测井地质学-构造
- 格式:ppt
- 大小:13.18 MB
- 文档页数:57
第六章测井资料井周构造形态分析技术第一节测井资料井周构造形态分析方法与流程地层倾角测井早已用于研究构造,并已建立了各种构造形态的地层倾角矢量模式,这种模式对于简单的构造有效。
但当面临的对象太复杂时,例如复杂的岩相和复杂的构造,这种解释方法表现出明显的缺陷,一种倾角模式往往对应着多种地质特征,出现多解性,即解释的不确定性,给测井解释带来困难,需要寻求新的解释方法。
目前,测井所获得的信息越来越多,特别是成像测井提供了多种与地质有关的信息,有可能将多种测井信息用于研究构造问题。
事实上,构造运动的结果体现在沉积体的形变上,因此,一个构造体具有两个基本的特征:其一是构造的各个部位地层的产状有变化,其二是地层本身随着构造形态的变化而变化,表现在地层的层位、层序、厚度上。
构造形变的这两种特征都可通过测井方法探测到。
因此,可通过测井手段来研究构造的形变,并恢复构造的形态。
此外,由于单井构造解释对区域地质资料的依赖性远大于多井解释,因而,区域地质研究也必不可少。
本章所介绍的方法是将测井相研究与倾角矢量模式结合起来,同时将区域地质规律与测井解释结合起来研究单井或多井构造问题,这种方法大大提高了解释的精度和可信度。
另外,井旁构造形态的解释可以弥补地震资料的不足,为地震资料的重新处理提供准确的构造模型和速度模型,可提高地震资料的处理和解释效果,同时测井构造解释还可填补地震资料在复杂构造带形成的空白区,从而恢复出整个剖面的构造形态。
这种测井和地震的结合是分析和研究复杂构造带构造形态及变异规律的有效途径。
该方法已在川东复杂构造带大量实践中见到了明显的效果。
在四川盆地23口复杂井的运用实践证明,测井资料井周构造形态分析技术对复杂构造带的井周构造形态解释效果好,解释结论准确可靠,同时其解释结果为地震资料重新处理提供了关键的构造模型,并填补了地震资料的空白区,解决了生产中的难题,帮助发现了多个气藏。
本章根据四川碳酸盐岩地层的沉积特点及川东高陡构造的构造特征,介绍以测井资料为主,充分结合地质、地震信息分析复杂构造带井周构造形态的方法。
第二章测井层序地层分析第二节层序地层单元及其测井特征一、基本术语:体系域、低位域、海侵域、高位域、陆架边缘体系域等二、体系域1. 类型:低位域、海侵域、高位域、陆架边缘体系域2. 低位域:陆棚坡折和深水盆地沉积背景、斜坡构造背景、生长断层背景下的低位域组成3. 海侵域:以沉积作用缓慢、低砂泥比值,一个或多个退积型准层序组为特征、主要沉积体系类型4. 高位域:沉积物供给速率常〉可容空间增加的速率,形成了向盆内进积的一个或多个准层序组,底部以下超面为界,顶部以I型或U型层序界面为界特征;主要沉积体系类型5. 陆架边缘体系域:以一个或多个微弱前积到加积准层序组为特征,准层序组朝陆地方向上超到U型层序边界之上,朝盆地方向下超到U层序边界之上。
三、湖平面变化与层序结构1. 湖平面变化与体系域2. 层序结构类型及特征:一分层序、二分层序、三分层序、四分层序第三节测井地层地层分析方法一、基本术语:基准面、基准面旋回、分形二、一般工作流程1. 测井—地震—生物等时地层格架建立2. 关键层序界面识别3. 研究区测井—地质岩相知识库的建立4. 关键井的岩相识别、重建岩相序列5. 建立多井关键性剖面6. 预测油气分布三、单井测井层序分析方法1. 测井资料预处理2. 沉积旋回分析:旋回性及旋回级次是沉积岩层重要的固有属性;旋回级次分析:常规测井旋回分析、小波分析和地层累积方法等3. 沉积间断点识别:地层倾角测井--累计倾角交会图法、地层倾角测井--累积水平位移交汇图法、地层倾角测井-- 倾角矢量图法、自然电位和视电阻率组合法、声波时差响应法等四、米氏周期分析及分形研究五、沉积层序的分形特征研究1. 