第六章无机材料介电性能2
- 格式:ppt
- 大小:6.86 MB
- 文档页数:16
材料介电性能
材料的介电性能是指材料在电场作用下的响应能力,是材料的一项重要物理性质。
介电性能的好坏直接影响着材料在电子器件、电力设备等领域的应用。
因此,研究和了解材料的介电性能对于材料科学和工程技术具有重要意义。
首先,介电常数是衡量材料介电性能的重要参数之一。
介电常数是指材料在外电场作用下的极化能力,它反映了材料对电场的响应程度。
介电常数越大,表示材料对外电场的响应能力越强,极化程度越高。
介电常数的大小直接影响着材料的绝缘性能和电容性能。
因此,提高材料的介电常数是提高材料介电性能的重要途径之一。
其次,介电损耗是另一个重要的介电性能指标。
介电损耗是指材料在电场作用下吸收和释放能量的能力。
介电损耗越小,表示材料对外电场的能量损耗越小,电能的传输和存储效率越高。
因此,降低材料的介电损耗是提高材料介电性能的关键之一。
此外,介电强度也是衡量材料介电性能的重要参数之一。
介电强度是指材料在外电场作用下的耐受能力,它反映了材料在电场作用下的抗击穿能力。
介电强度越大,表示材料在外电场作用下的耐受能力越强,抗击穿能力越高。
因此,提高材料的介电强度是提高材料介电性能的重要途径之一。
总之,材料的介电性能是材料科学和工程技术领域中的一个重要研究方向。
通过研究和了解材料的介电性能,可以为材料的设计、制备和应用提供重要的理论指导和技术支持。
希望通过不断的研究和探索,能够进一步提高材料的介电性能,推动材料科学和工程技术的发展。
介电性能由于无机介质材料在电场的作用下,带电质点发生短距离的位移,而不是传导电流,因此在电场中表现出特殊的性状,大量地用于电绝缘体和电容元件。
在这些应用中,涉及到介电常数、介电损耗因子和介电强度等。
6.1介质的电极化通过定义电介极化强度,建立起电介质内部电介极化强度与宏观电场之间的关系,电介极化强度与作用在晶体点阵中一个原子位置上的局部电场之间的关系,推导出介电常数与质点极化率的关系。
分析讨论各种极化的微观机制及影响极化率的因素。
6.1.1 介质的极化强度6.1.1.1电偶极矩(1)基本概念一个正点电荷q 和另一个符号相反数量相等的负点电荷-q ,由于某种原因而坚固地互相束缚于不等于零的距离上,形成一个电偶极子。
若从负电荷到正电荷作一矢量l ,则这个粒子具有的电偶极矩可表示为矢量p=ql (6.1) 电偶极矩的单位为C ⋅m (库仑⋅米)(2)外电场对点偶极子的作用在外电场E 的作用下一个点电偶极子p 的位能为U=-p ⋅E (6.2)上式表明当电偶极矩的取向与外电场同向时,能量为最低,而反向时能量为最高。
点电偶极子所受外电场的作用力f 和作用力矩M 分别为⋅ f=p ·∇E (6.3)M=p ⨯E (6.4)因此力使电偶极矩向电力线密集处平移,而力矩则使电偶极矩朝外电场方向旋转。
(3)电偶极子周围的电场距离点电偶极子p 的r 处的电场为543r r o πεpr r p 2)(E(r)-⋅= (6.5)6.1.1.2极化强度(1)定义称单位体积的电偶极矩为这个小体积中物质的极化强度。
极化强度是一个具有平均意义的宏观物理量,其单位为C/m 2。
(2)介质的极化强度与宏观可测量之间的关系极化强度为P=(ε-ε0)E=ε0 (εr -1)E (6.6) 把束缚电荷和自由电荷的比例定义为电介质的相对电极化率χe有 P= ε0χe E (6.7) 式(6.10)为作用物理量E 与感应物理量P 间的关系.还可以得出电介质的相对介电常数与相对电极化率χe 有以下关系εr =E PE 00εε+=1+χe (6.8)6.1.2宏观电场与局部电场 在外电场的作用下电介质发生极化,整个介质出现宏观电场,但作用在每个分子或原子上使之极化的局部电场(也叫有效场)并不包括该分子或原子自身极化所产生的电场,因而局部电场不等于宏观电场。
