西安电子科技大学数学分析2005
- 格式:doc
- 大小:168.50 KB
- 文档页数:2
西安电子科技大学数学分析考研大纲一、考试总体要求与考试要点1.考试对象考试对象为具有全国硕士研究生入学考试资格并报考西安电子科技大学理学院数学科学系硕士研究生的考生。
2.考试总体要求测试考生对数学分析的基本内容的理解、掌握和熟练程度。
要求考生熟悉数学分析的基本理论、掌握数学分析的基本方法,具有较强的抽象思维能力、逻辑推理能力和运算能力。
3.考试内容和要点(一) 实数集与函数1、实数:实数的概念;实数的性质;绝对值不等式。
2、函数:函数的概念;函数的定义域和值域;复合函数;反函数。
3、函数的几何特性:单调性;奇偶性;周期性。
要求:理解和掌握绝对值不等式的性质,会求解绝对值不等式;掌握函数的概念和表示方法,会求函数的定义域和值域,会证明具体函数的几何特性。
(二) 数列极限1、数列极限的概念(N ε-定义)。
2、数列极限的性质:唯一性;有界性;保号性。
3、数列极限存在的条件:单调有界准则;两边夹法则。
要求:理解和掌握数列极限的概念,会使用N ε-语言证明数列的极限;掌握数列极限的基本性质、运算法则以及数列极限的存在条件(单调有界原理和两边夹法则),并能运用它们求数列极限;了解无穷小量和无穷大量的概念性质和运算法则,会比较无穷小量与无穷大量的阶。
(三) 函数极限1、函数极限的概念(εδ-定义、X ε-定义);单侧极限的概念。
2、函数极限的性质:唯一性;局部有界性;局部保号性。
3、函数极限存在的条件:海涅归结原则。
4、两个重要极限。
要求:理解和掌握函数极限的概念,会使用εδ-语言以及X ε-语言证明函数的极限;掌握函数极限的基本性质、运算法则,会使用海涅归结原理证明函数极限不存在;掌握两个重要极限并能利用它们来求极限;了解单侧极限的概念以及求法。
(四) 函数连续1、函数连续的概念:一点连续的定义;区间连续的定义;单侧连续的定义;间断点的分类。
2、连续函数的性质:局部性质及运算;闭区间上连续函数的性质(最值性、有界性、介值性、一致连续性);复合函数的连续性;反函数的连续性。
西安电子科技大学
(高职)“高等数学”精品课程申报材料
附件目录
一、教材与教学成果奖
二、教研项目
三、教学研究论文
2004年7月
附件一、教材与教学成果奖1、教材
2、教学成果奖
附件二教研项目
陕西省高校面向21世纪教学内容和课程体系改革研究教改立项:1.《工科数学的实验教学内容改革与课程体系的研究与实践》2.《理科数学类专业课程结构改革和基础课内容、体系改革》校级教改立项:
1.《数学建模教育和竞赛的实践与探索》
2.《工科数学系列课程教学内容与课程体系的改革与研究》3.《工科概率统计教学方法改革研究》
4.《工科数学电子教案的设计与实现》
附件三
教学研究论文
注:以上所列为98-2004年的教学论文.。
西安电子科技大学2008一、(35)计算下列各题1.(6分)求11n x x -→- 2.(6分)20ln 1x dx x +∞+⎰ 3.(64.(8分)1L dy dx x y --+⎰,其中L 是下半圆周()220x y ax a +=>沿x 增加的方向。
5.(9分)23xzdydz zydzdx xydxdy ∑++⎰⎰,其中∑为曲面()221014y z x z =--≤≤ 的上侧。
二、(36分)下列结论是否成立?请说明理由1.若数列{}n x ,{}n y 满足lim 0n n n x y →∞=,且n x 无界,则n y 必有界。
2.若函数在一点处存在左、右导数,则函数在该点处连续;3.若一个函数的导函数在有限区间上有界,则该函数也在此区间有界;4.符号函数在[]1,1-上可积并存在原函数;5.若多元函数在某点不连续,则在该点一定不存在偏导数。
三、(10分)设(),z z x y =是由方程(),0F x z y z --=所确定的隐函数,其中F 具有连续二阶偏导数。
证明20xx xy yy z z z ++=。
四、(10分)一质点在力(),F x y yi xj =+的作用下,从原点沿直线移动到抛物线21y x =-上一点()(),0P u v v ≥。
当力F 所作的功达到最大和最小时,点P 所在的位置分别在哪里?五、(15分)设lim 0n n a →∞=, (1)证明12lim 0n n a a a n→∞+++= (2)若{}n a 单调递减,证明12n a a a n +++ 单调递减,()1211n n n a a a n ∞=+++-∑ 收敛。
六、(15分)设()f x 在[),a +∞上二阶可导,且()0f a >,()0f a '<,()()0f x x a ''≤>。
证明:方程()0f x =在[),a +∞中有且仅有一个实根。
共2页第1页 电子科技大学2016年攻读硕士学位研究生入学考试试题考试科目: 601 数学分析注: 所有答案必须写在答题纸上,写在试卷或草稿纸上均无效。
一、 填空题(每小题5分, 共25分)1. 极限()=-→2tan 12lim x x x π .2. 若直线x y =与曲线x y a log =相切,则=a ,切点坐标为 .3. 抛物线642+-=x x y 与直线2+=x y 所围成的图形面积=A .4. 设函数),(y x f z =由方程z y x xe z y x 2+-=--所确定,则=∂∂xz . 5. 设区域D 由直线x y =,2=x 及曲线2=xy 所围成,则二重积分⎰⎰Dy x y x f d d ),(先对x后对y 的累次积分为 .二、计算题(每小题7分, 共14分)1. 设函数)(x y y =由参数方程⎩⎨⎧==,sin ,cos t at y t at x 所确定,求22d d x y ; 2. 求幂级数∑∞=--11212n n n x 的和函数及定义域. 三、计算题(每小题8分, 共16分) 1. 计算⎰-107d x a x x ,其中a 为常数;2. 计算第二类曲线积分[]()⎰-++-=L x x y ax y e x y x b y eI d cos d )(sin ,其中b a ,为正常数,L 为曲线22x ax y -=上从)0,2(a 到)0,0(的一段.四、(14分)证明:3)(x x f =在),[∞+a (0>a )上一致连续.五、(12分)设函数)(),(x g x f 在区间],[b a 上连续,且在),(b a 内可导,证明:存在),(b a ∈ξ,使得)(')()(')()()()()()(ξξg a g f a f a b b g a g b f a f -=.六、(12分)证明:函数项级数∑∞=+12821n x n x n 在),(∞+-∞上一致收敛. 七、(14分)证明:曲面a z y x =++(0>a )上任意一点的切平面在各坐标轴上的截距之和等于a . 八、(15分)计算三重积分⎰⎰⎰Ω⎪⎭⎫ ⎝⎛++=z y x z y x I d d d 5222,其中Ω为球体}2|),,{(222z z y x z y x ≤++.。
西安电子科技大学2005一、填空(25分)1.已知()()0ln 1sin lim 2tan x f x x x →+=,则()0lim x f x →=。
2.设()1sin ,00,0x x f x x x α⎧≠⎪=⎨⎪=⎩,则当α时,f 在0x =处连续,当α时,f 在0x =处可导且()0f '=。
3.设()21,0,0x x x f x e x -⎧+<⎪=⎨≥⎪⎩,则()312f x dx -=⎰。
4.20ln ,1x dx x +∞=+⎰。
5.设()21,01,0x f x x x ππ--<≤⎧=⎨+<≤⎩,则其以2π为周期的傅里叶级数在x π=处收敛于。
二、(10分)设函数(),,u f x y z =具有连续偏导数,且(),z z x y =由方程x y z x e y e z e -=确定,求du 。
三、(16分)计算下列各题。
1.{}22max ,x y D edxdy ⎰⎰,其中(){},01,01D x y x y =≤≤≤≤。
2.()()()Cz y dx x z dy x y dz -+-+-⎰ ,其中C 是曲线2212x y x y z ⎧+=⎨-+=⎩从z 轴正向往z 轴负向看C 的方向是顺时针的。
四、(12分)求()()22222y axdydz z a dxdy x y z ∑++++⎰⎰,其中∑为下半球面z =上侧,0a >为常数。
五、(12分)设10x >,且()1212n n n x x x ++=+,1,2,,n n = ,证明{}n x 收敛并求极限。
六、(10分)求11nn n x n ∞=⎛⎫+ ⎪⎝⎭∑的收敛域,并判定其一致收敛性。
七、(13分)讨论曲线4ln y x k =+与44ln y x x =+的交点的个数,其中k 为参数。
八、(13分)(1)证明y =()0,+∞上一致连续。
(2)设二元函数(),f x y 在点()0,0的某个邻域内连续,且有 ()()20220,lim 1x y f x y xy x y →→-=+试问()0,0是否为(),f x y 的极值点?请说明理由。
