求一个自然数的约数的个数和所有约数的和
- 格式:docx
- 大小:302.01 KB
- 文档页数:4
数论综合(三)约数倍数姓名:日期:成绩:1.从200到1800的自然数中有奇数个约数的数有多少个?只有3个约数的数有几个?2.360这个数的约数有多少个?这些约数的和是多少?3.把自然数A的所有约数两两求和,又得到若干个自然数,在这些数中,最小的是3,最大的是240。
A等于多少?4.所有8个不同约数的自然数中,最小的一个是多少?5.100以内只有10个不同约数的自然数有哪些?6.有一个自然数,它有4个不同的质因数,且有32个约数,其中一个质因数是两位数,当这个质因数尽可能大时,这个自然数最小是多少?7.a、b两均只含有因数3和5,且a有12个约数,b有10个约数,(a、b)=75,那a、b 两数之差是多少?8.自然数N,它们被5和49整除,并且共有10个约数,求N。
9.有50盏灯排成一排,按顺序分别编上号码1、2、3、4……49、50,每盏灯开始都是亮着的;有50个人,第一个人走过来,凡是1的倍数的灯按一下,接着第2个人把凡是号码为2的倍数按钮按一下,……,一直到第50个人把号码为50的倍数的按钮按一下,最后不亮的灯分别是哪几盏?10.有15位同学,每位同学都有编号,它们是1号到15号,1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被3整除”,以此下去至15号说:“这个数能被15整除”,1号作了一一验证,只有编号连续的两位同学说得不对,其余都对,问:①说得不对的两位同学,它们的编号是哪两个连续的数?②如果告诉你,1号写的数是五位数,请求出此五位数。
③如果告诉你,1号写的数是六位数,请求出最小的六位数。
11.筐里共有96个苹果,如果不一次全拿出,也不一个个地拿;要求每次拿出的个数同样多,拿完时又正好不多不少,有多少种不同的拿法?12.筐中有120个苹果,将它们全部都取出来,分成偶数堆,使得每堆的个数相同,有多少种分法?13.爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍,4倍,3倍,2倍。
小学奥数知识点梳理1——数论数论是研究整数及其性质的学科。
其中包括奇偶、整除、余数、质数合数、约数倍数、平方、进制和位值等方面的内容。
首先,奇偶性是整数的基本属性之一,一个整数要么是奇数,要么是偶数。
对于奇偶数的运算性质,有以下规律:(1)奇数加减奇数得偶数,偶数加减偶数得偶数,奇数加减偶数得奇数,偶数加减奇数得奇数;(2)奇数个奇数的和或差为奇数,偶数个奇数的和或差为偶数,任意多个偶数的和或差总是偶数;(3)奇数乘奇数得奇数,偶数乘偶数得偶数,奇数乘偶数得偶数;(4)若干个整数相乘,其中有一个因数是偶数,则积是偶数;如果所有的因数都是奇数,则积是奇数;(5)偶数的平方能被4整除,奇数的平方被4除余1.总之,几个整数相加减,运算结果的奇偶性由算式中奇数的个数所确定。
其次,整除是数论中的重要概念。
要掌握能被30以下质数整除的数的特征。
例如,被2整除的数的特征为它的个位数字之和可以被2整除,被3或9整除的数的特征为它的各位数字之和可以被3或9整除,被5整除的数的特征为它的个位数字之和可以被5整除。
而对于被7、11、13整除的数的特征,可以使用关键性式子7×11×13=1001.判定一个数能否被7或11或13整除,只需把这个数的末三位与前面隔开,分成两个独立的数,取它们的差(大减小),看它是否被7或11或13整除。
此法则可以连续使用。
最后,还有进制和位值等方面的内容。
其中,进制是指计数的基数,如十进制、二进制、八进制和十六进制等。
而位值则是指数位所代表的数值大小,如十进制数中的个位、十位、百位等。
掌握进制和位值的概念,可以更好地理解数的表示和计算方法。
总之,数论是一门重要的数学学科,涉及到整数及其性质的多个方面。
掌握数论的基本概念和规律,可以更好地理解和应用数学知识。
N=xxxxxxxx,判断N能否被17整除。
由于429=25×17+4,所以N不能被17整除。
N=xxxxxxx,判断N能否被17整除。
素数与合数中的约数与倍数知识点1:求最大公因数和最小公倍数的方法:1.求最大公因数的方法:求最大公因数较常用的方法有分解素因数、短除法、辗转相除法,它一般用符号( )来表示。
①分解素因数法:先分解素因数,然后把相同的素因数连乘起来。
