研究了影响E-ACE材料激活区(电极涂层区域)面积应变的主要因素,以寻找激活区面积应变和这些影响因素之间的关系,进而根据它们之间的关系确定能获得所需激活区面积应变的合适条件.实验结果显示:不论单轴预拉伸还是双轴的均匀与非均匀预拉伸,对激活区面积应变影响的总趋势都是随着拉伸量的增大先增大后减小.而激活区面积应变随着外加电压的增加而增大,随着激活区与窗口半径比的增大而减小.通过分析实验结果发现,寻找合适的条件对激活区产生所需的面积应变很重要.【期刊名称】《机电工程》【年(卷),期】2011(028)010【总页数】4页(P1203-1205,1221)【关键词】介电弹性体;电活性聚合物材料;驱动器;实验研究【作者】欧阳杰;胡意立【作者单位】浙江师范大学工学院,浙江金华321004;浙江师范大学工学院,浙江金华321004【正文语种】中文【中图分类】TH14电活性聚合物的种类包括:导电橡胶、离子交换膜金属复合材料、凝胶体、纳米管及介电弹性体等。
介电型电活性聚合物圆柱形驱动器的驱动效率罗华安;王化明;朱银龙;左方睿;汪洋【摘要】研究了介电型电活性聚合物(DEAP)驱动器的机电能量转换机理、能量损耗和驱动效率.建立了驱动器机电能量转换模型,并通过试验测算了驱动器等效电路的模型参数,分析了电极材料等因素对DEAP相对介电常数的影响.深入研究了驱动器漏电流损耗,试验验证了漏电流对驱动器性能的影响.最后,设计了驱动器驱动试验台,完成了不同行程的准静态驱动试验,数值计算了驱动器的驱动效率.结果表明:由于等效电路电容未参与能量转换,驱动器机电转换效率分别为17.6%和25.6%.低电压、小行程驱动时,试验误差与理论分析误差不超过15%;而高电压、大行程驱动时,DEAP膜的漏电流等非线性因素使其驱动效率变化明显.该结果可为DEAP圆柱形驱动器的优化设计及合理使用提供指导.【期刊名称】《光学精密工程》【年(卷),期】2016(024)008【总页数】11页(P1980-1990)【关键词】介电型电活性聚合物;圆柱形驱动器;机电能量转换;驱动效率;漏电流【作者】罗华安;王化明;朱银龙;左方睿;汪洋【作者单位】南京信息职业技术学院机电学院,江苏南京210023;南京航空航天大学机电学院,江苏南京210016;南京林业大学机械电子工程学院,江苏南京210037;南京航空航天大学机电学院,江苏南京210016;南京航空航天大学机电学院,江苏南京210016【正文语种】中文【中图分类】TH703.6;TP24介电型电活性聚合物(Dielectric Electroactive Polymer,DEAP)材料受电压激励产生变形,具有变形大、运动平滑、零噪声、能量密度高、响应速度较快等优点,在能量收集及新型传感器、驱动器应用研究方面得到广泛关注[1-4]。
利用DEAP材料制作的驱动器在微型仿生机器人、康复训练、软体机器等领域具有潜在应用前景[5-9],其中圆柱形驱动器结构简单,可输出较大的位移和力,成为科研人员的重点研究对象之一[7-9]。
介电弹性体驱动器在柔性机器人中的研究进展柔性机器人是指结构灵活、具有高度柔韧性的机器人系统,可以在复杂环境中实现高度灵活的运动和智能控制。
与传统刚性机器人相比,柔性机器人在操纵能力、适应性和安全性方面具有更大的优势。
为了实现柔性机器人的运动控制,驱动技术显得尤为重要。
近年来,介电弹性体作为一种新型驱动材料被广泛应用于柔性机器人中,并取得了令人瞩目的研究进展。
介电弹性体是一种能够在电场刺激下发生形状变化的材料。
它由聚合物基体和高分子接枝链组成,通过改变外界电场的强度和方向,可以控制介电弹性体的形状和运动。
介电弹性体驱动器以其独特的特性在柔性机器人领域引起了广泛关注。
首先,介电弹性体驱动器具有较大的变形能力。
介电材料的特殊结构使其具有较低的刚度,并能够在外界电场刺激下发生较大的形变。
这使得介电弹性体驱动器能够实现柔性机器人的高度变形和伸缩,从而适应复杂环境下的工作需求。
其次,介电弹性体驱动器具有较快的响应速度。
相比于其他驱动技术,介电材料的响应速度较快,可以迅速地实现形状变化。
这为柔性机器人的实时控制提供了更高的精度和可行性。
此外,介电弹性体驱动器具有较低的噪音和振动水平。
由于介电材料的柔软性和高度可变性,介电弹性体驱动器在运动过程中产生的噪音和振动较小,使得柔性机器人能够在噪音敏感的环境中进行工作。
另外,介电弹性体驱动器还具有较低的功耗。
介电材料驱动的柔性机器人不需要大量能量来实现运动,相比于传统的机械驱动,其能耗更低,更加节能环保。
然而,介电弹性体驱动器也存在一些挑战和限制。
首先,介电材料的稳定性和寿命问题是目前研究的热点之一。
由于介电材料在长时间使用和多次形变后容易出现疲劳和破损,这限制了柔性机器人的长期可靠性和稳定性。
其次,介电弹性体驱动器在控制方面还存在一定的挑战。
由于介电材料的非线性和耦合特性,对其进行精确的建模和控制仍然是一个难点。
因此,如何实现介电弹性体驱动器的精准控制仍然需要进一步的研究和探索。
第35卷第2期2022年4月振动工程学报Journal of Vibration EngineeringVol.35No.2Apr.2022局部粘贴压电宏纤维致动器的水下弹性结构机-电-液耦合振动特性顾霆1,娄军强1,2,杨依领1,陈特欢1,陈海荣1,魏燕定2(1.宁波大学机械工程与力学学院,浙江宁波315211;2.浙江大学浙江省先进制造技术重点研究实验室,浙江杭州310027)摘要:建立了局部粘贴压电宏纤维致动器(Macro Fiber Composite,MFC)的水下弹性结构机⁃电⁃液耦合振动模型,并开展了MFC激励下的水下弹性结构的频率响应实验。
采用混合规则法得到了MFC等效体积单元的等效机电耦合参数。
基于假设模态法推导了局部粘贴MFC的欧拉⁃伯努利梁的分段归一化振型函数。
结果显示粘贴MFC致动器的主动变形段末端的变形量仅为被动变形段末端的3%,局部粘贴MFC致动器弹性结构的模态振型较匀质等截面梁结构发生了明显变化。
建立了包含MFC致动器等效驱动力矩、周围流体水动力载荷及弹性结构振动特性的水下弹性结构机⁃电⁃液耦合振动模型。
基于搭建的实验平台,测试得到了MFC不同激励频率下水下弹性结构的频率响应特性,实验结果表明:耦合动力学模型的理论预测结果与结构实际振动的幅频特性和相频特性基本一致,证明了所建立机⁃电⁃液耦合振动模型的有效性。
关键词:水下弹性结构;机⁃电⁃液耦合;水动力;压电宏纤维;局部粘贴中图分类号:O326;TP241.3文献标志码:A文章编号:1004-4523(2022)02-0387-10DOI:10.16385/ki.issn.1004-4523.2022.02.014引言随着人类探索海洋步伐的不断加快及“海洋强国”战略的提出,具有轻质灵活、操作方便且能耗低等优点的弹性结构被广泛应用于智能仿生水下运动装置、洋流能量采集、海洋微纳器件传感检测以及海底结构健康监测等诸多领域[1⁃2]。