第八讲 微分与积分中值定理和函数极值§8.1 微分与积分中值定理一、知识结构 1、微分中值定理(1) 罗尔(Rolle )中值定理 若函数)(x f 满足下列条件:(i) )(x f 在闭区间[]b a ,上连续;(ii) )(x f 在开区间()b a ,内可导;(iii))()(b f a f =,则在()b a ,内至少存在一点ξ,使得0=')(ξf .(2)拉格朗日(Lagrange)中值定理 若函数)(x f 满足下列条件:(i) )(x f 在闭区间[]b a ,上连续;(ii) )(x f 在开区间()b a ,内可导,则在()b a ,内至少存在一点ξ,使得ab a f b f f --=')()()(ξ.(3)柯西中值(Cauchy)定理 若函数)(x f 和)(x g 满足下列条件:(i) )(x f 和)(x g 在闭区间[]b a ,上连续; (ii) )(x f 和)(x g 在开区间()b a ,内可导,(iii))(x f '和)(x g '不同时为零; (iv))()(b g a g ≠,则在()b a ,内至少存在一点ξ,使得)()()()()()(a g b g a f b f g f --=''ξξ.2、积分中值定理 (1)积分第一中值定理若函数)(x f 在[]b a ,上连续,则至少存在一点[]b a ,∈ξ,使得()⎰-=baa b f dx x f )()(ξ.(2)推广的积分第一中值定理若函数)(),(x g x f 在[]b a ,上连续,且)(x g 在[]b a ,上不变号,则至少存在一点[]b a ,∈ξ,使得⎰⎰=babadx x g f dx x g x f )()()()(ξ.3、积分第二中值定理 若函数)(x f 在[]b a ,上连续,(i)若函数)(x g 在[]b a ,上单调递减, 且0≥)(x g , 则存在[]b a ,∈ξ,使得⎰⎰=baadx x f a g dx x g x f ξ)()()()(.(ii)若函数)(x g 在[]b a ,上单调递增, 且0≥)(x g , 则存在[]b a ,∈η,使得⎰⎰=ba bdx x f b g dx x g x f η)()()()(.3、泰劳公式(微分中值定理的推广)麦克劳林公式 (1) 一元函数)(x f y =泰劳公式泰劳公式产生的背景: 将函数)(x f ()(x f 在含有0x 的某个开区间()b a ,内具有直到1+n 阶的导数) 近似的表示为关于)(0x x -的一个n 次多项式,由于多项式的算法是好算法,我们可以用关于)(0x x -的一个n 次多项式来求函数)(x f 在某点(()b a x ,∈)的近似值.定理1 如果函数)(x f 在含有0x 的某个开区间()b a ,内具有直到1+n 阶的导数,则当()b a x ,∈时, )(x f 可以表示为)(0x x -的一个n 次多项式与一个余项)(x R n 之和:(x)R )x (x n!)(x f)x )(x (x f )f(x f(x)n n(n)+-++-'+=00000!11 ,其中()()()()101!1)(++-+=n n n x x n fx R ξ(拉格朗日型余项),这里ξ是属于x 与0x 之间的某个值.或, 如果函数)(x f 在含有0x 的某个开区间()b a ,内具有直到1+n 阶的导数,则当()b a x ,∈时, )(x f 可以表示为)(0x x -的一个n 次多项式与一个当0x x →时的n)x (x 0-的高阶无穷小之和:()()nn(n)x x o )x (x n!)(x f)x )(x (x f )f(x f(x)000000!11-+-++-'+=其中()n )x (x o 0-为当0x x →时n)x (x 0-的高阶无穷小.(2)麦克劳林公式定理2 如果函数)(x f 在含有0的某个开区间()b a ,内具有直到1+n 阶地导数,则当()b a x ,∈时, )(x f 可以表示为x 的一个n 次多项式与一个余项)(x R n 之和:(x)R x n!)(x fx !)(f )x (f )f(f(x)n n(n)+++''+'+=022000 ,其中()()()11!1)(+++=n n n x n x fx R θ,(10<<θ).2、二元函数),(y x f z =的泰劳公式和麦克劳林公式 (1)泰劳公式定理3 如果函数),(y x f 在含有()00,y x 的某一领域内连续且有直到1+n 阶的连续偏导数,()k y h x ++00,为此邻域内任一点,则有()200000000100001,,,,2!11,,,1nn f(x h y k)f(x y )h k f(x y )h k f(x y )x y x y h k f(x y )h k f(x h y k)n!x y n !xy θθ+⎛⎫⎛⎫∂∂∂∂++=++++ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎛⎫⎛⎫∂∂∂∂+++++++ ⎪ ⎪∂∂+∂∂⎝⎭⎝⎭ 其中10<<θ,记号()()000000,,,y x kf y x hf )y f(x y k xh y x +=⎪⎪⎭⎫⎝⎛∂∂+∂∂, ()()()00200002002,,2,,y x f k y x hkf y x f h )y f(x y k x h yy xy xx ++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂, ……)y f(x yx kh C)y f(x y k x h pm pm pm p mp pmm00000,,--=∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∑,()k)y h f(x y k x h !n x R n n θθ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+=+001,11)(, 10<<θ 称为拉格朗日型余项.(2)麦克劳林公式定理4 如果函数),(y x f 在含有()0,0的某一领域内连续且有直到1+n 阶的连续偏导数,()k h ,为此邻域内任一点,则有+⎪⎪⎭⎫⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+=)f y y x x )f(y y x x )f(y)f(x 0,0!210,00,0,2()y)x f(y y x x !n )f(y y x x n!n n θθ,110,011+⎪⎪⎭⎫⎝⎛∂∂+∂∂++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+,其中10<<θ.二、解证题方法 1、微分中值定理例1 (山东师范大学2006年)设)(x P 为多项式函数,试证明:若方程0=')(x P 没有实根,则0=)(x P 至多有一个实根.证明 用反证法.因为)(x P 为多项式函数, 所以)(x P 在()+∞∞-,上连续并且可导. 如果0=)(x P 至少有两个实根, 不妨设为21ξξ<,则021==)()(ξξP P .在闭区间上用罗尔定理得,存在()21ξξη,∈,使得0=')(ηP . 这与方程0=')(x P 没有实根发生矛盾, 所以0=)(x P 至多有一个实根.例2 (河北大学2005年)设)(x f 可导,λ为常数,则)(x f 的任意两个零点之间必有0='+)()(x f x f λ的根.证明 不妨设)(x f 的任意两个零点为ηξ<. 令xex f x F λ)()(=,则0==)()(ηξF F . 因为)(x F 在[]ηξ,上连续, 在()ηξ,内可导,且0==)()(ηξF F , 所以, 由罗尔定理得:存在()ηξ,∈x ,使得0=')(x F ,即0='+='xxe xf ex f x F λλλ)()()(,进而有0='+)()(x f x f λ, 所以()ηξ,∈x 是0='+)()(x f x f λ的根.例3(电子科技大学2002年))(x f 在[]10,上二次可导,010==)()(f f ,试证明:存在()10,∈ξ,使得()())(ξξξf f '-=''211.证明 因为)(x f 在[]10,上连续, )(x f 在()10,内可导, 且010==)()(f f ,所以由罗尔定理得:存在()10,∈ξ,使得0=')(ξf .令⎪⎩⎪⎨⎧=∈'=-101011x x ex f x g x ,),[,)()(. 因为)(x g 在[]10,上连续,在()10,内可导, 且()()01==g g ξ, 所以由罗尔定理知, 存在()1,ξξ∈', 使得()0='ξg ,即()())(ξξξf f '-=''211.例4(山东科技大学2005年)设()x f 在整个数轴上有二阶导数,且00=→xx f x )(lim,01=)(f ,试证明: 在()10,内至少存在一点β,使得()0=''βf .证明 因为()x f 在整个数轴上有二阶导数,所以()x f 在整个数轴上连续. 进而0lim )(lim )(lim )(lim )0(0000=⋅=⎥⎦⎤⎢⎣⎡==→→→→x x x f x x x f x f f x x x x . 又因为01=)(f , 所以函数在()10,内满足罗尔定理的条件, 进而存在()10,∈α,使得0=')(αf . 又因00000=-=-='→→xx f xf x f f x x )(l i m)()(l i m)(, 并且()x f '在[]α,0上连续, 在()α,0内可导, 所以()x f '在[]α,0上满足罗尔定理的条件, 进而存在()αβ,0∈,使得()0=''βf .例5(汕头大学2005年) 设()x f 在闭区间[]b a ,上有二阶导数,且)()(b f a f 、均不是)(x f 在闭区间[]b a ,上最大值和最小值, 试证明: 存在()b a ,∈ξ,使得0='')(ξf .证明 由于)(x f 在[]b a ,上连续, 所以)(x f 在[]b a ,上取得最大值和最小值. 