例如:231=3×7×11,252=22×32×7,所以231和252的最大公因数是(231,252)=3×7=21。
②短除法:先找出所有共有的因数,然后相乘。
例如:2181239632,所以(12,18)=2×3=6;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公因数。
用辗转相除法求两个数的最大公因数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止。
那么,最后一个除数就是所求的最大公因数。
(如果最后的除数是1,那么原来的两个数是互素的)。
例如,求600和1515的最大公因数:151********÷=L ,6003151285÷=L ,315285130÷=L ,28530915÷=L ,301520÷=L 所以1515和600的最大公因数是15。
2.求最小公倍数的方法最小公倍数=公有素因数的积×各自独有的素因数的积,它一般用符号[ ]来表示。
知识点2:最大公因数的性质:①几个数都除以它们的最大公因数,所得的几个商是互素数;②几个数的公因数,都是这几个数的最大公因数的因数;③几个数都乘以一个自然数n ,所得的积的最大公因数等于这几个数的最大公因数乘以n 。
知识点3:求一个数所有因数的个数:用分解素因数形式表示:31241234=n p p p p p n N a a a a a ⨯⨯⨯⨯⨯L (12n a a a L 、、为合数N 的不同素因数), 那么所求的约数的个数为123(1)(1)(1)(1)n A p p p p =+⨯+⨯+⨯⨯+L这个数所有约数的和为12010101111222()()()n p p p n n n S a a a a a a a a a =+++⨯+++⨯⨯+++L L L L约数与倍数例如:①32504237=⨯⨯,那么它有(31)(21)(11)24+⨯+⨯+=个因数;它所有因数的和为:012301201(2222)(333)(77)S =+++⨯++⨯+151381560=⨯⨯=②4=22,9=32那么它们均有2+1=3个因数;222164(2)==,222819(3)==,那么它们均有4+1=5个因数;222222825616(4)(2)2⎡⎤====⎣⎦,2222228656181(9)(3)3⎡⎤====⎣⎦那么它们均有8+1=9个因数。
富翁打赌有两个富翁,一个头脑精明,一个吝啬刁钻。
贪财好利是他们的共同特点。
一天,两个富翁遇到了一起,双方争强好胜,话不投机,竟然打起赌来。
精明的富翁说:“我可以每天给你1万元,只收回你1分钱。
”吝啬的富翁以为对方吹牛皮,便说:“你若真的每天给我1万元,别说我给你1分钱,就是再给你1千我也干!”“不!”精明的富翁说,“条件只是第一天,你给我1分。
” “难道你第二天还要给我1万?”“是的”,精明的富翁说:“只是你第二天收了我的1万,要给我2分。
第3天……” 没等精明的富翁说完,吝啬的富翁急切地问:“第三天你再给我1万,我给你 “4分!就是说,我每天得到的钱都是前一天的两倍。
”吝啬的富翁心想:这家伙可能神经出了毛病,便问:“每天送我1万,这样下去,你的钱够送多少天呢?” “我是人人都知道的百万富翁。
”精明的富翁说:“我不打算都送给你,只拿出30万,先送你一个月足够了。
但是你给我的钱也1分不能少!”吝啬的富翁怕精明的富翁反悔,提出要签协议。
吝啬的富翁说:“你敢签订协议吗?” 于是他们找来了几个公证人,签了协议。
吝啬的富翁回到家,高兴得一夜没合眼。
天刚亮,对方提着1万元送上门来,按约定他给了对方1分钱。
第二天,对方仍然如约送来了1万元。
他简直像做梦一般,这样下去一个月,便可以有30万元的收入了!想着,想着,数钱的手都颤抖了!于是自己也如约给了对方2分钱。
对方高高兴兴地拿走了2分钱,还叮嘱:“别忘了,明天给我4分钱!” 可是,20多天以后,吝啬的富翁突然要求终止打赌。
课前预习因数个数对方以及一些证人当然不会同意,30天的时间已经过去大半了,任何一方都无权不执行协议。
到最后,吝啬的富翁竟把全部家当都输光了。
聪明的小朋友,你们说这是为什么?原来呀,吝啬的富翁在1个月内共得到300000元。
他需要付给对方的钱,总数是:1+2+4+8+16+32……+536870912=1073741823(分)=10737418.23(元)。
求一个数的因数的方法一个数的因数是指能够整除该数且不产生余数的数,也就是能够整除该数的除数。