分形的概念2. 地质学运用分形理论需要考虑的问题3. 分数维的计算4. 分数维的应用第三章测井沉积学研究第一节测井沉积学概念一、基本概念:测井相、测井相标志二、测井相分析的基本原理三、测井相标志与地质相标志的关系:确定岩石组分的测井相标志、判断沉积结构的测井相标志、判断沉积构造的测井相标志四、由测井相到沉积相的逻辑模型第二节岩石组合及层序的测井解释模型一、测井曲线的一般特征1. 常规组合测井曲线:测井曲线幅度特征、测井曲线形态特征、接触关系、曲线光滑程度、齿中线、多层的幅度组合--包络线形态、层序的形态组合特征2. 地层倾角测井的微电导率曲线特征:从曲线形态和曲线的相似性判断岩性—颗粒粗细,进行微细旋回的划分;根据四条电导率曲线特征值的平行度,可以衡量平行及非平行层理;利用倾角矢量模式解释沉积构造,研究古水流方向;根据倾角矢量模式组合解释褶皱、断层、不整合;利用倾角测井曲线识别裂缝;利用双井径差值分析现代地应力二、层序特征测井解释模型1. 粒序模型2. 不同沉积相带的自然电位曲线特征:冲积扇、河流相、三角洲相、滩坝相、近岸水下扇、重力流沉积--对比不同环境下SP 曲线的差异3. 利用自然伽马曲线划分沉积相带三、岩石组合(成分、颗粒)测井解释模型1. 测井响应特征值2. 测井相图的编制3. 岩石组合测井解释模型在实际处理中的选择第三节沉积构造、沉积体结构测井解释模型一、倾角模式及其地质含义:绿模式、红模式、蓝模式、杂乱模式二、微电导率插值环井眼成像三、沉积构造的地层倾角测井解释模型1. 岩心刻度2. 沉积构造的测井解释图版3. 层理角度与沉积相四、沉积体内部充填结构测井解释模型1. 平行结构、前积构造、发散结构、杂乱结构五、古水流研究1. 古水流研究方法:全方位频率统计法、红蓝模式法2. 用倾斜资料判断沉积环境(古水流)实例六、沉积构造的成像测井解释1. 冲刷面、斜层理、槽状交错层理、板状交错层理、结核、透镜状层理、小型砂纹交错层理、生物钻孔构造、沉积构造垂向序列解释第四节碎屑岩测井沉积微相建模与划分一、关键井测井沉积亚相与微相模型的建立二、测井沉积相剖面对比三、平面展布及古水流系统分析第四章测井构造地质精细分析第一节测井构造研究的一般方法一、地层倾角测井构造解释原理二、井壁成像测井构造解释原理第二节褶皱构造倾角解释方法一、褶曲的形态分类二、地层倾角测井的褶皱解释方法1.对称背斜2. 非对称背斜3.倒转背斜4. 平卧褶曲5. 对称向斜6. 非对称向斜三、用单井倾斜测井资料研究地下构造和褶曲要素1. 确定井孔剖面的地层产状2. 判断地下构造的偏移方向3. 构造的识别方法四、地层倾角确定盐丘、泥丘第三节断裂构造倾角测井解释方法一、断层要素及分类二、井下钻遇断层的主要地质标志★三、地层倾角测井的断层解释方法★★--不同类型断层的解释方法1. 正断层2. 逆断层3. 逆掩断层4. 地层倾角测井应用--- 两口井之间确定断层四、利用井壁成像研究断层第四节不整合面的地层倾角测井解释一、.平行不整合(假整合)解释二、角度不整合解释第五节井旁复杂地质构造的精细解释一、井旁高陡构造的精细解释二、应用一-- 用测井资料在渤海湾下古生界首次发现逆掩断层- 平卧褶曲构造三、应用二-- 塔里木盆地轮南地区第五章裂缝储层的测井评价第一节概述一、裂缝型储层二、裂缝-孔隙型储层三、裂缝-洞穴型储层第二节裂缝性储层的实验观察与研究一、储层裂缝系统的成因二、岩心裂缝观测与分析1. 岩心裂缝几何参数的相关分析2. 岩心裂缝密度和裂缝孔隙度的统计与分析三、裂缝的评价1. 岩心裂缝的描述-- 单一裂缝参数和多裂缝参数2. 裂缝分布密度的分形方法第三节裂缝的测井响应一、常规测井曲线对裂缝的响应1.微侧向测井(微球形聚焦测井)2. 双侧向测井3. 补偿密度测井4. 长源距声波测井5. 岩性密度测井6. 