又因为)()(b f a f 、均不是)(x f 在闭区间[]b a ,上最大值和最小值, 所以存在()b a ,,∈21ξξ, 不妨设21ξξ<,使得()21ξξf f ),(是)(x f 在[]b a ,上的最大值和最小值. 进而()021='='ξξf f )(.由()x f 在闭区间[]21ξξ,上有二阶导数, 所以()x f '在闭区间[]21ξξ,上连续, 在开区间()21ξξ,内可导. 由罗尔定理知, 存在()21ξξξ,∈,使得0='')(ξf . 进而存在()b a ,∈ξ,使得0='')(ξf .例6(北京工业大学2005年)设)(x f 在()+∞∞-,上可导, 试证明:0=')(x f 当且仅当)(x f 为一常数.证明 (1)充分性 因为)(x f 为一常数C , 所以()0000==∆-=∆-∆+='→∆→∆→∆x x x xC C xx f x x f x f lim lim)(lim)(.(2)必要性对任意的()+∞∞-∈,,21x x , 不妨设21x x <. 显然()x f 在闭区间[]21x x ,上满足拉格朗日中值定理的条件, 所以存在()21x x ,∈ξ, 使得()()()()2121x f x f x x f -=-'ξ.因为()0='ξf , 所以()()21x f x f =. 进而)(x f 为一常数.例7(南京大学2001年)设)(x f 在()10,内可导, 且1<')(x f , ()10,∈x .令⎪⎭⎫⎝⎛=n f x n 1(2≥n ), 试证明n n x ∞→lim 存在且有限.分析 ()1111n m n m x x x x f f f n m n m εξ⎛⎫⎛⎫⎛⎫'-<⇐-=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()11111n f nmnmnmmξε'=-<-<=<.证明 对0>∀ε, 存在⎥⎦⎤⎢⎣⎡=11,εN ,当N m n >>时, 有ε<=<-=-=-mnmn nmm n mn x x m n 111, 所以()()εξξ<=<-<-'=⎪⎭⎫ ⎝⎛-'=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-m nm n m n m n f m n f m f n f x x m n 111111111,进而由柯西收敛准则知, n n x ∞→lim 存在且有限.例8(华东师范大学2001年)证明: 若函数)(x f 在有限区域()b a ,内可导, 但无界,则其导函数)(x f '在()b a ,内必无界. 证明 用反证法 若函数)(x f '在()b a ,内有界, 则存在正数M ,使得M x f ≤')(,()b a x ,∈. 由拉格朗日中值定理得:⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+-≤⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-=22)(22)()(b a f b a f x f b a f b a f x f x f ()()⎪⎭⎫⎝⎛+++≤⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-'=2222b a f b a M b a f b a x f ξ,所以函数)(x f 在有限区域()b a ,内有界. 与已知矛盾.例9(天津工业大学2005年)设R x n ∈, ()1arctan -=n n ky y (10<<k ), 证明: (1)11-+-≤-n n n n y y k y y ; (2)n n y ∞→lim 收敛.证明 (1)令kx x f arctan )(=, ()+∞∞-∈,x ,则221xk k x f +=')(,于是kx f ≤')(,从而由拉格朗日中值定理得:()()1111---+-≤-'=-=-n n n n n n n n y y k y y f y f y f y y ξ)()(, 其中ξ介于1-n y ,n y 之间.(2)由(1)的递推关系知,011y y ky y nn n -≤-+,又因为级数∑∞=-101n ny y k收敛,所以由比较判别法知, 级数()∑∞=+-11n n n y y 绝对收敛,所以n n S ∞→lim 收敛, 其中()1111y y y yS k nk k k n -=-=+=+∑, 进而n n y ∞→lim 收敛.例10(湖南师范大学2004年)设)(x f 在),[+∞0上连续, 在()+∞,0内可导且00=)(f , )(x f '在()+∞,0内严格单调递增, 证明:xx f )(在()+∞,0内内严格单调递增.分析 关键是证明02>-'='⎪⎭⎫⎝⎛x x f x f x x x f )()()(. 证明 因为()[]000>'-'=⎥⎦⎤⎢⎣⎡---'=⎥⎦⎤⎢⎣⎡-'=-'ξf x f x x f x f x f x x x f x f x x f x f x )()()()()()()()(, 其中()+∞∈,0x , ()x ,0∈ξ, 所以xx f )(在()+∞,0内内严格单调递增.练习[1](辽宁大学2005年)设)(x f 在],[b a 上可导,且b x f a <<)(,1)(≠'x f . 证明: 方程x x f =)(在()b a ,内存在惟一的实根.[2] (南京农业大学2004年) 设函数)(x f 在]1,0[上可微, 0)0(=f , 当10<<x 时, 0)(>x f , 证明: 存在()1,0∈ξ,使得)1()1()()(2ξξξξ--'='f f f f .[3] (陕西师范大学2002年,武汉大学2004年) 设)(x f ,)(x g 是[]b a ,上的可导函数, 且0)(≠'x g . 证明: 存在()b a c ,∈使得)()()()()()(c g c f b g c g c f a f ''=--.[4] (西南师范大学2005年)设函数)(x f 在()+∞∞-,内可导,)(2)(x f x x f -=', 0)0(=f .证明: 42)(xex f -=,()+∞∞-∈,x .[5] (北京工业大学2004年)设函数)(x f 在0x 的某邻域)(0x N 内连续, 除0x 外可导,若l x f x x ='→)(lim 0,则)(x f 在0x 可导且l x f =')(0.[6] (辽宁大学2004年) 设函数)(x f 在()+∞∞-,内可导, 且0)0(>f ,1)(<≤'k x f ,证明: 方程x x f =)(有实根.[7] (厦门大学2004年) 设函数)(x f 在),[+∞a 上二阶可微, 且0)(>a f ,0)(<'a f , 当a x >时, 0)(<''x f . 证明: 方程0)(=x f 在),[+∞a 上有惟一的实根.[8] (北京化工大学2004年) 设函数)(x f 在]1,0[上连续, 在()1,0内可导,0)0(=f , 1)1(=f . 证明: 对于∀的正数a 和b , 存在()1,0,21∈ξξ, 使得()()b a f b f a +='+'21ξξ.[9] (中科院武汉物理与数学研究所2003年) 设函数)(x f 在闭区间[]b a ,上连续, 在开区间()b a ,内可微, 并且)()(b f a f =. 证明: 若函数)(x f 在闭区间[]b a ,上不等于一个常数, 则必有两点()b a ,,∈ηξ, 使得()0>'ξf , ()0<'ηf .[10] (中山大学2006年) 证明: 当0≥x 时, 存在()1,0)(∈x θ, 使得)(211x x x x θ+=-+, 并且)(lim 0x x θ+→和)(lim x x θ+∞→(答案:41)(lim 0=+→x x θ,21)(lim =+∞→x x θ ).2、积分中值定理例1(上海大学2005年)已知)(),(x g x f 在[]b a ,上连续,0>)(x f ,)(x g 不变号,求⎰∞→bann dx x g x f )()(lim.解 因为)(),(x g x f 在[]b a ,上连续, )(x g 在[]b a ,上不变号,所以由积分第一中值定理得⎰⎰=banb andx x g f dx x g x f )()()()(ξ,其中[]b a ,∈ξ. 又因为()0>ξf , 所以1=∞→nn f )(li m ξ,进而⎰⎰⎰=⎥⎦⎤⎢⎣⎡=∞→∞→baba n n bann dx x g dx x g f dx x g x f )()()(lim )()(limξ.例2(河北大学2005年)证明:dx xx dx xx ⎰⎰+≤+222211ππcos sin .分析0111222222≤+-⇐+≤+⎰⎰⎰dx xx x dx xx dx xx πππcos sin cos sin .证明 当⎥⎦⎤⎢⎣⎡∈4,0πx 时, 0≤-x x cos sin 在⎥⎦⎤⎢⎣⎡4,0π上不变号,当⎥⎦⎤⎢⎣⎡∈2,4ππx 时, 0≥-x x cos sin 在⎥⎦⎤⎢⎣⎡2,4ππ上不变号. 由推广的积分第一中值定理得:dx xx x dx xx x dx x x x ⎰⎰⎰+-++-=+-24242221cos sin 1cos sin 1cos sin ππππ()()dx x x dx x x ⎰⎰-++-+=242402cos sin11cos sin11πππηξ01121121121212222≤+--+-=+-++-=ξηηξ,其中⎥⎦⎤⎢⎣⎡∈40πξ,, ⎥⎦⎤⎢⎣⎡∈24ππη,, 进而dx xx dx x x ⎰⎰+≤+2220211ππcos sin .