为了求一个数的因数,我们可以使用以下几种方法。
1. 试除法:试除法是一种最简单且常用的方法。
首先,我们可以从最小的质数2开始,依次将这些质数作为除数,看是否能够整除目标数。
如果能够整除,那么这个质数就是目标数的因数。
如果不能整除,则继续使用更大的质数进行试除。
这个过程可以一直持续到除数超过目标数的平方根为止。
2. 素数分解法:将目标数分解为若干个质数的乘积的过程就叫做素数分解。
假设目标数为n,那么我们可以首先将n进行试除法,得到一个最小的质因数p。
然后,我们将n除以这个质因数,得到一个新的数。
我们再次使用试除法,得到这个新数的一个最小的质因数q。
以此类推,我们可以一直将这个新数进行试除法,直到最后的商为1为止。
3. 因数的性质:一个数的因数必然小于等于该数的平方根。
因此,可以利用这个性质来求一个数的因数。
首先,我们可以遍历从1到目标数的平方根之间的所有自然数,判断这些自然数是否能够整除目标数。
如果能够整除,那么这个自然数就是目标数的因数。
4. 辗转相除法(欧几里得算法):辗转相除法是一种用来求两个数的最大公约数的方法,也可以用来求一个数的因数。
假设目标数为n,我们可以选择一个小于等于n的自然数m,然后使用辗转相除法来求n和m的最大公约数。
如果n和m的最大公约数等于m,那么m就是n的一个因数。
通过这种方法,我们可以一直求到n和1的最大公约数。
以上就是四种常用的求一个数的因数的方法。
这些方法都相对简单,容易理解和实现。
值得注意的是,当目标数非常大时,使用试除法会非常耗时。
为了提高效率,可以使用其他更高级的算法,比如Pollard rho算法或者埃拉托斯特尼筛法。
这些算法可以更快地找到一个数的因数。
当然,这些算法可能比较复杂,需要一定的数学知识和算法理解能力。
在实际应用中,求一个数的因数是一个重要的数学问题。
因为通过求一个数的因数,我们可以判断一个数是否为质数,还可以对一个数进行素数分解,从而解决一些实际问题。
约数个数定理与约数和定理1. 求任一整数约数的个数一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。
如:1400严格分解质因数之后为32257⨯⨯,所以它的约数有(3+1)×(2+1) ×(1+1)=4×3×2=24个。
(包括1和1400本身)约数个数的计算公式是本讲的一个重点和难点,授课时应重点讲解,公式的推导过程是建立在开篇讲过的数字“唯一分解定理”形式基础之上,结合乘法原理推导出来的,不是很复杂,建议给学生推导并要求其掌握。
难点在于公式的逆推,有相当一部分常考的偏难题型考察的就是对这个公式的逆用,即先告诉一个数有多少个约数,然后再结合其他几个条件将原数“还原构造”出来,或者是“构造出可能的最值”。
2. 求任一整数的所有约数的和一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。
如:33210002357=⨯⨯⨯,所以21000所有约数的和为2323(1222)(13)(1555)(17)74880++++++++=此公式没有第一个公式常用,推导过程相对复杂,需要许多步提取公因式,建议帮助学生找规律性的记忆即可。
约数个数问题【例 1】 数160的约数个数是多少?它们的和是多少?它们的积呢?【解析】 对任意一个自然数,我们首先可以将它作因式分解,化成质数及其次数的乘积,以160为例,我们有5116025=⨯.要算它的约数的个数,我们可以这样来理解:约数的因数只可能是2,5.并且它们的次数不会超过原数的次数,从而约数的因数的2的次数可以为0,1,2,3,4,5;而5的次数也只可能是0或1.把它展开你就可以发现它就是我们要求的:情况1:不包含5的约数:1,2,22,32,42,52,情况2:包含5的约数:15⨯,25⨯,225⨯,325⨯,425⨯,525⨯.从而我们可以任意地从中选若干个2,5的次数,即:(15+)⨯(11+)12=.(个)所以它的约数的和:(2345122222+++++)⨯(15+)至于要算它们的约数的积,我们可以将它的约数配对:一个约数和它被原数除的数组成一对(如2和80是160的一对).这样,对于非平方数而言,我们得到整数对,并且它们的积就是原数本身;而对于平方数而言,仅仅是多了一个数(它的开方),从而通过对它的约数的个数,可以求出它们的积.