墩台与基础
- 格式:ppt
- 大小:5.44 MB
- 文档页数:80
公路桥涵设计手册墩台与基础
公路桥涵设计手册中,墩台与基础是非常重要的部分,它们直
接关系到桥梁的稳定性和安全性。
墩台是桥梁的支撑结构,承受桥
梁和行车荷载,并将荷载传递到地基上。
而基础则是墩台的支撑,
起到分散和传递荷载的作用。
在设计墩台时,需要考虑多种因素。
首先是墩台的类型,包括
独立墩、连续墩、桥墩等,不同类型的墩台在承载能力和结构形式
上有所不同。
其次是墩台的布置,需要考虑桥梁的跨度、荷载特性、地质条件等因素,以确定墩台的位置和间距。
此外,墩台的结构形式、横截面形状、纵横向倾角等也需要进行合理的设计。
而在设计桥梁基础时,首先需要对地基条件进行充分的调查和
分析,包括地质构造、土层性质、地下水情况等,以确定基础的类
型和尺寸。
常见的桥梁基础类型包括桩基础、承台基础、盖梁基础等,它们在不同的地基条件下具有各自的适用范围和特点。
此外,
基础的施工方法、防水措施、以及与墩台的连接方式也需要在设计
中进行考虑。
除了结构设计外,墩台与基础的设计还需要考虑桥梁的使用功
能和美观性。
墩台的外形、护栏、涂装等都需要符合相关的设计规范和要求,以保证桥梁在使用中具有良好的外观和使用体验。
总的来说,墩台与基础在公路桥涵设计中扮演着至关重要的角色,设计人员需要综合考虑结构、地质、施工等多方面因素,确保其稳定性、安全性和美观性,以满足桥梁在使用中的各项要求。
第五讲桥梁的墩台和基础一桥梁的墩台(一)梁桥的重力式墩台依靠其自身的重力及作用其上的重力维持稳定的,称为重力式墩台。
桥墩由墩帽、墩身和基础组成。
桥台由台帽、台身、基础和侧墙、护坡等组成。
墩(台)帽上安放支座,形成桥面横披,调整邻跨的支座高度。
1. 墩帽墩帽宽度,顺桥方向为b:: b≥f + a0 + 2c1 + 2c2≥ 100cm 横桥方向为B B≥s + b0 + 2c1 + 2c2 f——相邻两跨支座中心的距离S——两外侧主梁(支座)的中心距 c2---20—40cm; c1一般5—10cm2. 墩身平面形状可用圆端形或尖端形;墩顶宽度,小跨径桥梁不宜小于0.8m,中跨径桥梁不宜小于1.0m;墩身侧面坡度5号或15号以上的混凝土浇筑或用浆砌块石或料石砌筑,也可用混凝土预制块砌筑。
大桥常采用钢筋混凝土空心墩3. U形桥台适用于填土高度小于8~10m的桥梁。
二)拱桥的重力式墩台墩帽上设拱座,以支承拱脚;墩顶的宽度 约为拱跨的1/10~1/25(石砌墩), 1/15~1/30(混凝土墩)。
重力式桥台、齿键式桥台、组合式桥台(三) 轻型墩台利用钢筋混凝土的强度和整体刚度,或某种支承构件,形成墩台 。
1.桩柱式桥墩桩柱式桥墩,由柱、盖梁、横系梁组成,用于跨径不大( 8~12m)的梁桥。
盖梁高度一般为盖梁宽度的0.8 ~ 1.2倍。
柱的布置,宜使恒载作用下,盖梁在柱顶内外两侧的弯矩接近相等。
桩柱式墩, H大于7m时,应该设横系梁。
桩柱式桥台常作成埋置式的。
台帽上设耳墙2. 轻型桥台3. 钢筋混凝土薄壁墩台4.城市立交的轻型墩台二桥梁的基础桥梁的基础,将桥梁墩、台的各种荷载传至地基。
桥梁的基础的设计首先要确定基底的埋置深度和基础类型。
要仔细分析地质勘察资料,拟定基础埋置深度,再经计算决定。
基底的埋置深度:在地面下或河床下至少1m ;在局部冲刷线下至少1.0 ~ 4.0m;在冻结线下(冻胀土)至少0.25m 。
桥梁墩台与基础
在桥梁建设中,墩台和基础是至关重要的组成部分。
它们承载着桥梁的重量,并将荷载转移到地基上,以确保桥梁的稳定性和安全性。
本文将探讨桥梁墩台和基础的类型、设计原则以及施工过程。
墩台类型
墩台是桥梁上跨越支撑的构件,可以支撑梁、拱和索等桥梁结构。
根据结构形式的不同,墩台可以分为矩形、圆形、八角形、十二角形等类型。
其中,矩形墩台最为常见,因其结构简单、施工方便而被广泛采用。
基础类型
基础是用于承载桥梁荷载的构造物,通常由地基、承台、桩等组成。
根据结构形式的不同,基础可以分为浅基础和深基础两种类型。
浅基础通常采用筏板基础、简支板基础和桩基础,适用于河流、山区等地质条件良好的场所。
深基础一般采用钻孔灌注桩、静压桩和螺旋桩等,适用于地质条件复杂或土壤承载力较低的场所。
设计原则
在墩台和基础的设计中,应注意以下原则:
1.结构合理,满足桥梁受力要求,并具有良好的抗震性和可靠性;