例3(电子科技大学2005年)设)(x f 在[]10,上可导,且⎰-=211221dx ex f f x)()(,证明: 存在()10,∈ξ,使得())(ξξξf f 2='.证明 令2)()(x e x f x F -=, []10,∈x . 由积分中值定理知, 存在⎪⎭⎫ ⎝⎛∈210,η,使得()⎰--=⎪⎭⎫ ⎝⎛-211122021dx ex f ef x)(ηη即()⎰--=211122)(2dx ex f ef xηη. 因为⎰-=2101221dx ex f f x)()(, 所以())(121f ef =-ηη, 进而()112--=ef ef )(ηη. 又因为112--==e f e f F )()()(ηηη, 111-=ef F )()(, 所以, 在区间[]1,η上由微分中值定理(罗尔)得:()0='ξF , 其中()1,ηξ∈. 因为222ξξξξξξ---'='ef ef F )()()(,所以())(ξξξf f 2='.例4(山东科技大学2004年)设()x f 在[]π,0上连续, 在()π,0内可导, 且()⎰-=ππππ1dx x f ef x)(,证明: 至少存在一点()πξ,0∈, 使得()()ξξf f ='.证明:令)()(x f e x F x -=,由()⎰-=ππππ1)(dx x f ef x和)()(πππf eF -=,得:()()⎰⎰⎰====----πππππππππππ111)()()(dx x F dx x f edx x f eef eF xx.由积分中值定理: ()()11()0()F F x dx F F ππππηηπ⎛⎫==-= ⎪⎝⎭⎰,其中⎥⎦⎤⎢⎣⎡∈πξ10,.在()πη,内应用微分中值定理(罗尔)得: 0=')(ξF ,其中()πηξ,∈.由)()(x f e x F x -=得: )()()(ξξξξξf e f e F '+-='--,所以()()ξξf f ='.例5(西安电子科技大学2003年)设()x f 在[]b a ,上二阶连续可导, 证明:存在()b a ,∈ξ使得()()()32412a b f b a f a b dx x f ba -''+⎪⎭⎫⎝⎛+-=⎰ξ)(. 证明: 由分部积分公式得⎰⎰⎰+++=baba ab b a dx x f dx x f dx x f 22)()()(()()⎰⎰++-+-=22)()(ba ab b a b x d x f a x d x f()[]()()[]()⎰⎰++++'---+'---=bb a b ba ba ab a adxx f b x x f b x dx x f a x x f a x 2222)()()()(()()()⎰⎰++-'--'-⎪⎭⎫⎝⎛+-=b b a ba ab x d x f a x d x f b a f a b 22222)(2)(2()()()⎰++''-+⎥⎦⎤⎢⎣⎡'--⎪⎭⎫ ⎝⎛+-=2222)(22)(2ba aba adx x f a x x f a x b a f a b()()⎰++''-+⎥⎦⎤⎢⎣⎡'--bba bb a dx x f b x x f b x 2222)(22)(()()()⎰⎰++''-+''-+⎪⎭⎫ ⎝⎛+-=b b a ba adx x f b x dx x f a x b a f a b 2222)(2)(22()()())(2)(2)(2222221积分中值定理⎰⎰++-''+-''+⎪⎭⎫⎝⎛+-=bba b a a dx b x c f dx a x c f ba f a b()()[]312()()()248b a a bb a f fc f c -+⎛⎫''''=-++⎪⎝⎭介值性定理()()3()224b a a bb a f fc -+⎛⎫''=-+⎪⎝⎭,其中c 介于21c c ,之间. 即()b a c ,∈. 3、泰劳公式(微分中值定理的推广)例1(西安电子科技大学2004年) 设)(x f 在[]1,0上有二阶导数,且满足条件a x f ≤)(,b x f ≤'')(,a 和b 为非负常数,证明不等式22)(b a x f +≤', )1,0(∈x .分析:要熟练运用Taylor 展开. 证明:在)1,0(∈x 处做Taylor 展开有21)1(2)()1)(()()1(x f x x f x f f -''+-'+=ξ,222)()()()0(x f x x f x f f ξ''+'-=上面两式相减有 22212)()1(2)()0()1()(x f x f f f x f ξξ''+-''--=',所以[]22)1(22)(22b a xx b a x f +≤+-+≤'.例2(陕西师范大学2003年,中国地质大学2004年)设函数f 在区间[]b a ,上有二阶导数且,0)()(='='-+b f a f 则必存在一点),(b a ∈ξ使得)()()(4)(2a fb f a b f --≥''ξ.分析:关键是做Taylor 展开. 证明:应用Taylor 公式,将)2(b a f +分别在b a 、点展开,注意0)()(='='-+b f a f ,故存在1ξ和2ξ,b b a a <<+<<212ξξ,使得212)(21)(2⎪⎭⎫⎝⎛-''+=⎪⎭⎫ ⎝⎛+a b f a f b a f ξ,222)(21)(2⎪⎭⎫⎝⎛-''+=⎪⎭⎫ ⎝⎛+a b f b f b a f ξ.两式相减得: []0)()()(81)()(221=-''-''+-a b f f a f b f ξξ, 故[])()()(21)()()(4212ξξξf f f a f b f a b ''≤''+''≤--.其中 ⎩⎨⎧''<''''≥''=)()(,)()(,212211ξξξξξξξf f f f .例3(北京交通大学2005年)设函数)(x f 在区间),0(+∞内有二阶函数,0)(lim =+∞→x f x ,并当),0(+∞∈x 时,有1)(≤''x f . 证明:0)(lim ='+∞→x f x .分析:关键是做Taylor 展开.证明:要证明0)(lim ='+∞→x f x ,即要证明对任意的0>ε,存在0>A ,当A x >时有ε<')(x f . 利用Taylor 公式,对任意的0>h ,有2)(21)()()(h f h x f x f h x f ξ''+'+=+, ()h ,0∈ξ,即[]h f x f h x f hx f )(21)()(1)(ξ''--+='. 从而[]hx f h x f hhf x f h x f hh f x f h x f hx f 21)()(1)(21)()(1)(21)()(1)(+-+≤''+-+≤''--+='ξξ, 取ε<h , 因为0)(li m =+∞→x f x , 所以021)()(1lim )(lim0=⎭⎬⎫⎩⎨⎧+-+≤'≤+∞→+∞→h x f h x f hx f x x , 其中2)()(ε<-+x f h x f . 即0)(lim ='+∞→x f x .例4(上海大学2005年、中国科学院2007年)设函数)(x f 在[]20,上有1)(≤x f ,1)(≤''x f . 证明:2)(≤'x f .分析:关键是做Taylor 展开. 证明:在)2,0(∈x 处做Taylor 展开有212)()()()0(xf x x f x f f ξ''+'-=,22)2(2)()2)(()()2(x f x x f x f f -''+-'+=ξ,将上面两式相减有[]21224)()2(4)()0()2(21)(x f x f f f x f ξξ''+-''--=',所以[][][].21)1(211)2(411)(4)2()(4)0()2(21)(22222212≤+-+≤+-+≤''-+''++≤'x xx f x f x f f x f ξξ.例5(江苏大学2004年)已知函数)(x f 在区间()1,1-内有二阶导数,且0)0()0(='=f f , )()()(x f x f x f '+≤'', 证明:存在0>δ,使得在()δδ,-内0)(≡x f .分析:关键是做Taylor 展开.证明:将)()()(x f x f x f '+≤''右端的)(x f ,)(x f '在0=x 处按Taylor 公式展开. 注意到0)0()0(='=f f ,有222)(2)()0()0()(x f x f x f f x f ξξ''=''+'+=, x f f x f )()0()(η''+'=',其中ηξ,是属于0与x 之间的某个值.从而x f x f x f x f )(2)()()(2ηξ''+''='+.现令⎥⎦⎤⎢⎣⎡-∈41,41x ,则由)()(x f x f '+在⎥⎦⎤⎢⎣⎡-41,41上连续知,存在⎥⎦⎤⎢⎣⎡-∈41,410x ,使得{}M x f x f x f x f xx ='+='+≤≤-)()(max )()(14100.下面只要证明0=M 即可. 事实上⎥⎦⎤⎢⎣⎡''+''≤''+''='+=)(2)(41)(2)()()(000020000ηξηξf f x f x f x f x f M ()()()()[]000041ηηξξf f f f +'++'≤(由()()x f x f x f x f ηξ''+''='+22)()()11242M M ≤⋅=,即M M 20≤≤, 所以0=M . 在⎥⎦⎤⎢⎣⎡-41,41上0)(≡x f . 例6(辽宁大学2005年)求⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-∞→x x x x 1sin1lim 2. 