知识点拨第五讲约数与倍数(二)例题精讲对本题而言,我们有(1;160),(2;80),(4;40),(5;32),(8;20),(10;16)共6对.从而它们的积为6160.【例 2】 求在1到100中,恰好有10个约数的所有自然数.【解析】 逆用约数个数定理:101100191=⨯=+⨯+()()或10251141=⨯=+⨯+()(),所以自然数N 只有两种分解可能,一种是4N p =一种是1412N p p =⨯,但第一种情况100以内这样的数不存在,第二种情况只有2p 等于2的可能,所以432N =⨯或452N =⨯因此满足条件的自然数只有48和80.【巩固】 在1到100中,恰好有6个约数的数有多少个?【解析】6只能表示为(51+)或(11+)(21+),所以恰好有6个约数的数要么能表示成某个质数的5次方,要么表示为某个质数的平方再乘以另一个质数,100以内符合前者的只有32,符合后者的数枚举如下:2222222222222222325272112132172192238323537311452532721⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯种种种种所以符合条件的自然数一共有1842116++++=种.【例 3】 一个两位数有6个约数,且这个数最小的3个约数之和为10,那么此数为几?【解析】 最小的三个约数中必然包括约数1,除去1以外另外两个约数之和为9,由于9是奇数,所以这两个约数的奇偶性一定是相反的,其中一定有一个是偶数,如果一个数包含偶约数,那么它一定是2的倍数,即2是它的约数。
第四讲定义新运算知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算.在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×”,“÷”运算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合例题精讲模块一、直接运算型【例 1】若A*B表示(A+3B)×(A+B),求5*7的值。
【解析】A*B是这样结果这样计算出来:先计算A+3B的结果,再计算A+B的结果,最后两个结果求乘积。
由A*B=(A+3B)×(A+B)可知:5*7=(5+3×7)×(5+7)=(5+21)×12 =26×12 =312【巩固】定义新运算为a△b=(a+1)÷b,求的值。
6△(3△4)【解析】所求算式是两重运算,先计算括号,所得结果再计算。
由a△b=(a+1)÷b得,3△4=(3+1)÷4=4÷4=1;6△(3△4)=6△1=(6+1)÷1=7【巩固】设a△2b a a b=⨯-⨯,那么,5△6=______,(5△2) △3=_____. 【解析】56552613=⨯-⨯=△52552221=⨯-⨯=△,1321216435=⨯-=△【巩固】P、Q表示数,*P Q表示P与Q的平均数,求3*(6*8)【解析】68373*(6*8)3*()3*7522++====【例 2】规定:符号“&”为选择两数中较大数的运算,“◎”为选择两数中较小数的运算。
§1.7正整数的正约数个数与总和一、正整数的正约数个数我们先看一个有趣的问题:在一间房子里有编号为1~100的100盏电灯,每盏都配有一个开关,开始灯全灭着.现在有100个人依次进入房间,第k 个人把编号是的k 倍数的灯的开关各拉一次,这样操作完之后,哪些编号的灯亮着?解决这个问题,需要讨论各盏灯编号的约数个数的奇偶性.如何求一个正整数的约数的个数呢?下面我们讨论这个问题.设为n 正整数,的n 正约数最小为1,最大为,n 因此的n 正约数的个数有限.为了叙述更方便,我们把正整数的n 正约数个数记作()d n . 例如, (1)1d =,(2)2d =,(5)5d =,(8)4d =,(12)6d =.从理论上讲,求d(n)只要把n 的正约数全部找出来数一数就可以了,但这种方法并不适合求数值较大的数的正约数的个数,例如(360)d ,(450000)d .下面我们以求d(360)为例,介绍可行的方法.由于3602332=⨯⨯5,其正约数比形如323n 2γ=⨯⨯5,其中α可取0~3四个数之一,β可取0~2三个数之一, γ可取0,1两个数之一. α,β,γ各选定一个允许值,构成一个组合,代入n 即可得到360的正约数个数是24,故(360)43224d =⨯⨯=.同理由144=4322⨯,可知(144)(41)(21)15d =++=. 