2.施工方便,能够降低施工难度和成本;
3.经济合理,尽可能减少材料和劳动力的使用,控制成本。
施工过程
墩台和基础的施工主要包括以下步骤:
1.准备工作,包括测量、采样、试验等;
2.基础施工,根据设计要求,进行基础的浇筑、养护等;
3.墩台施工,根据设计要求,进行墩台的架设、配筋、浇筑等;
4.路面施工,将砂石、沥青等材料铺设在桥面上,形成平整的路面。
结语
墩台和基础是桥梁建设中不可或缺的组成部门,其设计和施工的质量直接影响到桥梁的稳定性和安全性。
因此,在墩台和基础的设计和施工中,应本着合理、可靠、经济的原则,以保障桥梁的长期使用和运营。
第一章概论XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX1 .地基:受结构物影响的那一部分地层,可分为人工地基和天然地基。
基础:结构物与地基接触的部分,并将所受荷载全部传给地基。
可分为浅基础(Hw5m ,且施工简单)和深基础(H>5m)o2 .影响墩台基础设计的主要因素有上部结构类型、桥梁设计标准、桥位处水文地质条件及所处地理位置和总体美学规划要求等;其次如施工机具设备和技术力量、材料供应情况、地形及相邻结构物的影响及其他自然条件如冻结情况、施工水位等3 .墩台基础的受力特点Q)受力体系:墩台与基础是一个连续一体的空间压穹构件。
(2)影响因素(包括顺桥向和横桥向)影响上部结构的因素:汽车人群荷载、风荷载、温度等。
水下土中的因素:水压力、土压力、水流、船舶流冰等漂流物的撞击力。
地基土性质变化产生的因素:冻胀力。
上部结构体系:梁桥(竖向支反力)、拱桥(竖向、水平支反力)、索吊桥和T型冈肺勾桥(正负反力)。
(3)独特性:不同地理位置、不同地质条件,甚至同一座桥上不同位置的墩台基础,其所受力的状态和组合都不相同,控制条件可能是顺桥向也可能是横桥向。
情况不明确时,两种情况都要验算。
4 .汽车荷载制动力:按同向行驶的汽车荷载(不计冲击)计算,并对大跨径进行纵向折减。
土重力:①基底考虑浮力时,采用土的浮容重;②基底不考虑浮力时,若基底透1水则用天然容重,若基底不透水则用饱和容重:|汽车荷载引起的土压力采用车辆荷载加载,并换算成等代均布土层厚度计算。
水浮力:基底位于透水地基上的桥梁墩台,稳定验算时应考虑设计水位的浮力,地基应力验算时仅考虑最低水位浮力或不考虑水的浮力。
基础嵌入不透水地基的桥梁墩台不考虑水的浮力。
可变作用的出现对结构构件产生有利影响时,该作用不计;多个偶然作用不同时参与组合。
5 .梁板式桥梁桥墩作用效应组合(1)桥墩截面最大竖向力组合目的:验算墩身强度和基底最大压应力。
墩台与基础课程一. 设计资料 1. 上部构造预应力混凝土简支梁桥,跨径13m,梁长12.94m ,计算跨径12.30m ,五梁式四孔桥面连续。
一联中间各墩设平板橡胶支座,端部桥台设滑板橡胶支座。
桥面宽11m+1.0m+0.5m,单向三车道。
2.荷载等级公路——Ⅱ级,车道荷载7.85kN/m157.5kNk k q P ==(按内插法求得)。
3.上部荷载上部结构恒载见表1 。
表1 各梁恒载反力表 每片边梁(kN/m) 每片中梁(kN/m) 一孔上部构造(kN) 各梁支座反力(kN)边梁中梁 30.4231.82 2022.52196.82205.884.主要材料预应力混凝土梁采用C40混凝土,43.2510MPac E =⨯;盖梁与墩身均采用C25混凝土,4E=⨯;承台2.8010MPac与桩基均采用C20混凝土,4E=⨯;主2.5510MPac筋采用HRB335级钢筋,52.110MPaE=⨯;箍筋采s用R235级钢筋,5E=⨯。
2.010MPas5.支座板式橡胶支座摩阻系数0.05f=;滑板支座最小摩阻系数0.03f=,一般情况0.05。
6.桥墩一般构造及桥面连续布置桥墩一把构造图见图1,桥面连续布置见图2。
7.使用规范:《公路桥涵设计通用规范》、《公路钢筋混凝土预应力混凝土桥涵设计规范》。
