第五章材料的介电性能,
- 格式:pptx
- 大小:3.61 MB
- 文档页数:50
一、名词解释第一章力学1.真实应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε = ,为真实应变。
2.名义应变一根长度为L 的杆,在单向拉应力作用下被拉长到L ,则ε=L –L /L =△L/L , ε为名义应变。
3.弹性模量材料在阶段,其和应变成线性关系(即符合),其称为弹性模量。
对各向同性体为一常数。
是原子间结合强度的一个标志。
4.弹性柔顺系数弹性体在单位应力下所发生的应变,是弹性体柔性的千种量度。
S =-μ/E ,其下标十位数为应变方向,个位数为所受应力的方向。
5.材料的蠕变对粘弹性体施加恒定应力σ时,其应变随时间而增加。
6.材料的弛豫对粘弹性体施加恒定应变ε时,则应力将随时间而减小。
7.位错增殖系数 n个位错通过试样边界时引起位错增殖,使通过边界的位错数增加到nc个,c即为位错增殖系数。
8.滞弹性一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性。
9.粘弹性无机固体和金属的与时间有关的弹性,即弹性形变的产生与消除需要有限时间。
10.粘性系数(粘度) 单位接触面积、单位速度梯度下两层液体间的内摩擦力。
单位Pa·S. 是流体抵抗流动的量度。
11.脆性断裂构件未经明显的变形而发生的断裂。
断裂时材料几乎没有发生过塑性变形。
在外力作用下,任意一个结构单元上主应力面的拉应力足够大超过材料的临界拉应力值时,会产生裂纹或缺陷的扩展,导致脆性断裂。
与此同时,外力引起的平均剪应力尚小于临界值,不足以产生明显的塑性变形或粘性流动。
12.裂纹亚临界生长裂纹在使用应力下,随时间的推移而缓慢扩展。
其结果是裂纹尺寸逐渐加大,一旦达到临界尺寸就会失稳扩展而破坏。
13.材料的理论结合强度根据Orowan提出的原子间约束力随原子间的距离x的变化曲线(正弦曲线),得到σ=σ×sin2πx/λ,σ为理论结合强度。
单位面积的原子平面分开所作的功应等于产生两个单位面积的新表面所需的表面能,材料才能断裂,根据公式得出σ = Eγ/a 。
材料介电性能
材料的介电性能是指材料在电场作用下的响应能力,是材料的一项重要物理性质。
介电性能的好坏直接影响着材料在电子器件、电力设备等领域的应用。
因此,研究和了解材料的介电性能对于材料科学和工程技术具有重要意义。
首先,介电常数是衡量材料介电性能的重要参数之一。
介电常数是指材料在外电场作用下的极化能力,它反映了材料对电场的响应程度。
介电常数越大,表示材料对外电场的响应能力越强,极化程度越高。
介电常数的大小直接影响着材料的绝缘性能和电容性能。
因此,提高材料的介电常数是提高材料介电性能的重要途径之一。
其次,介电损耗是另一个重要的介电性能指标。
介电损耗是指材料在电场作用下吸收和释放能量的能力。
介电损耗越小,表示材料对外电场的能量损耗越小,电能的传输和存储效率越高。
因此,降低材料的介电损耗是提高材料介电性能的关键之一。
此外,介电强度也是衡量材料介电性能的重要参数之一。
介电强度是指材料在外电场作用下的耐受能力,它反映了材料在电场作用下的抗击穿能力。
介电强度越大,表示材料在外电场作用下的耐受能力越强,抗击穿能力越高。
因此,提高材料的介电强度是提高材料介电性能的重要途径之一。
总之,材料的介电性能是材料科学和工程技术领域中的一个重要研究方向。
通过研究和了解材料的介电性能,可以为材料的设计、制备和应用提供重要的理论指导和技术支持。
希望通过不断的研究和探索,能够进一步提高材料的介电性能,推动材料科学和工程技术的发展。
《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=AA l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1 / 101-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