分析:利用Taylor 展开式计算函数极限. 解: 将x1sin展开成带Peano 余项的二阶Taylor 公式⎪⎭⎫ ⎝⎛+-=3316111s i n x o x x x ,则 ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-∞→→∞→332216111lim 1sin 1lim x o x x x x x x x x x x ()61161lim 16111lim 322=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅-+-=∞→∞→o x o x x x x x . 例7(山东师范大学2006年)求422cos limxex xx -→-.分析:利用Taylor 展开式计算函数极限. 解 进行带Peano 余项的Taylor 展开()5422421cos xo xxx ++-=, )(82154222x o xxex++-=-,所以)(12cos 5422x o xex x+-=--, 进而121cos lim422-=--→xex xx .例8(浙江大学2005年、华南理工大学2005年)设)(x f 在),[+∞a 上有连续的二阶导数,且已知(){}+∞∈=,0)(sup 0x x f M 和(){}+∞∈''=,0)(sup 2x x f M 均为有限数. 证明:(1)2022)(M t tM t f +≤' ,对任意的0>t ,),0(+∞∈x 成立;(2){}),0()(sup 1+∞∈'=x x f M 也是有限数,且满足不等式2012M M M ≤ .分析:Taylor 展开式.证明(1)考虑)(t x f + 在t 处的Taylor 展开式,,2)()()()(2>''+'+=+t t f t t t t f t t f ξ,则t f tt f t f t f 2)()()2()(ξ''--=',所以++≤'tt f t f t f )()2()(2)(ξf ''t ,有题设条件可得t M tM t f 22)(2+≤' .(2)同理由Taylor 展开式知,t M tM t f 22)(2+≤'成立,从而t M tM M 2221+≤,取202M M t = 即得证.例9(哈尔滨工业大学2006年)设)(x f 在[)+∞,0内二阶可微,0)(lim =+∞→x f x ,但)(lim x f x '+∞→不存在.证明:存在00>x ,使1)(0>''x f .分析 Taylor 展开式.证明 反证法,设对任意的),0(+∞∈x ,均有1)(≤''x f .利用Taylor 展开式,对任意的0>h ,有2)(21)()()(h f h x f x f h x f ξ''+'+=+,因此有2)()(1)(h x f h x f hx f +-+≤' ,取ε=h ,由0)(lim =+∞→x f x 知,存在0>A ,当A x > 时,有4)(2ε≤'x f ,于是ε<')(x f ,A x > ,即0)(lim ='+∞→x f x ,矛盾.例10 (华中科技大学2007年)设 )(x f 在(0,1) 上二阶可导且满足1)(≤''x f ,10(≤≤x ,又设)(x f 在()1.0 内取到极值41 .证明:1)1()0(≤+f f .分析 极值点,Taylor 展开式.证明 因为)(x f 在)1,0(上二阶可导,假设ξ在极值点,则41)(=ξf 、0)(='ξf .对)(x f 关于0=x 、1=x 在ξ点Taylor 展开有21)(2)())(()()0(ξηξξξ-''+-'+=f f f f ,)1,(2ξη∈.又有2)1(2)()1)(()()1(ξηξξξ-''+-'+=f f f f ,)1,(2ξη∈.所以有2221)1(2)(0)(2)(0)()1()0(ξηξξηξ-''+++''++=+f f f f f f[]2221)1()()(21)(2ξηξηξ-''+''+≤f f f[]22)1(121ξξ-++≤12121=+≤.这里另22)1()(x x x g -=,)1,0(∈x ,则最大值1)1(=g . 练习[1](华中科技大学2005年)设)(x f 在[]1,0上有二阶连续导数,0)1()0(==f f ,58)(≤''x f ,58)(≤'x f ,给出)10()(≤≤x x f 的一个估计.[2](华中科技大学2004年)设)10(,2)(,0)1()0(≤≤≤''==x x f f f ,证明:1)(≤'x f .[3](北京航空航天大学2005年)证明:对任意的n ,有)!1(1!)1(!31211+<⎪⎪⎭⎫ ⎝⎛-+⋅⋅⋅+---n n en. [4](华南理工大学2004年)设)(x f 在[]1,1-上三次可微,1)1(,0)0()0()1(=='==-f f f f .证明:存在)1,1(-∈x ,使得3)()3(≥x f.[5](大连理工大学2006年) 将2)1(1)(x x f += 在0=x 展开成Taylor 级数.[6](同济大学1999年)求⎥⎦⎤⎢⎣⎡+-→)11ln(lim 20x x x x (答案:21).[7](大连理工大学2004年)设)(x f 在[]1,0上二阶可导,且有,0)1()0(==f f []21)(m i n 1,0-=∈x f x ,证明:存在)1,0(∈ξ,使得4)(≥''ξf .[8] (东南大学2004年)(1)设)(x f 在[]2.0上二阶可导,0)2()0(='='f f .证明:存在)2,0(∈ξ使得[])(4)2()0(3)(320ξf f f dx x f ''++=⎰.(2)若在(1)中只假定)(x f 在[]2,0上存在二阶导数而不要求二阶导数连续,那么(1)的结论是否成立?[9](东南大学2003年) 求42cos lim2xx exx --→(答案:81-).[10](同济大学1999年)求xx x x x x x arcsin )1ln(cos sin lim2220+-→(答案:61).§8.2 函数的极值和最值 函数的凸性与拐点一、知识结构 1、函数的极值和最值函数)(x f y =的极值是一个局部概念,而函数)(x f y =的最值是一个整体概念. 如函数)(x f y =在区间[]b a ,上有定义, 如果[]b a x ,0∈的某个邻域),(0δx U 内有)()(0x f x f ≤()()(0x f x f ≥), 则我们称函数)(x f y =在点0x 取得极大值(极小值). 函数)(x f y =在区间[]b a ,上的最大值)(0x f 满足)()(0x f x f ≥, 其中[]b a x ,∈.函数)(x f y =在区间[]b a ,上的最小值)(0x f 满足)()(0x f x f ≤, 其中[]b a x ,∈.(1) 一元函数)(x f y =的极值和最值定理1(必要条件) 设函数)(x f 在点0x 处可导,且在0x 处取得极值,那未这函数在0x 处的导数为零,即0)(0='x f .定理2(第一种充分条件) 设函数)(x f 在点0x 的一个邻域内可导且0)(0='x f .(1)如果当x 取0x 左侧邻近的值时,)(x f '恒为正;当x 取0x 右侧邻近的值时,)(x f '恒为负,那未函数)(x f 在0x 处取极大值;(2)如果当x 取0x 左侧邻近的值时,)(x f '恒为负;当x 取0x 右侧邻近的值时,)(x f '恒为正,那未函数)(x f 在0x 处取极小值;(3)如果当x 取0x 左右两侧邻近的值时,)(x f '恒为正或恒为负;那未函数)(x f 在0x 处没有极值.定理3 (第二种充分条件)设函数)(x f 在点0x 处具有二阶导数且0)(0='x f 0)(0≠''x f ,那么(1)当0)(0<''x f 时,函数)(x f 在点0x 处取极大值; (2)当0)(0>''x f 时,函数)(x f 在点0x 处取极小值. 一元函数)(x f y =在闭区间[]b a ,上的最值:(1)一元函数)(x f y =在()b a ,内的极大值与)(),(b f a f 中最大的为一元函数)(x f y =在闭区间[]b a ,上的最大值;(2)一元函数)(x f y =在()b a ,内的极小值与)(),(b f a f 中最小的为一元函数)(x f y =在闭区间[]b a ,上的最小值.(2) 二元函数()y x f z ,=的极值和最值定理1(必要条件) 设函数),(y x f 在点()00,y x 处可导,且在()00,y x 处取得极值,那未这函数在()00,y x 处的偏导数为零,即0),(00=y x f x ,0),(00=y x f y .定理2 (充分条件)设函数),(y x f 在点()00,y x 某邻域内连续且有一阶、二阶连续偏导数,又0),(00=y x f x ,0),(00=y x f y ,令A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,则函数),(y x f 在点()00,y x 是否取得极值的条件如下:(1)02>-B AC 时具有极值, 且当0<A 时有极大值,当0>A 时有极小值;(2)02<-B AC 时没有极值;(3)02=-B AC 时可能有极值,也可能没有极值,还需另作讨论. 利用拉格朗日函数求极值和最值(条件极值)求函数),(y x f z =的极值,其中()y x ,满足条件0),(=y x F . 