定理1 设正整数n 的标准分解式为1212n p p αα=…m m p α,则 12()(1)(1)d n =α+α+…(1)m α+. 证明: n 的正约数必形如1212k p p αα=…mmp α,其中1β可取0至1α中任意一个,共有11α+种取法; 2β可取0至2α中任意一个, 共有21α+种取法;…;m β可取0至m α中任意一个,共有1m α+种取法,那么12()(1)(1)d n =α+α+…(1)m α+. 例1 求(300000)d .解: 因为5530000025 =⨯3⨯,所以(300000)(51)(11)(51)72d =+++=.例2 若n p q αβ=,其中p ,q 为不同质数, α≥1, β≥1.且2n 有15个正约数,求7()d n .解: 由222n p q αβ5=,得2()(2)(21)1535d n =α+1β+==⨯. 不失一般性.设β≥α,则2α+1=3, 2β+1=5,解得α=1, β=2,故2n pq =,则7714n p q =,所以7()(71)(141)815120d n =++=⨯=.例3 有一个小于2000 的四位数,它恰有14个正约数,其中有一个制约数的末尾 数字是1,求这个四位数. (1984年上海初中赛题) 解: 设n 为所求,则()14172d n =⨯=⨯.若()141d n =⨯,则13n p =,而13112000> ,故此时无解.若()72d n =⨯,则6n p q =,其中p , q 为不同质数.为质数p , q 选取适当的值,使其满足p , q 之一的末位数是1,且0002000n 1 << .易知只有当2p =,31q =时, 62311984n =⨯=符合题意.定理2 正整数n 为完全平方数的充要条件是()d n 为奇数. 证明: 必要性设1212(n p p αα= (2))m mp α (其中1212p p αα…m m p α的标准分解式),则1212n p p αα=…mmp α,故12()(2)(21)d n =α+1α+…(21)m α+. 因为12α+1,221α+,21m α+均为奇数,所以12()(2)(21)d n =α+1α+…(21)m α+.为奇数. 充分性 设1212n p p αα=…mmp α为n 的标准分解式,则12()()(1)d n =α+1α+…(1)m α+.因为()d n 为奇数,所以1α+1,21α+,… ,1m α+均为奇数,从而1α,2α,…,m α均为偶数.设11α=2β,22α=2β,…,m m α=2β,则 1212n p p 2α2α=…1212(m m p p p 2αββ=…2)m m p β,所以n 为完全平方数.该定理可以用来分析解决本节开头提出的“拉灯”问题:各盏灯的开关被拉几次取决于其编号的正约数的个数,而灯是否被拉亮取决于其开关被拉次数的奇偶性(奇数则被拉亮).由定理2可知,亮灯的编号必为完全平方数,即第21,22,23,… ,210号的灯亮着.当然,该定理的价值远不止于此,它主要用来判断一个数是否是完全平方数,进而解决其它有关问题.例4 求证:正整数n证明: 设n 的所有正约数为1n ,2n ,…,()d n n .因为k n n |,所以存在k m ,使(1,2,k n m k ==…())d n ,,从而k m n |,即k m 是n 的正约数,所以k m 是1n ,2n ,… ,()d n n 之一(1())k d n ≤≤.故1m ,2m ,…,()d n m 是1n ,2n ,…,()d n n 重新排序的一个结果,所以12n n …()12d n n m m =…()12d n n n m n n =…()d n n n =()12()...d n d n n n n n ,则12(n n (2)()())d n d n n n=,所以12n n…()d n n =即正整数n由例4自然联想,正整数n 的所有正约数之和等于多少呢? 二、正整数n 的所有正约数之和正整数n 的所有正约数之和记作()S n ,下面我们按n 含有的质约数的个数来讨论.1.当n 只含一个质约数时例如,9的正约数有1,3,23,其和为3231(9)13331S -=++=-;32的正约数有23451,2,2,2,2,2,其和为6234521(32)12222221S -=+++++=-,一般地,若mn p =,则2()1S n p p =+++ (11)1m mp p p +-+=-.2.