《⽆机材料物理性能》课后习题答案(2)《材料物理性能》第⼀章材料的⼒学性能1-1⼀圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉⼒,若直径拉细⾄2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉⼒下的真应⼒、真应变、名义应⼒和名义应变,并⽐较讨论这些计算结果。
解:由计算结果可知:真应⼒⼤于名义应⼒,真应变⼩于名义应变。
1-5⼀陶瓷含体积百分⽐为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的⽓孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的⽓孔时,将P=0.05代⼊经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =?==-σ名义应⼒0851.0100=-=?=A A l l ε名义应变)(99510524.445006MPa A F T =?==-σ真应⼒)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1-11⼀圆柱形Al 2O 3晶体受轴向拉⼒F ,若其临界抗剪强度τf 为135 MPa,求沿图中所⽰之⽅向的滑移系统产⽣滑移时需要的最⼩拉⼒值,并求滑移⾯的法向应⼒。
解:1-6试分别画出应⼒松弛和应变蠕变与时间的关系⽰意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应⼒松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料⼒学性能的复杂性,我们会⽤到⽤多个弹簧和多个黏壶通过串并联组合⽽成的复杂模型。
实验一 测定无机非金属材料的介电常数一、实验目的1、掌握测定无机非金属材料介电常数的操作过程二、实验原理相对介电常数通常是通过测量试样与电极组成的电容、试样厚度和电极尺寸求得。
相对介电常数(εr )测试可用三电极或二电极系统。
对于二电极试样,由于方形电容C x 的计算公式是:dYX C ⋅⋅⋅=0r x εε (1)因此,待测材料的介电常数可以表示为:YX dC ⋅⋅⋅=0x r εε (2)式2中C x 为试样电容(法),X 为电极长度(米),Y 为电极宽度(米),d 为电极板之间的距离(米),ε0=8.854 187 818× 10-12法拉/米(F/m)。
图1 电容法测量材料介电常数示意图测试中,选择电极极为重要。
常用的是接触式电极。
可用粘贴铝箔、烧银、真空镀铝等方法制作电极,但后者不能在高频下使用。
低频测量时,试样与电极应屏蔽。
在高频下可用测微电极以减小引线影响。
在某些特殊场合,可用不接触电极,例如薄膜介电性能测试和频率高于30兆赫时介电性能的测量。
无机材料物理性能课程实验指导书三、实验仪器PGM—2型数字小电容测试仪、玻璃刀、玻璃板、游标卡尺、铝质平板电极、连接导线四、实验步骤1、采取边长为100×100mm的正方型玻璃板,记录电极板的长X、宽Y以及实际玻璃板的厚度d。
2、按照图1连接仪器。
3、开启数字电容仪。
4、松开电极板紧定螺丝,将上电容板台到适当高度,在中间放入一块测量好的玻璃,使上下电容板与玻璃板相接触,然后旋紧固定螺丝。
5、读取电容数字。
6、然后重复4、5步骤,将玻璃板换成2-5块,分别测出其电容值。
7、结束实验,关闭仪器。
实验数据五、思考题1.介电常数与介电材料的厚度有什么样的关系?2.介电现象是如何产生的?实验二 热电效应实验一、实验目的1、了解热电材料的赛贝克(seeback)定律,珀耳帖(Peltier)效应,汤姆孙效应等热电材料的特性。
2、熟练的使用万用表来测量热电效应产生的电势差。
第6章 材料的结构与介电性能“电介质”一词,概括了范围很广的材料。
具有介电常数的任何物质,都可以看作是电介质,至少在高频下是这样。
电介质系指在电场作用下,能建立极化的一切物质。
