第二章轴的拉伸与压缩10-16教案
- 格式:doc
- 大小:529.00 KB
- 文档页数:9
第二章 轴向拉伸和压缩§2−1 轴向拉伸和压缩的概念F(图2−1)则为轴向拉伸,此时杆被2−1虚线);若作用力F 压缩杆件(图(图2−2工程中许多构件,(图2−3)、各类(图2−4)等,这类结构的构2−1和图2−2。
§ 2−2 内力·截面法·轴力及轴力图一、横截面上的内力——轴力图2−5a 所示的杆件求解横截面m−m 的内力。
按截面法求解步骤有:可在此截面处假想将杆截断,保留左部分或右部分为脱离体,移去部分对保留部分的作用,用内力来代替,其合力F N ,如图2−5b 或图2−5c 所示。
对于留下部分Ⅰ来说,截面m −m 上的内力F N 就成为外力。
由于原直杆处于平衡状态,故截开后各部分仍应维持平衡。
根据保留部分的平衡条件得 mF N F N(a )(b ) (c )图2−5Ⅱ图2−1图2−2图2-4F F F F Fx==-=∑N N ,0,0 (2−1)式中,F N 为杆件任一截面m −m 上的内力,其作用线也与杆的轴线重合,即垂直于横截面并通过其形心,故称这种内力为轴力,用符号F N 表示。
若取部分Ⅱ为脱离体,则由作用与反作用原理可知,部分Ⅱ截开面上的轴力与前述部分上的轴力数值相等而方向相反(图2−5b,c)。
同样也可以从脱离体的平衡条件来确定。
二、轴力图当杆受多个轴向外力作用时,如图2−7a ,求轴力时须分段进行,因为AB 段的轴力与BC 段的轴力不相同。
要求AB 段杆内某截面m −m 的轴力,则假想用一平面沿m −m 处将杆截开,设取左段为脱离体(图2−7b),以F N Ⅰ代表该截面上的轴力。
于是,根据平衡条件∑F x =0,有 F F -=ⅠN负号表示的方向与所设的方向相反,即为压力。
要求B C 段杆内某截面n-n 的轴力,则在n −n 处将杆截开,仍取左段为脱离体(图2−7c ),以F N Ⅱ代表该截面上的轴力。
于是,根据平衡条件∑F x =0,有 02N Ⅱ=+-F F F由此得F F =N Ⅱ在多个力作用时,由于各段杆轴力的大小及正负号各异,所以为了形象地表明各截面轴力的变化情况,通常将其绘成“轴力图”(图2−7d)。
第2章拉伸压缩与剪切教学目的:了解材料的力学性质;掌握轴向拉伸、压缩、剪切和挤压的概念;掌握轴向拉压时构件的内力、应力、变形的计算;熟练掌握剪切应力及挤压应力的计算方法并进行强度校核;掌握拉压杆的超静定问题。
教学重点:建立弹性杆件横截面上内力、内力分量的概念;运用截面法画轴力图;掌握低碳钢的力学性质;掌握轴向拉伸和压缩时横截面上正应力计算公式及其适用条件;掌握拉压杆的强度计算;熟练掌握剪切和挤压的实用计算。
教学难点:低碳钢类塑性材料在拉伸过程中反映出的性质;许用应力的确定和使用安全系数的原因;强度计算问题;剪切面和挤压面的确定;剪切和挤压的实用计算;拉压杆超的静定计算。
教具:多媒体。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
举例掌握轴向拉伸、压缩和剪切变形概念,通过例题、作业,加强辅导熟练运用截面法,掌握轴力图的画法;建立变形、弹性变形、应变、胡克定律和抗拉压刚度的概念;教学内容:轴向拉伸和压缩的概念;强度计算;材料的力学性能及应力应变图;许用应力与安全系数;超静定的计算;剪切概念;剪切实用计算;挤压实用计算。
教学学时:8学时。
教学提纲:2.1 轴向拉伸与压缩的概念和实例1.实例(1)液压传动中的活塞杆(2)内燃机的连杆(3)起吊重物用的钢索(4)千斤顶的螺杆(5)桁架的杆件2.概念及简图这些杆件虽然外形各异,受力方式不同,但是它们有共同的特点:(1)受力特点:作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。
(如果两个F 力是一对离开端截面的力,则将使杆发生纵向伸长,这样的力称为轴向拉力; 如果是一对指向端截面的力,则将使杆发生纵向缩短,称为轴向压力)。
(2)变形特点:主要变形是纵向伸长或缩短。
(3)拉(压)杆的受力简图:(4)说明:本章所讲的变形是指受压杆没有被压弯的情况下,不涉及稳定性问题。
2.2 轴向拉伸或压缩时横截面上的内力和应力1.截面法求内力(1)假想沿m-m 横截面将杆切开(2)留下左半段或右半段(3)将弃去部分对留下部分的作用用内力代替(4)对留下部分写平衡方程,求出内力(即轴力)的值。
教学年级:综合0901 姓名:周朝辉第二章:轴向拉伸与压缩本章重点: 1.1 拉伸与压缩的基本概念1.2 内力的求法1.3 轴向拉伸与压缩时材料的变形,虎克定律1.4 强度校核1.5 材料拉伸实验本章要求:掌握拉压杆的受力特点及变形特点。
运用力学知识求内力及校核强度,课时:10~16一、知识回顾:1、二力杆的概念及受力特点2、力的四个性质3、受力分析及作受力分析图。