当n 含有两个质约数时例如, 327223=⨯,其正约数排列如下:1 2 22 323 3⨯2 23⨯2 33⨯223 23⨯2 223⨯2 233⨯2则2323222223(72)(12222322333232)S =+++)+(3+3⨯+⨯+3⨯)+(+⨯2+⨯+⨯ 232(1222)(133)=+++++4321312131--=⨯--. 一般地,若mkn p q =(,p q 是互异质数, ,m k 为正整数),则1()(1S n p =++…1)(1m p q +++…)k q +111111m k p q p q ++--=⨯--. 由上述过程不难猜想:若1212n p p αα=…mmp α(12,,p p …,m p 是互异质数, 12,,αα…,m α为正整数),则11()(1S n p =++…1112)(1p p α+++…22)p α+…1(1m p ++…)m m p +α. ①下面试证这个结论.从①式中每个括号任取一项相乘,积必形如 1212p p ββ…mmp β(其中0,1,2,k k k ≤β≤α=…,m ),这样的积共有多少个呢?在第k 个括号内任取一项,有1k α+种取法,故在m 个括号内各任取一项,共有12(α+1)(α+1)…1)()m d n (α+=种取法,即有()d n 个这样的积.由§1.4中算术基本定理的推论可知.每个这样的积都是n 的一个正约数,且n 的任一正约数必是这样的积中的一个,故所有这样的积作成的和就是n 的所有正约数之和()S n ,即11(1p ++…1112)(1p p α+++…22)p α+…1(1m p ++…)()m m p S n +α=这说明我们的猜想是正确的,从而得到了如下的定理. 定理3 设正整数1212n p p αα=…mmp α,(12,,p p …,m p 是互异质数, 12,,αα…,m α为正整数),则11()(1S n p =++…1112)(1p p α+++…22)p α+…1(1m p ++…)m m p +α121112121111p p p p α+α+--=⨯⨯-- (111)m m m p p α+-⨯-. 例5 求()360S n =.解: 因为32360235=⨯⨯,所以432213151(360)1170213151S ---=⨯⨯= ---. 例6 求形如23k m的正整数,且使其所有正约数之和为403. 解: 由题意可得112131(23)140313312131k m k mS ++--=⨯=⨯=⨯--, 故可得下面四个方程组11211,2131403;31k m ++⎧-=⎪⎪-⎨-⎪=⎪-⎩ 1121403,21311;31k m ++⎧-=⎪⎪-⎨-⎪=⎪-⎩112113,213131;31k m ++⎧-=⎪⎪-⎨-⎪=⎪-⎩ 112131,213113.31k m ++⎧-=⎪⎪-⎨-⎪=⎪-⎩上述四种情况只有最后一组有正整数解4,2.k m =⎧⎨=⎩故只有4223144⨯=的所有正约数之和为403.例7 求1998 的所有正约数的倒数之和. 解: 因为319982337=⨯⨯ ,所以(1998)(11)(31)(11)16d =+++= ,23(1998)(12)(1333)(137)4560S =+++++= .设1998 的16个正约数分别为12,,x x …,16x 可按乘积等于1998 分为8组,不妨设123456789101112131415161998x x x x x x x x x x x x x x x x ======== ,则1211x x ++ (16)1x + 12341111()()x x x x =++++ (1516)11()x x ++ 34121234x x x x x x x x ++=++ (15161516)x x x x ++ 1216 (4560760)199********x x x +++===. 如果()2S n n =,则称n 为完全数,如6,28,496,8128,... 截止1996年11月,共发现了34个完全数.在两个正整数中,若一个数的所有正约数之和恰好等于另一个数,则称这两个数为一对亲和数,如1184 与1210 ,220与284,….对完全数与亲和数感兴趣的读者,以阅读上海教育出版社1998年1月版谈祥柏译[美]阿尔伯特••H •贝勒著《数论妙趣》.例8 能被30整除,且恰有30个不同正约数的自然数共有多少个?