当在一个真空平行电容器的电极板间嵌入一块电介质时,如果在电极之间施加外电场,则可发现在介质表面上感应出了电荷,即正极板附件的介质表面上感应出了负电荷,负极板附近的介质表面上感应出了正电荷,这种表面电荷称为感应电荷,也称束缚电荷。
束缚电荷不会形成漏导电流。
电介质在电场作用下产生感应电荷的现象,称之为电介质的极化。
电路中的电容器c 包含几何的和材料的两种因素。
对以上真空平行电容器C 0=dA ε0 式中A 为面积,d 为板极间距,ε0是真空介电常数,ε0=8.85×10-12F/m (法拉/米)。
如果在真空电容器中嵌入电介质,则 C= C 0×r C εεε00= 式中ε是电介质的介电常数,εr称相对介电常数。
由以上两式不难推出,ACdC C r ⨯==001εε εr 反映了电介质极化的能力。
本章讨论无机材料最一般的介电性能,包括介质的极化、介质的损耗、介电强度,着重讨论这些参数的物理概念及其与物质微观结构之间的关系。
§6.1 介质的极化一、极化现象及其物理量介质最重要的性质是在外电场作用下能够极化。
所谓极化,就是介质内质点(原子、分子、离子)正负电荷重心的分离,从而转变成偶极子。
在电场作用下,构成质点的正负电荷沿电场方向在有限范围内短程移动,组成一个偶极子(图6.1)。
设正电荷与负电荷的位移矢量为l ,则定义此偶极子的电偶极矩ql =μ,规定其方向从负电荷指向正电荷,即电偶极矩的方向与外电场E 的方向一致。
如果介质中含有极性分子,则这些极性分子都可看作偶极子。
在外电场作用下,这些极性分子发生转向,转向的结果是每一个极性轴趋于电场方向,所以每一个偶极子的电偶极矩μ应看作原极性分子偶极矩在电场方向的投影。
材料物理性能及测试-作业第一章无机材料的受力形变1 简述正应力与剪切应力的定义2 各向异性虎克定律的物理意义3 影响弹性模量的因素有哪些?4 试以两相串并联为模型推导复相材料弹性模量的上限与下限值。
5 什么是应力松弛与应变松弛?6 应力松弛时间与应变松弛时间的物理意义是什么?7 产生晶面滑移的条件是什么?并简述其原因。
8 什么是滑移系统?并举例说明。
9 比较金属与非金属晶体滑移的难易程度。
10 晶体塑性形变的机理是什么?11 试从晶体的势能曲线分析在外力作用下塑性形变的位错运动理论。
12 影响晶体应变速率的因素有哪些?13 玻璃是无序网络结构,不可能有滑移系统,呈脆性,但在高温时又能变形,为什么?14 影响塑性形变的因素有哪些?并对其进行说明。
15 为什么常温下大多数陶瓷材料不能产生塑性变形、而呈现脆性断裂?16 高温蠕变的机理有哪些?17 影响蠕变的因素有哪些?为什么?18 粘滞流动的模型有几种?19 影响粘度的因素有哪些?第二章无机材料的脆性断裂与强度1 试比较材料的理论强度、从应力集中观点出发和能量观点出发的微裂纹强度。
2 断裂能包括哪些内容?3 举例说明裂纹的形成?4 位错运动对材料有哪两方面的作用?5 影响强度的因素有哪些?6 Griffith关于裂纹扩展的能量判据是什么?7 试比较应力与应力强度因子。
8 有一构件,实际使用应力为1.30GPa,有下列两种钢供选:甲钢:sf =1.95GPa, K1c =45Mpa·m 1\2乙钢:sf =1.56GPa, K1c =75Mpa·m 1\2试根据经典强度理论与断裂强度理论进行选择,并对结果进行说明。
9 结构不连续区域有哪些特点?10 什么是亚临界裂纹扩展?其机理有哪几种?11 介质的作用(应力腐蚀)引起裂纹的扩展、塑性效应引起裂纹的扩展、扩散过程、热激活键撕裂作用引起裂纹扩展。
12 什么是裂纹的快速扩展?13 影响断裂韧性的因素有哪些?14 材料的脆性有哪些特点?通过哪些数据可以判断材料的脆性?15 克服材料脆性和改善其强度的关键是什么?16 克服材料的脆性途径有哪些?17 影响氧化锆相变的因素有哪些?18 氧化锆颗粒粒度大小及分布对增韧材料有哪些影响?19. 比较测定静抗折强度的三点弯曲法和四点弯曲法,哪一种方法更可靠,为什么?20. 有下列一组抗折强度测定结果,计算它的weibull模数,并对该测定数据的精度做出评价。