构造拉格朗日函数),(),(),,(y x F y x f y x L λλ+=, 解方程⎪⎩⎪⎨⎧===0),,(0),,(0),,(λλλλy x L y x L y x L y x 得⎪⎩⎪⎨⎧===000λλy y x x ,则()00,y x 为函数),(y x f z =的极值点(根据实际问题确定),进而求得函数),(y x f z =的极值),(00y x f z =.2、函数的凸性与拐点定义1 若曲线)(x f y =在某区间内位于其切线的上方, 则称该曲线在此区间内是凸的, 此区间称为凸区间. 若曲线位于其切线的下方, 则称该曲线在此区间内是凹的, 此区间称为凹区间.定义 2 设函数)(x f y =在区间I 上连续,如果对区间I 上任意两点21,x x ,恒有2)()(22121x f x f x x f +<⎪⎭⎫⎝⎛+,那么称)(x f y =在区间I 的图形是(向上)凹(或凹弧);如果恒有2)()(22121x f x f x x f +>⎪⎭⎫⎝⎛+,那么称)(x f y =在区间I 的图形是(向上)凸(或凸弧).定理1 设函数)(x f y =在区间[]b a ,上连续,在()b a ,内具有一阶和二阶导数,那么(1) 若在()b a ,内0)(>''x f ,则)(x f y =在区间[]b a ,的图形是凹的; (2) 若在()b a ,内0)(<''x f ,则)(x f y =在区间[]b a ,的图形是凸的. 3、函数)(x f y =图像的描绘主要用函数)(x f y =的一阶导数)(x f y '='和二阶导数)(x f y ''=''的性质和曲线)(x f y =的渐进线描绘函数)(x f y =图像.如果0)(>''x f , ()b a x ,∈, 则函数)(x f y =图像在区间()b a ,内向下凸. 如果0)(<''x f , ()b a x ,∈, 则函数)(x f y =图像在区间()b a ,内向上凸. 如果0)(0=''x f , 且)(x f ''在()0,x a ,()b x ,0上异号, 则0x 为函数)(x f y =图像的拐点.如果0)(>'x f , ()b a x ,∈, 则函数)(x f y =在区间()b a ,内单调递增. 如果0)(<'x f , ()b a x ,∈, 则函数)(x f y =在区间()b a ,内单调递减.二、解证题方法 1、函数的极值和最值例1(南京大学2003年)对任意00>y , 求)1()(00x x y x y -=ϕ在()1,0中的最大值, 并证明该最大值对任意00>y , 均小于1-e .解 由于000120)1()(y y xy x xy x --='-ϕ ,令0)1()(000120=--='-y y xy x xy x ϕ得函数)(x ϕ的稳定点100+=y y x , 所以函数)(x ϕ的最大值为10000111)1(+⎪⎪⎭⎫⎝⎛+-=+y y y y ϕ.因为()x x -<-1ln , 10<<x , 所以()11111000000111)1(-⎪⎪⎭⎫⎝⎛+-++<=⎪⎪⎭⎫⎝⎛+-=+eey y y y y y ϕ .例2(复旦大学2000年, 北京理工大学2003年)在下列数,,,4,3,2,143n n 中,求出最大的一个数.解 构造辅助函数xx x f =)(, 1≥x , 则222ln 1ln 1ln 1ln 1)(xxx x x x x e e x f xxx x x x -=⎪⎭⎫ ⎝⎛+-='⎪⎪⎭⎫ ⎝⎛=', 令0)(='x f 得函数xx x f =)(, 1≥x 的稳定点e x =. 当e x <≤1, 0)(>x f ,当e x ≥,0)(<x f , 所以函数)(x f 在点e x =取得最大值ee . 从而下列数,,,4,3,2,143n n 中最大的一个数只可能是33,2中的一个, 又因332<, 所以下列数 ,,,4,3,2,143n n 中最大的一个数是33.例3(北京化工大学2004年)在下列数,2004,,4,3,2,12004242322中,求出最大的一个数.解 构造辅助函数xxx f 2)(=, 1≥x , 则22222ln 2ln 1ln 222ln 2)(x x x x x x x e e x f x x x x x x ⋅-⋅=⎪⎭⎫ ⎝⎛+-='⎪⎪⎭⎫ ⎝⎛=', 令0)(='x f 得函数xxx f 2)(=, 1≥x 的稳定点e x =. 当e x <≤1,0)(>x f ,当e x ≥, 0)(<x f , 所以函数)(x f 在点e x =取得最大值ee 2.从而下列数 ,2004,,4,3,2,12004242322中最大的一个数只可能是3223,2中的一个,又因32232<,所以下列数,2004,,4,3,2,12004242322中最大的一个数是323.例4(中山大学2006年)设S 为由两条抛物线12-=x y 与12+-=x y 所围成的闭区域,椭圆12222=+by ax 在S 内, 确定b a ,(0>b a 、), 使椭圆的面积最大.解 两条抛物线12-=x y 与12+-=x y 的交点为()0,1-,()0,1,()1,0-,()1,0.S 为1122+-≤≤-x y x ,因为椭圆12222=+by ax 在S 内, 所以1,0≤<b a . 椭圆的参数方程为⎩⎨⎧==t b y ta x s i n c o s ,π20≤≤t ,由椭圆12222=+by ax 和区域S 的对称性知,椭圆12222=+by ax 的面积最大时, 必须有ta tb 22cos 1sin -= ,20π≤≤t 有惟一解. 即0cos 1sin 22=+-t a t b ,20π≤≤t 有惟一解.令01sin sin cos 1sin )(22222=-++-=+-=a t b t a t a t b t f ,20π≤≤t .则01)0(2≤-=a f , 012≤-=⎪⎭⎫⎝⎛b f π ,0)1(4222=-+=∆a a b ,()122sin 22≤=--=ab ab t . 于是212a a b -=,122≤≤a . 椭圆12222=+by ax 的面积2221212)(aaa a a ab a f -=-==πππ,122≤≤a . 即01214)(232=---='aaa a a f ππ, 得36=a , 322=b , 故最大面积为934π.例5(湖南师范大学2005年)设q p b a ,,,都是正数,(1)求()q px xx f -=1)(在区间[]1,0上最大值;(2)证明:qp qpq p b a q b p a +⎪⎪⎭⎫ ⎝⎛++≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛.解(1)因为()qpx xx f -=1)(, 所以()()1111)(-----='q pq p x qxx pxx f ,令()()011)(11=---='--q pqp x qxx pxx f 得稳定点qp p x +=. 又0)1()0(==f f , ()qp q p q p qp q p p f ++=⎪⎪⎭⎫⎝⎛+, 进而函数()qp x x x f -=1)(在区间[]1,0上最大值为()qp qp q p qp q p p f ++=⎪⎪⎭⎫⎝⎛+.(2)因为()1,qppqp q p qa a a ab p p qf f a b a b a b a b a b p q p q +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=≤= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭+⎝⎭⎝⎭所以qp q p q p b a q b p a +⎪⎪⎭⎫⎝⎛++≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛.例6(南京农业大学2004年)试问方程033=+-q px x 在实数域内有几个实根.解 由于()+∞=+-+∞→q px x x 3lim 3, ()-∞=+--∞→q px x x 3lim 3, 所以方程033=+-q px x 在实数域内至少有一个实根. 令q px x x f +-=3)(3, 则()p x p x x f -=-='22333)(.(1)当0<p 时, 有0)(>'x f , 进而)(x f 单调递增, 方程033=+-q px x 在实数域内只有一个实根.(2) 当0>p 时, 得q px x x f +-=3)(3的稳定点p x =, p x -=. 上述稳定点将()+∞∞-,分成三个区间()p -∞-,, ()p p ,-, ()+∞,p . 当()p x -∞-∈,时, )(x f 严格单调递增, 当()pp x ,-∈时, )(x f 严格单调递减, 当()+∞∈,p x 时, )(x f 严格单调递增. 进而,在p x -=时, )(x f 取得极大值q p p +2.在p x =时, )(x f 取得极小值q p p +-2. 所以, 当()()042232>-=+-+p q q p pq p p时,方程33=+-q px x 只有一个实根, 当()()042232=-=+-+p q q p pq p p时, 方程033=+-q px x 有两个实根, 当()()042232<-=+-+p q q p pq p p时, 方程033=+-q px x 有三个实根.综上所述, 当0<p 时, 方程033=+-q px x 在实数域内有一个实根, 当0>p , 且0432>-p q 时, 方程033=+-q px x 只有一个实根, 当0>p , 且0432=-p q 时, 方程033=+-q px x 有两个实根, 当0>p ,且0432<-p q 时, 方程033=+-q px x 有三个实根.例7(上海交通大学2005年)求函数444),,(z y x z y x f ++=在条件1=xyz 下的极值.分析 用Lagrange 乘数法求函数444),,(z y x z y x f ++=在条件1=x y z 下的极值.解 构造Lagrange 函数()1),,,(444-+++=xyz z y x z y x L λλ, 由⎪⎪⎩⎪⎪⎨⎧=-==+==+==+=01),,,(04),,,(04),,,(04),,,(333xyz z y x L xy z z y x L zx y z y x L yz x z y x L zy x λλλλλλλλ得1===z y x , 所以极值为3)1,1,1(=f .。