(98年上海市初中数学竞赛题)解:设正整数p 分解质因数为1212aap p ⨯⨯…na np ⨯,则它的约数个数为12(1)(1)a a ++…(1)n a +.因为题中要求的数能被30整除,以必然含有质因数2,3,5,设此数为312235aaa⨯⨯⨯…, 则它的约数的个数为123(1)(1)(1)a a a +++…,因为3530=2⨯⨯,所以123()(30)(1)(1)(1)35d p d a a a ==+++=2⨯⨯,所以p 没有除3,52,之外的质因数,所以1231,1,1a a a +++只能是3,52,或者2,5,3或3,5,2或3,2,5或5,2,3或5,3,2,共6个.例9 证明对任意一个正整数,其正约数中末位为1或9的的个数不小于末位为3或7的数的个数.证明: 设正整数约数中末尾为3有m 个, 7的有n 个. 设其为12,,x x …,m x ,12,,y y …,n y (从小到大排列)当0,0m n ==显然正确.1n =时, 1是n 的正约数,2n >时, 1231,y y ,y ,i y ⨯⨯…1,y y ,n ⨯互不相同,共n 个. 0m =,同理可证.,m n ≥1时, 123y y ,y ,i y ⨯⨯…1,y y ,n ⨯共n 1-个. 12,x x ⨯…1,m x x ⨯共1m -.11y x ⨯末尾为1,又有1为n 的正约数,至少1111m n m n -+-++=+个. 综上,得证.例10求出最小的正整数n ,使其恰有144个正约数,并且其中有十个是连续的整数.例11(1) 所有的正约数的和等于15的最小自然数是多少?8 (2) 所有正约数的积等于64的最小自然数是多少?8(3) 有没有这样的自然数,其所有正的真约数之积等于它本身?21 例12只有13个正约数的最小正整数是? 解:()13(121)d n ==+ n 最小取2,所以 1224096=. 例13用()d n 表示正整数n 的正约数的个数,证明:存在无穷多个正整数n ,使得()(1)1d n d n +++是3的倍数.证明: 可知当n 为质数时()2d n =则当1n +的约数个数为3时 ()(1)16d n d n +++=是3的倍数又可知当n 为质数, 1n +的约数为3有无数组所以存在无穷多个正整数n ,使得()(1)1d n d n +++是3的倍数.例14在30~300的所有正整数中,有几个数恰有三个正约数?解: 三个正约数就是:1,x ,其本身,且本身/ x x =, 推得这个数等于2x , x 是个质数.2255= 2366= 217289= 218324=可知, x 是在6到17间的质数:7、11、13、17。
约数的计算方法和技巧
约数的计算方法和技巧有很多种,以下是一些常用的方法:
1. 质数分解法:将一个大于1的自然数分解质因数,即可找到其中含有多少个质因数的数。
2. 合数分解法:将一个大于1的自然数分解合数,即可找到其中含有多少个偶数和多少个奇数的数。
3. 韦达定理:韦达定理是一个用于计算两个数之间是否为因数
的定理。
4. 埃氏筛法:埃氏筛法是用于寻找质数的算法。
通过不断地缩小范围,将未筛选的数逐渐排除,最终找到质数。
5. 米勒-拉宾素性测试:米勒-拉宾素性测试是一种用于确定一
个数是否为素数的算法。
它通过模拟该数的加减运算,判断它是否容易被一个小于一定大小的数整除。
6. 欧拉公式:欧拉公式是一个用于计算两个数之间余数的公式。
该公式可以用于计算任意两个数的和与差,以及它们的中位数、众数等。
7. 快速幂算法:快速幂算法是一种用于计算一个整数的幂的算法。
该算法的时间复杂度为 O(log n),其中n是输入整数的位数。
8. 蒙特卡罗方法:蒙特卡罗方法是一种用于模拟随机过程的算法。
该方法可以用于计算一些随机变量的分布,从而得到它们的概率分布。
这些算法和技巧都是常用的约数计算方法和技巧,不同的约数问
题可能需要选择不同的算法和技巧来解决。
数论模块数论题的特点就是简洁明了,信息量看起来往往比较少,所以很多同学在见到数论题的时候总会觉得无从入手,因此,做数论题时很重要的一点就是寻找突破口,走对方向。
另外,数论模块的另一个特点就是:知识点非常多。
但相比组合而言,数论至少显得更“有法可依”,考场上一定要敢去思考数论题,“战略上藐视,战术上重视”,战略上要相信,考题所用的知识点绝对不会超出小学知识范畴,而考前我们能做的,就是好好研究一下战术——如何应对每一类题目。