无机材料的介电性能及其机制研究介电性能是无机材料研究中一个重要的方面,它涉及到材料在电场作用下的响应和性能表现。
无机材料的介电性能不仅对于电子学器件的设计和制备具有重要意义,还在能量存储、传感器等领域具有广泛的应用。
本文将介绍无机材料的介电性能及其机制研究的相关内容。
一、介电性能的基本概念介电性能是指材料在电场作用下的响应特性,主要包括介电常数、介电损耗和介电强度等指标。
介电常数是材料在电场作用下的极化程度的度量,它反映了材料对电场的响应能力。
介电损耗是指材料在电场作用下发生的能量损耗,它与材料的电导率和介电常数有关。
介电强度是指材料能够承受的最大电场强度,它是材料的耐电击能力的指标。
二、无机材料的介电性能无机材料的介电性能与其结构和组成密切相关。
常见的无机材料如氧化物、氮化物和硅酸盐等具有良好的介电性能。
其中,氧化物材料如氧化铝、氧化锌等具有高介电常数和低介电损耗的特点,适用于电子元件中的绝缘层和电容器等部件。
氮化物材料如氮化硼、氮化铝等具有高介电强度和低介电常数的特点,适用于高压和高频电子器件。
硅酸盐材料如钛酸锶、钛酸钡等具有较高的介电常数和良好的介电强度,适用于微波器件和声表面波器件等。
三、无机材料的介电性能机制研究无机材料的介电性能机制研究是为了揭示材料的电子结构和极化行为,为材料的设计和应用提供理论依据。
目前,研究者们通过实验和理论模拟等手段,对无机材料的介电性能机制进行了深入研究。
首先,实验方法方面,研究者们通过电容法、阻抗谱法和介电松弛法等手段,对材料的介电性能进行表征和分析。
这些实验方法可以测量材料的介电常数、介电损耗和介电强度等参数,从而揭示材料的介电特性和性能。
其次,理论模拟方面,研究者们通过密度泛函理论、分子动力学模拟和量子力学计算等方法,对材料的电子结构和极化行为进行模拟和计算。
这些理论模拟方法可以揭示材料的电子能带结构、电荷分布和极化机制,为解释实验结果和指导材料设计提供理论依据。
无机材料的介电性能调控及其机制研究介电材料是指在电场中能够发生极化现象的材料。
介电性能调控是指通过改变材料的物理结构、化学组成或外界条件等手段,调整材料的介电性能。
研究无机材料的介电性能调控及其机制能够为开发高性能电子器件和能源相关应用提供理论指导和实验基础。
1. 介电性能的调控方法1.1 材料物理结构调控物理结构对介电性能具有重要影响。
晶体结构的对称性、缺陷和晶界等因素会影响材料的极化行为和介电常数。
例如,通过调控晶体结构对称性,可以实现铁电性和压电性的转变。
此外,材料的尺寸也会影响介电性能,纳米尺度下的材料表现出与宏观材料不同的介电特性,例如量子尺寸效应和界面极化效应。
因此,通过调控材料的物理结构,可以实现对介电性能的有效调控。
1.2 化学组成调控化学组成的改变也是调控介电性能的重要方法。
不同的元素和化学键对介电性能具有不同的影响。
例如,通过选择具有不同氧化态的金属离子替代铁电材料中的金属离子,可以调节材料的铁电相变温度和介电常数。
此外,添加有机或无机添加剂也可以改变材料的介电性能。
通过调控材料的化学组成,可以实现对介电性能的精确调控。
1.3 外界条件调控外界条件对介电性能的调控同样重要。
例如,改变温度可以影响材料的相变行为和介电常数。
此外,应力和压力也可以调控介电性能,例如通过机械压缩可以调整材料的铁电相变温度和压电常数。
外界电场的施加也是调控介电性能的重要手段,通过施加外电场可以实现铁电材料的电场诱导相变和极化反转等现象。
因此,通过控制外界条件可以实现对介电性能的调控。
2. 介电性能调控的机制2.1 电子极化机制电子极化是介电材料中最主要的极化机制之一。
在外电场作用下,电场将使材料中的电子云发生形变,使材料中的电子极化。
电子极化机制主要通过改变电子云的形状和位置来实现材料的极化现象。
通过调控材料的电子结构和能带特性,可以有效地调控材料的电子极化行为和介电常数。
2.2 离子极化机制离子极化是介电材料中另一种重要的极化机制。