第三讲 连续与一致连续一、 知识结构1、 函数连续的概念和定义函数连续的概念: 如果函数)(x f 在区间I 上有定义,并且函数)(x f 的图象是连续不断的,我们称函数)(x f 在区间I 上连续.(1) 函数)(x f 在点0x 连续的相关定义定义1 设函数)(x f 定义在);(δ0x U 内,如果)()(lim 00x f x f x x =→,则我们称函数)(x f 在0x 点连续. 记作)()(lim 00x f x f x x =→.^定义1′设函数)(x f 定义在);(δ0x U 内,对0>∀ε,∃0>'δ,当δδ<'<-0x x 时,有ε<-)()(0x f x f ,则我们称函数)(x f 在0x 点连续.定义 2 设函数)(x f 定义在);(δ0x U +内,对0>∀ε,∃0>'δ,当δδ<'<-≤00x x 时,有ε<-)()(0x f x f ,则我们称函数)(x f 在0x 点连续. 记作)()(lim 00x f x f x x =+→.定义 3 设函数)(x f 定义在);(δ0x U -内,对0>∀ε,∃0>'δ,当δδ<'<-≤x x 00时,有ε<-)()(0x f x f ,则我们称函数)(x f 在0x 点左连续. 记作)()(lim 0_x f x f x x =→.(2) 函数)(x f 在区间I 上连续定义1 如果函数)(x f 在区间),(b a 内任意一点连续,则我们称函数在区间),(b a 内连续.定义1′固定),(0b a x ∈, 对0>∀ε,∃0>δ,当δ<-0x x 时(b x a x ≤+≥-δδ00,),有ε<-)()(0x f x f ,则我们称函数在区间),(b a 内连续.定义 2 如果函数)(x f 在区间),(b a 内任意一点连续,并且在点b 左连续, 则我们称函数)(x f 在区间],(b a 连续.定义 3 如果函数)(x f 在区间),(b a 内任意一点连续,并且在点a 右连续, 则我们称函数)(x f 在区间),[b a 连续.^定义 4 如果函数)(x f 在区间),(b a 内任意一点连续,并且在点b 左连续、点a 右连续, 则我们称函数)(x f 在区间],[b a 上连续.2、 函数一致连续的概念和定义函数一致连续的概念: 如果函数)(x f 在区间I 上有定义,函数)(x f 的图象是连续不断的,并且函数)(x f 的图象没有铅直的渐进线,我们称函数)(x f 在区间I 上一致连续.例如,函数xx f 1=)(在区间),(10内连续,但不一致连续. 定义1对),(0b a x ∈∀, 0>∀ε,∃0>δ,当δ<-0x x 时(b x a x ≤+≥-δδ00,),有ε<-)()(0x f x f ,则我们称函数在区间),(b a 内一致连续.定义1′设函数)(x f y =在区间()b a ,上有定义,x x ''',是区间()b a ,内的任意一点, 对0>∀ε,∃0>δ,当δ<''-'x x 时,有ε<''-')()(x f x f ,则我们称函数)(x f 在区间()b a ,上一致连续.说明: 对给定的0>ε, 由于区间()b a ,内的点对x x ''',有无穷多个, 所以对每一对x x ''',均存在一个δ, 进而有无穷多个δ, 无穷多个δ中有最小的, 我们称函数)(x f 在区间()b a ,上一致连续. 无穷多个δ中没有最小的, 我们称函数)(x f 在区间()b a ,上不一致连续.定理 1 如果函数)(x f 在闭区间],[b a 上连续,则函数)(x f 在闭区间],[b a 上一致连续.)说明: 如果函数)(x f 在开区间()b a ,内连续,则函数)(x f 在开区间()b a ,内不一定一致连续.3、 函数)(x f 的间断点(不连续点)定义1 如果)()(lim 00x f x f x x ≠→,我们称函数在点0x 间断.(1) 第一类间断点定义2 如果极限)(lim x f x x 0→存在,但不等于)(0x f ,我们称点0x 为函数的可去间断点.定义2 如果极限)(lim x f x x +→0与)(lim x f x x -→0都存在但不相等,我们称点0x 为函数的跳跃间断点.可去间断点与跳跃间断点统称为第一类间断点. (2) 第二类间断点&非第一类间断点称为第二类间断点,即)(lim x f x x 0→不存在,或)(lim x f x x +→0不存在,或)(lim x f x x -→0不存在,具体情况如下:①∞=→)(lim 0x f x x ;②∞=→)(lim 0x f x x 趋向于两个以上的数;③∞=+→)(lim 0x f x x ;④)(lim x f x x +→0趋向于两个以上的数;⑤∞=-→)(lim 0x f x x ;⑥)(lim x f x x -→0趋向于两个以上的数.例如,狄利克雷(Dirichlet )函数⎩⎨⎧=为无理数时,当为有理数时,,当x x x D 01)(定义域()+∞∞-,上的任意一点为第二类间断点. 因为⎩⎨⎧=→为无理数时当为有理数时当x x x D x x ,0,,1)(lim 0,所以)(lim 0x D x x →不存在. 再例如,对函数x 1sin,00=x 是函数的第二类间断点. 因为x x x 10sinlim +→不存在(x x sin lim +∞→不存在前面已证).连续和一致连续的概念与定义可推广到多元函数上. 二、解证题方法 1、连续例1 (天津大学2006年)证明: 函数⎪⎩⎪⎨⎧=≠-+--=42142424322x x x x x x x f ,,,)(在4=x 处连续(用δε-语言证明).证明因为)(624212424322+-=--+--x x x x x x , 对0>∀ε, 存在{}118,min εδ=, 当δ<-4x 时, 有ε≤-≤+-=--+--184624212424322x x x x x x x )(,所以函数⎪⎩⎪⎨⎧=≠-+--=42142424322x x x x x x x f ,,,)(在4=x 处连续.?例2(天津大学2005年)证明:函数⎩⎨⎧=为无理数为有理数x x x x f ,,,sin )(0π在n x =处连续(用δε-语言证明).证明 因为0==→ππn x nx sin sin lim , R x ∈, 所以, 对0>∀ε,∃0>δ,当δ<-n x 时,有επ<-0x sin . 又因x x f πsin )(≤, R x ∈, 所以ε<-0)(x f . 故函数⎩⎨⎧=为无理数为有理数x x x x f ,,,sin )(0π在n x =处连续.例3 (复旦大学2002年)证明函数xx f 1=)(在区间],(10上不一致连续. 证明 取nx n 1=,11+=n y n , ,,,321=n ,则],(,10∈n n y x .因为,)()(1=-=-nn nn n n y x x y y f x f 所以, 存在10=ε,对所有0>δ,当δ<-n n y x 时, 有,)()(1≥-=-nn n n n n y x x y y f x f 故函数x x f 1=)(在区间],(10上不一致连续.证法 2 取nx n 1=,11+=n y n , ,,,321=n ,则],(,10∈n n y x .因为0=-∞→n n n y x lim ,而1=-∞→)()(lim nn n y f x f ,所以函数xx f 1=)(在区间],(10上不一致连续.例4(中北大学2005年)证明函数xx x x f 112sin )(++=在区间),(10内不一致连续, 在],[21与),[+∞2上均一致连续.证明 取πn x n 21=,221ππ+=n y n , ,,,321=n ,则),(,10∈n n y x .因为0=-∞→n n n y x lim ,而224228=++++=-∞→∞→ππππn n y f x f n n n n lim )()(lim ,所以函数xx x x f 112sin )(++=在区间),(10上不一致连续.由于函数xx x x f 112sin )(++=在区间],[21上连续, 所以函数xx x x f 112sin )(++=在区间],[21上一致连续.》由于函数xx x x f 112sin )(++=在区间],[12+A 上连续, 所以函数xx x x f 112sin )(++=在区间],[12+A (2>A )上一致连续.因为0112=++=+∞→+∞→xx x x f x x sin lim )(lim ,对2>A ,当A x x >''',时,有ε<''-')()(x f x f . 进而函数xx x x f 112sin )(++=在区间),[+∞A (2>A )上一致连续.