二.盖梁设计1.垂直荷载计算(1)盖梁自重及内力计算(见图3.和表2)表2 盖梁自重及内力计算截面编号自重(kN)弯矩(kN m )剪力Q左Q右1-1 48.08-26.44-48.08-48.082-2 34.55-65.31-82.63-82.633-3 57.38-165.50-140.02222.134-4 63.7525.76159.38159.385-5 159.38224.980 02.活载计算①活载横向分布系数荷载对称布置用杠杆法,非对称布置用偏心压力法a.单列汽车对称布置152431900,0.180225011601600.6402250K K K K K ====⨯=+=⨯=b,双列汽车对称布置15243165651800,0.620225012(5185)0.7602250K K K K K ++====⨯=+=⨯=c.三列汽车对称布置152431100220900,0.8202250130160160300.7602250K K K K K ++====⨯=+++=⨯=d.单列汽车非对称布置22123451,5,435,26250002143550014352500.548,0.374562500056250001435014352500.20,0.0265625000562500014355000.1485625000i i ea K n e a n aK K K K K =+===⨯⨯=+==+=⨯⨯=+==-=⨯=-=-∑∑.e.双列汽车非对称布置22123451,5,280,26250002128050012802500.424,0.312562500056250001280012802500.20,0.0885625000562500012805000.0245625000i i ea K n e a n aK K K K K =+===⨯⨯=+==+=⨯⨯=+==-=⨯=-=-∑∑f.三列汽车非对称布置22123451,5,125,26250002112550011252500.3,0.25562500056250001125011252500.20,0.155625000562500011255000.15625000i i ea K n e a n aK K K K K =+===⨯⨯=+==+=⨯⨯=+==-=⨯=-=-∑∑②汽车顺桥行驶 a. 单孔单列汽车12120,(7.8512.3)/2157.5205.9kN205.9kNB B B B B ==⨯+==+=b. 双孔单列汽车1212(7.8512.3)/295.6kN,(7.8512.3)/2157.5205.9kN95.6205.9301.5kNB B B B B =⨯==⨯+==+=+=③活载横向分配后各梁支点反力计算式为:iiR B K =⨯,计算结果见表3表3 各梁活载反力汇总表 荷载横向分配情况汽车荷载计算方法荷载布置横向分布系数 单孔荷载双孔荷载(kN)B(kN)i R (kN)B (kN)i R 按杠杆法计算单列扯对称荷载 1K =0.000 205.9 0 254.3 0 2K =0.18037.06245.7743K =0.640131.77620.3444K =0.18016.47220.3445K =0.000 0双列车1K =0.000 205.90 254.3对称荷载2K=0.620127.658157.6663K=0.760156.484193.2684K=0.620127.658157.6665K=0.0000 0三列车对称荷载1 K=0.000205.90 254.32K =0.820168.838208.5263K =0.760156.484193.2684K =0.820168.838208.5265K=0.0000 0按偏心压力法计算单列扯非对称布置1K=0.548205.9112.833254.3139.3562K=0.37477.00795.1083K=0.20041.1850.8604K=0.0265.3546.6125K=-0.148-30.473-37.634 双列车非对称布置1K=0.424411.8174.603508.6215.6462K=0.312128.482158.6833K=0.20082.360101.724K =0.08836.23844.7575K =-0.02 4-9.883-12.206三列车非对称布置1 K=0.300617.7185.31762.9228.872K =0.250154.425190.7253K =0.200123.54152.584K =0.15092.655114.355K =0.10061.7776.2902.恒载与活载反力汇总恒载与活载反力汇总见表4。