自然伽马测井7. 地层倾角测井二、成像测井对裂缝的响应1. 裂缝的分类及其基本图像特征2. 真、假裂缝的识别3. 天然裂缝与人工诱导裂缝的鉴别第四节裂缝有效性的测井评价及参数计算一、裂缝有效性评价1. 从裂缝的张开度来评价裂缝的有效性** ⑴充填缝和张开缝的判别⑵有效张开缝的判别2. 从裂缝的径向延伸特征判断裂缝的有效性3. 从裂缝的连通性和渗滤性来判断裂缝的有效性⑴ 从裂缝的连通性判断裂缝的有效性⑵从裂缝的渗透性来判断裂缝的有效性二、裂缝参数计算1 .全井眼地层微电阻率扫描测井计算裂缝参数2. 双侧向测井信息估算裂缝参数第五节裂缝发育规律及现代地应力场研究一、现代构造应力方向分析二、构造应力方向分析在勘探与开发中的应用第六章烃源岩与盖层的测井研究第一节烃源岩的测井分析方法一、烃源岩的测井响应1. 地层的组成2. 导致测井异常的基本原理二、烃源岩的测井识别1 .烃源岩的单一测井方法分析⑴自然伽马测井⑵ 自然伽马能谱测井⑶ 密度测井⑷ 电阻率测井⑸声波测井2. 用交会图识别烃源岩⑴自然伽马-- 声波测井交会图⑵电阻率-- 自然伽马交会图⑶电阻率-- 声波时差交会图3. 声波- 电阻率曲线重叠法三、烃源岩的测井评价参数1. 烃源岩含油气饱和度★2. 烃源岩剩余烃含量VHC 第二节盖层的测井分析与评价一、有效盖层的识别与评价1. 有效盖层识别2. 泥页岩盖层等级划分二、储盖组合测井分析。
测井知识点总结一、测井的概念测井是指利用测井仪器和设备,通过测量井底岩层岩石和流体的性质,为油气勘探和开发提供地层信息的一种技术。
测井是一种地球物理和地质学的交叉学科,是油气勘探开发中的重要技术手段。
二、测井的作用1.评价储层性质:通过测井可以了解地层的岩石类型、孔隙度、渗透率等参数,帮助确定储层的物性特征,为油气储集层的评价提供数据支持。
2.确定油藏参数:通过测井可以确定油藏的含油饱和度、油层厚度、垂向展布和孔隙结构,为油田的储量估算和开发方案提供依据。
3.指导井位设计:测井可以确定地层的性质和构造,为井位的设计和钻井方案的制定提供依据。
4.优化井筒完井设计:通过测井可以了解井下岩性的变化和油层的特征,指导井筒完井设计,选择合适的生产层位和工程措施,提高油井的生产效率。
5.监测油气层动态:测井可以监测井底岩层的性质和变化,及时了解油气层的动态变化情况,指导油气开发策略。
6.保证油井安全:通过对井下岩层进行测量,可以了解地质构造、地应力状态、孔隙稳定性等情况,确保钻井安全。
三、常见的测井工具和方法1.自然伽马测井:自然伽马测井是利用地下岩石放射性元素自然辐射的特性,通过测量自然伽马射线的能量和强度,了解岩石的密度和成分,判断岩石类型和含油气性质。
2.电测井:电测井是利用钻井井筒和地层的电性差异,通过测量井底岩层对电流的导电、电阻、介电等特性参数,推断地层的电性特征、含水饱和度和孔隙度等信息。
3.声波测井:声波测井是利用声波在地层中的传播特性,通过测量声波波速和波幅的变化,推断地层的孔隙度、渗透率、孔隙结构和成岩环境等信息。
4.核磁共振测井:核磁共振测井是利用核磁共振技术,通过测量原子核在地层中的共振信号,获得储层的渗透率、孔隙度、岩石类型等参数。
5.测井解释方法:根据测井资料的性质、特点和目标,采用各种物理、地质和数学方法,对测井资料进行综合解释和处理,得出地层的物性参数和岩性解释结果。
6.测井井筒完整性检测方法:针对井筒完整性的要求,包括封隔壁、封堵操作、水泥防漏、井下环序装置,钻进模式,测井系统等方面,研究井筒完整性检查方法、工具及其应用。
1.测井地质学:将测井资料同地质现象紧密结合起来,用测井手段来研究沉积学和地质学等方面的问题,实现预测和圈定一定范围油气资源、最终达到查明油气分布规律的目的。
2.沉积相:为沉积环境及在该环境下形成的沉积物(岩)特征的综合。