练习题第一章材料物理基本知识简介1.一电子通过5 400 V电位差的电场。
-11m);(1)计算它的德布罗意波波长(1.67×10(2)计算它的波数;?10m)的布拉格衍射角(2°18面(111)(面间距′)。
(3)计算它对Ni晶体102.04?d?226232262310、2s3p2s2p2p3d、3s3p、;(2)1s3s、2.有两种原子,基态电子壳层是这样填充的(1)1s、2610。
请分别写出的所有电子的四个量子数的可能组态。
4d4s 4p3n?3.如电子占据某一能级的几率为1/4,另一能级被占据的几率为3/4。
(1)分别计算两个能级的能量比费密能高出多少kT?(2)应用你计算的结果说明费密分布函数的特点。
图1.37 一束入射的电子波0?283。
计算Cu的(4.Em10?/n?8.5F5.计算Na在0K时自由电子的平均动能。
(Na的相对原子质量33?)。
kg/m?1.01322.99,?10A?r*6.已知晶面间距为d,晶面指数为(h k l)的平行晶面的倒易矢量为,一电子波与该晶面系r hkl?角入射(见图l.37),试证明产生布拉格反射的临成界波矢量K的轨迹满足方程*?。
2/r?||cos|K|hkl7.试用布拉格反射定律说明晶体电子能谱中禁带产生的原因。
8.试用晶体能带理论说明元素的导体、半导体、绝缘体的导电性质。
9.过渡族金属物理性能的特殊性与电子能带结构有何联系?10.试比较非晶态固体电子能带结构与晶态固体能带结构的差异并说明差异产生的主要原因。
11.试用玻璃化转变的自由体积理论解释非晶态高聚物熔体冷却时体积变化的现象。
12.高聚物的流动机理是什么?试说明相对分子量对玻璃化温度和流动温度的影响趋势。
13.为什么增塑更有利于玻璃化温度的降低,而共聚对熔点的影响更大?14.高聚物的结晶融化过程与玻璃化转变过程有什么本质的不同?高聚物结构和外界条件对这两个转变过程的影响有那些相同点和不同点?第二章材料的热学性能1. 计算室温(298K)时莫来石瓷的摩尔热容值,并与杜隆-珀替定律计算的结果比较。
第五章铁电材料测试铁电材料测试是研究铁电材料性能和特性的关键步骤。
通过测试,可以评估材料的电学特性、热学特性以及结构特性等,为进一步研究和应用铁电材料提供重要参考。
铁电材料测试主要包括电学测试、热学测试和结构测试三个方面。
首先是电学测试。
电学测试主要是对材料的电介质性能进行评估。
常用的电学测试方法包括压电系数测试、介电常数测试以及铁电相变测试等。
压电系数测试是通过施加外界电场或机械应力来测量材料的压电响应,包括压电应变和压电势的变化。
介电常数测试是通过施加外界电场来测量材料在不同频率下的电极化程度,反映了材料对电场的响应能力。
铁电相变测试是通过改变温度或电场来观察和测量材料的相变行为,包括铁电相变温度、滞回曲线和薄膜电容等。
其次是热学测试。
热学测试主要是对材料的热学性能进行评估。
常用的热学测试方法包括热膨胀测试、热导率测试以及热电测试等。
热膨胀测试是通过测量材料在不同温度下的长度、体积变化来评估材料的热膨胀性能。
热导率测试是通过测量材料在不同温度下的热传导能力来评估材料的热导率。
热电测试是通过测量材料在温度梯度下产生的热电势来评估材料的热电效应,包括热电压和热电流等。
最后是结构测试。
结构测试主要是对材料的结构特性进行评估。
常用的结构测试方法包括X射线衍射(XRD)测试、扫描电子显微镜(SEM)测试以及穆斯堡尔谱测试等。
XRD测试可以通过测量材料的衍射图案来确定材料的晶体结构、晶格参数以及晶体的定向关系。
SEM测试可以通过扫描电子显微镜的镜头对材料的表面形貌和微观结构进行观察和分析。
穆斯堡尔谱测试可以通过测量材料中铁原子的穆斯堡尔谱来确定材料的磁性和铁电性质。
综上所述,铁电材料测试是研究铁电材料性能和特性的重要手段,通过电学测试、热学测试和结构测试等方法可以全面评估材料的性能和特性,为铁电材料的研究和应用提供可靠的数据和参考。