二、新课新知:1、拉伸和压缩的概念拉伸和压缩受力特点是:作用在杆端的两外力(或外力的合力)大小相等,方向相反,作用线与杆的轴线重合。
变形特点:杆件沿轴线方向伸长或缩短。
2、轴向拉伸和压缩2.1内力和截面法1.内力:杆件在外力作用下产生变形,其内部的一部分对另一部分的作用称为内力。
2.轴力:拉压杆上的内力又称轴力。
3.截面法:将受外力作用的杆件假想地切开来用以显示内力,并以平衡条件来确定其合力的方法,称为截面法。
(1)截开沿欲求内力的截面,假想把杆件分成两部分。
(2)留下任意一段为研究对象(3)代替取其中一部分为研究对象,画出其受力图。
在截面上用内力代替移去部分对留下部分的作用。
(4)平衡列出平衡方程,确定未知的内力。
∑FX=0,得N-F=0 故N=F 2.2 内力和截面法4.轴力符号的规定:拉伸时N为正(N的指向背离截面);压缩时N为负(N的指向朝向截面)。
2.3拉伸和压缩时横截面上的正应力1.应力:构件在外力作用下,单位面积上的内力称为应力。
2.正应力:垂直于横截面上的应力,称为正应力。
用σ表示。
2.2轴向拉伸和压缩2.2.3拉伸和压缩时横截面上的正应力σ= N/A式中:σ——横截面上的正应力,单位MPa;N——横截面上的内力(轴力),单位N;A——横截面的面积,单位mm2。
σ的符号规定与轴力相同。
拉伸时,N为正,σ也为正,称为拉应力;压缩时N为负,σ也为负,称为压应力。
2.4轴向拉伸和压缩2.4.1 拉压变形和胡克定律(a)杆件受拉变形(b)杆件受压变形绝对变形:设等直杆的原长为L1,在轴向拉力(或压力)F的作用下,变形后的长度为L1,以△L来表示杆沿轴向的伸长(或缩短)量,则有△L= L1-L,△L称为杆件的绝对变形。
相对变形:绝对变形与杆的原长有关,为了消除杆件原长度的影响,采用单位原长度的变形量来度量杆件的变化程度,称为相对变形。
用ε表示, 则ε= △L/L=(L1-L)/L胡克定律:当杆内的轴力N不超过某一限度时, 杆的绝对变形△L与轴力N及杆长L成正比,与杆的横截面积A成反比.这一关系称为胡克定律, 即△L∝NL/A引进弹性模量E, 则有△L=NL/AE也可表达为:σ=E ε此式中胡克定律的又一表达形式,可以表述为:当应力不超过某一极限时,应力与应变成正比。
2.2.5拉伸(压缩)时材料的力学性质图1. 低碳钢拉伸变形σ—ε曲线图2. 灰铸铁拉伸变形σ—ε曲线1.低碳钢拉伸变形过程如图1所示低碳钢拉伸变形过程如图1.所示可分为四个阶段:①弹性阶段②屈服阶段③强化阶段④颈缩阶段比例极限:应力与应变成正比的最高限。
符号σp 弹性极限:产生弹性变形的最大应力极限。
符号σe 屈服极限:符号σs 低碳钢σs 为240MPa 强度极限:符号σb 低碳钢σb 为400MPa冷作硬化:将材料预拉到强化阶段,使之出现塑性变形后卸载,再重新加载,材料的比例极限提高而塑性应变减小的现象。
塑性材料:破坏时产生显著变形的材料 脆性材料:破坏时产生不显著变形的材料材料的塑性变形延伸率为: 材料的断面收缩率为:应力集中:由于杆件外形的突然变化而引起的局部应力急剧增大的现象。
三、新知运用:8-1 试求图示各杆的轴力,并指出轴力的最大值。
解:(a)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的左段;110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;220 0 0xN N FF F =-==∑(4) 轴力最大值:max N F F =(b)(a)(c) (d)N 1(1) 求固定端的约束反力;0 20 xR R FF F F F F =-+-==∑(2) 取1-1截面的左段;110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;220 0 xN R N R FF F F F F =--==-=-∑(4) 轴力最大值:max N F F =(c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1截面的左段;110 20 2 xN N FF F kN =+==-∑(3) 取2-2截面的左段;220 230 1 xN N FF F kN =-+==∑(4) 取3-3截面的右段;F RFN 1F RF N 21 1F N1N 2F N 3330 30 3 xN N FF F kN =-==∑(5) 轴力最大值:max 3 N F kN =(d)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的右段;110 210 1 xN N FF F kN =--==∑(2) 取2-2截面的右段;220 10 1 xN N FF F kN =--==-∑(5) 轴力最大值:max 1 N F kN =8-2 试画出8-1所示各杆的轴力图。