包含了沉积环境和沉积特征两个方面内容。
进一步划分为亚相、微相。
3.测井相:表示沉积物特征,并可使该沉积物与其它沉积物区别开的一种测井响应。
4.标准层:具有等时性,分布广泛、容易识别的岩性层或岩性界面、5.烃源岩:能够生成石油和天然气,并能排出、聚集成工业油气藏的岩石,称为生油(气)岩或烃源岩。
6.三角洲:在河流入海(湖)盆地的河口区,因坡度减缓,水流扩散,流速降低,逐将携带的泥沙沉积于此,形成近于顶尖向陆的三角形沉积体,称为三角洲。
7.相序定律:只有现在看得到而彼此相邻的相或相区,才能在垂向上依次重叠而无间断,这个定律在研究沉积相时有重要意义。
相序定律强调垂向相序的连续性。
8.相标志:相标志,也叫做成因标志:把反映沉积环境条件的沉积岩(物)特征要素的综合,相标志,也叫做成因标志。
9.沉积环境:是物理、化学、生物特征相对均匀的微环境及在该环境下形成的沉积物(岩)特征的综合。
10.沉积模式:沉积模式或称相模式是指沉积相空间组合,它是在综合古代和现代沉积相特征基础上,对沉积相特征的高度概括。
3、简述冲积扇测井特征。
冲积扇组成:可分为扇根、扇中辨状河道、扇端、侧翼四个亚相。
⑴扇根:①泥石流沉积:为泥质支撑砾岩,大小混杂,分选性差,渗透性差,多期叠置、末期转化为稳流性泥石流甚至是洪水泥,因此向上渗透性变好,曲线特征为一套低幅反向齿形,齿中线上倾、平行,呈前积式幅度组合。
②主河道沉积:主河道沉积发育在泥石流沉积之上水流中刷搬运能力强,沉积有滞留的碎屑支撑砾岩,底部常有残留的泥石流层,单层厚度不大,曲线特征为中幅正向或对称齿形,齿中线下倾或水平。
⑵扇中辨状河道:在此部位水浅流急,河道迁移快,以含砾砂岩为主,有时几期河道叠置成一厚层,曲线特征为中幅厚层,常由几个齿叠加而成具箱形或钟形外貌,齿中线水平或下倾相互平行。
构造地质学解析在石油地质中的意义石油作为世界上最重要的能源之一,在现代工业和生活中扮演着重要的角色。
而构造地质学作为地质科学的一个分支,对于石油地质的研究具有重要的意义。
首先,构造地质学的研究是深入了解地壳演化的重要途径。
地壳的构造特征与构造运动直接关系着石油资源的形成和分布。
构造地质学可以通过研究断裂、褶皱、岩石变形等构造特征,推断地壳中的构造运动过程。
这对于解析控制油气运聚条件的构造演化、油藏的储集层类型及裂缝发育情况等具有重要意义。
其次,构造地质学的研究对于石油勘探有着指导意义。
通过构造地质学的研究,可以了解地层的断裂、褶皱、岩性变化等特征,由此推断油气运移条件和储层的空间分布。
此外,构造地质学对于油气成藏规律的研究也具有重要意义。
构造地质学可以帮助解析构造对于油气运聚的控制作用,因此有助于确定油气勘探目标、设计合理的勘探方案。
再次,构造地质学对于油井开发的规划和优化有着重要的意义。
构造地质学可以研究和解析油气开发过程中的构造变形特征,提供合理的开发方案。
例如,在开发高压气田时,研究断裂发育特点可以指导适当的钻井技术,优化井位的选择;研究地层变形特征和裂缝发育情况,可以指导压裂技术的应用,提高油井的产能。
此外,构造地质学在油气勘探开发过程中的重要性还体现在井下地质工作中。
在油气开发过程中,构造地质学可以帮助解决井下地质问题,提供准确的地质信息。
例如,在钻井过程中,构造地质学可以通过研究同位素分析、岩石圈构造运动等,判断井眼位置是否达到目标地层;在井下测井中,可以通过研究地层的构造特征,提供准确的地层解释,从而指导井下开发作业的设计和实施。
总的来说,构造地质学在石油地质中的意义不可忽视。
它不仅可以深入了解地壳演化,解析控制油气运聚条件,指导石油勘探和井下开发,而且对于油井的规划和优化也具有重要的指导意义。
构造地质学的研究对于提高石油勘探和开发的效率和效果,在石油行业发展中起到了不可替代的作用。