我就不详细讲每一个知识点(确实非常之多,关键在于平常积累),在这里,我就解数论题的三个突破口来谈谈考场上如何找到数论题的解题思路。
还是那个我在课堂上讲过很多遍的例子:任意找一个数,我们都可以从三个角度去分析它,例如154:(1)我们可以说它是一百五十四,在这里,1是百位上的数字,它代表1个100,5代表5个10,4代表4个1,这可以说是位值原理的角度;(2)154=2×7×11,分解质因数;(3)154除以5余4,除以9余1,我们可以研究它除以任意一个数所得的商和余数;以上三种角度分析一个数也映射出数论体系的三大块内容,同时也是我们分析数论问题的三种方式,三个突破口。
下面我来详细讲讲每一个角度。
一、位值原理和整除。
其实所有数字的整除特性都是利用位值原理推导出来的,从这个也反映出了学习数论的一个策略:找到知识点的源头,知道它们是怎么来的,这样就不用背那么多知识点了。
言归正传,什么样的题目我们往这个角度去思考呢?有些题目比较明显,就不用多说了,举个最简单的例子:55□39能被11整除,请问□是几?这种题就直接利用整除特性就OK了。
考得比较多的,比如这样的题目:“一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是数A,这个三位数A是多少?”题中提到了X位数或者提到了这个数里面的某几位数字的,可以考虑用位值原理。
利用位值原理对题目进行“翻译”——也就是把文字翻译成数学语言(数学式子),再结合其他的知识点去“加工”,一步步地解答它。
求一个自然数的约数的个数和所有约数的和
集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)
求一个自然数的约数的个数,和所有约数的和6=2·3=(2^1)·(3^1),
所以6的约数的个数:1,2,3,6共4个,
也可如此算:(1+1)(1+1)=4
所有约数的和1+3+2+6 ,也可如此算:(2^0+2^1)(3^0+3^1)
因为(2^0+2^1)(3^0+3^1)=(1+2)(1+3)=1×1+1×3+2×1+2×3=1+3+2+6 12=2×2×3=(2^2) ×(3^1),
所以12的约数的个数:1,2,3,4,6,12共6个,也可如此算:
(1+2)(1+1)=6
所有约数的和1+3+2+6+4+12 ,也可如此算:(2^0+2^1+2^2)(3^0+3^1)
因为(2^0+2^1+2^2)(3^0+3^1)=
(1+2+4)(1+3)=1×1+1×3+2×1+2×3+4×1+4×3=1+3+2+6+4+12…………
72=2×2×2×3×3=(2^3)·(3^2)
所以72约数的个数:(1+3)(1+2)=12
所有约数的和:
(2^0+2^1+2^2+2^3)(3^0+3^1+3^2)=(1+2+4+8)(1+3+9)=195
240=2·2·2·2·3·5=(2^4 )·3·5
所以240约数的个数:(1+4)(1+1)(1+1)=20
所有约数的和:
(2^0+2^1+2^2+2^3+2^4)(3^0+3^1)(5^0+5^1)=(1+2+4+8+16)(1+3)(1+5) =744
【这里解释一下:240的质因数有2,3和5 ,即240的约数由质因数2,3,5构成,其中因数2可能出现0个,1个,2个,3个,4个,共5种情况;因数3可能出现0个,1个,共2种情况;因数5可能出现0个,1个,共2种情况。
所以,240的约数个数为5×2×2=20个】
练习
1、1998的所有约数的和是多少?
解:1998=2×3×3×3×37 =2^1×3^3×37
约数有:(1+1)×(3+1)×(1+1)=16个
约数和:(2^0+2^1)(3^0+3^1+3^2+3^3)(37^0+37^1)=4560
2、720的所有约数的倒数之和是多少?
解:因为720=2×2×2×2×3×3×5=2^4×3^2×5^1
所以720的约数之和为(2^0+2^1+2^2+2^3+2^4)×(3^0+3^1+3^2)×(5^0+5^1)=31×13×6
所以720的所有约数的倒数之和是31×13×6/720=403/120
3、有一个只含质因数2和3的自然数,且它的所有因数之和是403,求这个自然数是多少?
解:403=13×31 =(1+2+4+8+16)×(1+3+9)=
(2^0+2^1+2^2+2^3+2^4)×(3^0+3^1+3^2)
所以这个自然数是:2^4 ×3^2=144。