解:(a)(b)(c)F N1F N 2FFFF(d)8-5 图示阶梯形圆截面杆,承受轴向载荷F 1=50 kN 与F 2作用,AB 与BC 段的直径分别为d 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。
解:(1) 用截面法求出1-1、2-2截面的轴力;11212 N N F F F F F ==+(2) 求1-1、2-2截面的正应力,利用正应力相同;311215010159.210.024N F MPa A σπ⨯===⨯⨯32221225010159.210.034N F F MPa A σσπ⨯+====⨯⨯262.5F kN ∴=8-6 题8-5图所示圆截面杆,已知载荷F 1=200 kN ,F 2=100 kN ,AB 段的直径d 1=40 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。
解:(1) 用截面法求出1-1、2-2截面的轴力;11212 N N F F F F F ==+(2) 求1-1、2-2截面的正应力,利用正应力相同;3112120010159.210.044N F MPa A σπ⨯===⨯⨯3221222(200100)10159.214N F MPa A d σσπ+⨯====⨯⨯249.0 d mm ∴=F1kN8-14 图示桁架,杆1与杆2的横截面均为圆形,直径分别为d 1=30 mm 与d 2=20 mm ,两杆材料相同,许用应力[σ]=160 MPa 。
该桁架在节点A 处承受铅直方向的载荷F =80 kN 作用,试校核桁架的强度。
解:(1) 对节点A 受力分析,求出AB 和AC 两杆所受的力;(2) 列平衡方程00000 sin 30sin 4500 cos30cos 450x AB ACyAB AC F F F FF F F =-+==+-=∑∑解得:41.4 58.6AC AB F F kN F kN ==== (2) 分别对两杆进行强度计算;[][]1282.9131.8ABAB ACAC F MPa A F MPa A σσσσ====所以桁架的强度足够。
8-15 图示桁架,杆1为圆截面钢杆,杆2为方截面木杆,在节点A 处承受铅直方向的载荷F 作用,试确定钢杆的直径d 与木杆截面的边宽b 。
已知载荷F =50 kN ,钢的许用应力[σS ] =160 MPa ,木的许用应力[σW ] =10 MPa 。
FAB F解:(1) 对节点A 受力分析,求出AB 和AC 两杆所受的力;70.7 50AC AB F kN F F kN ====(2) 运用强度条件,分别对两杆进行强度计算;[][]3213225010160 20.01470.71010 84.1AB ABS AC ACW F MPa d mmA d F MPa b mm A b σσπσσ⨯==≤=≥⨯==≤=≥所以可以确定钢杆的直径为20 mm ,木杆的边宽为84 mm 。
8-18 图示阶梯形杆AC ,F =10 kN ,l 1= l 2=400 mm ,A 1=2A 2=100 mm 2,E =200GPa ,试计算杆AC 的轴向变形△l 。
解:(1) 用截面法求AB 、BC 段的轴力;12 N N F F F F ==-(2) 分段计算个杆的轴向变形;33112212331210104001010400200101002001050 02 N N F l F l l l l EA EA .mm⨯⨯⨯⨯∆=∆+∆=+=-⨯⨯⨯⨯=-AC 杆缩短。
FF AB F ACFA CB8-26 图示两端固定等截面直杆,横截面的面积为A ,承受轴向载荷F 作用,试计算杆内横截面上的最大拉应力与最大压应力。
解:(1) 对直杆进行受力分析;列平衡方程:0 0xA B FF F F F =-+-=∑(2) 用截面法求出AB 、BC 、CD 段的轴力;123 N A N A N B F F F F F F F =-=-+=-(3) 用变形协调条件,列出补充方程;0AB BC CD l l l ∆+∆+∆=代入胡克定律;231 /3()/3/3 0N BC N CDN ABAB BC CD A A B F l F l F l l l l EA EA EAF l F F l F l EA EA EA∆=∆=∆=-+-+-=求出约束反力:/3A B F F F ==(4) 最大拉应力和最大压应力; 21,max ,max 2 33N N l y F F F FA A A Aσσ====-(b)。