例5 (北京工业大学2005年)设)(x f 和)(x g 为区间()b a ,上的连续函数,试证明{})(),(max )(x g x f x F =为区间()b a ,上的连续函数.证明 因为{}[])()()()()(),(max )(x g x f x g x f x g x f x F -++==21, 所以只要证明)()(x g x f -为区间()b a ,上的连续函数即可.对()b a x ,∈∀0,由于)(x f 和)(x g 为区间()b a ,上的连续函数, 所以,对>∀ε,∃0>δ,当δ<-0x x 时,有ε<-)()(0x f x f ,ε<-)()(0x g x g .又因ε20000<-+-≤---)()()()()()()()(x g x g x f x f x g x f x g x f ,所以)()(x g x f -为区间()b a ,上的连续函数.例6(江苏大学2006年)设函数)(x f 为],[b a 上的单调增函数,其值域为[])(),(b f a f ,证明)(x f 在],[b a 上连续.证明 因为函数)(x f 为],[b a 上的单调增函数,所以函数)(x f 在],[b a 上任意一点的极限都存在.;如果函数)(x f 在],[b a 上不连续,则函数)(x f 在],[b a 上存在间断点0x ,如果a x =0,则00>-+)()(a f a f .由函数)(x f 在],[b a 上的单调性知, 函数)(x f 无法取到[])(),(0+a f a f 上的值,这与函数)(x f 的值域为[])(),(b f a f 矛盾. 如果b x =0,则00<--)()(b f b f .由函数)(x f 在],[b a 上的单调性知, 函数)(x f 无法取到[])(),(b f b f 0-上的值,这与函数)(x f 的值域为[])(),(b f a f 矛盾. 如果()b a x ,∈0,则不等式0000<--)()(x f x f 及0000>-+)()(x f x f 至少有一个成立,不妨设0000<--)()(x f x f .由函数)(x f 在],[b a 上的单调性知, 函数)(x f 无法取到[])(),(000x f x f -上的值, 这与函数)(x f 的值域为[])(),(b f a f 矛盾. 故函数)(x f 在],[b a 上连续.例7(西安交通大学2001年)证明:满足函数方程)()()(y f x f y x f =+的惟一不恒为零的连续函数是指数函数()+∞∞-∈=,,)(x a x f x,其中01>=)(f a .分析:要说明函数)(x f 是指数函数xa ,应证明①0>)(x f ;②[]cx f cx f )()(=,其中c 是实数;③01>=)(f a .证明首先证明①>)(x f .因为222222≥⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=x f x f x f x x f x f )(,又因为0000≠==-⋅)()()()()(x f x f f x f x f (因为)(x f 在()+∞∞-,上不恒为零,所以存在()+∞∞-∈,0x ,使00≠)(x f ).所以0≠)(x f ,进而0>)(x f .其次证明[]cx f cx f )()(=,其中c 是实数.a) 当0=c 时, 由)()()(0000f x f x f =≠得10=)(f 得10=)(f . b)当nc =,n为正整数时,[]nn nx f x f x f x x f nx f )()()()(==⎪⎪⎭⎫ ⎝⎛++= .c)当nmc =,m n ,为正整数时, |mm m n x f n x f n x f n x n x f x n m f ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛ ,又因为nn n n x f n x f n x f n x n x f x n n f ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛ ,所以[]n x f n x f 1)(=⎪⎭⎫ ⎝⎛.进而()[]n mx f x n m f =⎪⎭⎫ ⎝⎛. d)当nmc -=,m n ,为正整数时, ()[][]n m nm nm nm x f x f x f f x f x n m f -=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=-=⎪⎭⎫ ⎝⎛-)()()()(10, e) 当c 为无理数时,有有理数列{}n c ,使得c c n n =∞→lim .因函数)(x f 连续,所以[][][]c c c n n n x f x f x f x c f cx f n n n )(lim )()(lim )(lim )(====∞→∞→∞→. 最后证明01>=)(f a .因为0>)(x f ,所以01>=)(f a .…例8(北京交通大学2006年、江苏大学2006年)设函数)(x f 是区间()+∞∞-=,R 上的单调函数,定义)()(0+=x f x g .证明函数)(x g 在区间()+∞∞-=,R 上的每一点都右连续.分析:不妨设函数)(x f 是区间()+∞∞-=,R 上的单调增函数.要证明函数)(x g 在区间()+∞∞-=,R 上的每一点都右连续,只要证明对任意一点R x ∈0,0>∀ε,∃0>δ,当δ≤-≤00x x 时,有ε<-≤)()(00x g x g . 证明 不妨设函数)(x f 是区间()+∞∞-=,R 上的单调增函数.设0x 是区间()+∞∞-=,R 上的任意一点, 因为)0()(00+=x f x g ,即()00)(lim )0(0x g x f x f x x ==++→,所以,对0>∀ε,∃0>δ,当δ≤-≤00x x 时,有εδ<-+)()(00x g x f ,即εδε<-+<-)()(00x g x f .εδδ<-+=-+)()()()(0000x g x f x g x f ,又因函数)(x f 是区间()+∞∞-=,R 上的单调增函数, 所以)()()(δ+≤+=00x f x f x g ,故ε<-)()(0x g x g .又因函数)(x f 是区间()+∞∞-=,R 上的单调增函数,所以())()()(x g x f x f x g =+≤+=0000,进而ε<-)()(0x g x g .所以函数)(x g 在区间()+∞∞-=,R 上的每一点都右连续.例9(中北大学2005年)设函数()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>⎪⎭⎫ ⎝⎛+--+=<-=,0,41ln 1,0,6,0,arcsin arctan )(23x x x ax x e x x xx ax x f ax 问:(1)a 为何值时,)(x f 在0=x 处连续;(2) a 为何值时, 0=x 是)(x f 的可去间断点.解 (1) 因为()()212203030113lim arcsin lim arcsin arctan lim -→→→--=-=----xax x x ax x x ax x x x)()()()a xa xx ax xx ax x x x 616lim16lim13lim2320232023220-=--=--=--=-→-→-→---,41lim 41ln 1lim 2020x x ax x e x x ax x e ax x ax x ⋅--+=⎪⎭⎫ ⎝⎛+--+++→→ 42212lim 212lim 2200+=+=-+=++→→a e a x a x ae ax x ax x ,所以,当64262=+=-a a 时,即1-=a 时,函数)(x f 在0=x 处连续.(2)当66422≠-=+a a 时, 0=x 是)(x f 的可去间断点.即2-=a 时,0=x 是)(x f 的可去间断点.例10设函数()2222220,(,)0,0x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩,试讨论(,)f x y 在点()0,0的连续性、偏导数存在性、可微性. 解 (1)连续性 因为()()()()()22,0,0,0,0lim(,)lim sin 0(0,0)x y x y f x y x y f →→⎡⎤=+==⎢⎢⎣,所以(,)f x y 在点()0,0连续.((2)偏导数存在性 因为()()()()()xxx xf x f y x y x ∆∆∆=∆-∆+→∆∆→∆∆1sinlim )0,0(0,0lim20,0,0,0,()()01sin lim0,0,=⎪⎪⎭⎫⎝⎛∆∆=→∆∆x x y x ,()()()()()yyy yf y f y x y x ∆∆∆=∆-∆+→∆∆→∆∆1sinlim )0,0(0,0lim20,0,0,0,()()01sin lim0,0,=⎪⎪⎭⎫⎝⎛∆∆=→∆∆y y y x ,所以)0,0(x f 与)0,0(y f 均存在,且都等于零. (3)可微性 因为]ρρdff -∆→0lim()()[]()()[]ρρdy f dx f f y x f y x 0,00,00,00,0lim+--∆+∆+=→()()ρρ001sin lim22220+-⎥⎥⎦⎤⎢⎢⎣⎡∆+∆∆+∆→y x y x 01sin lim 1sin lim 0220=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛∆+∆→→ρρρρρy x ,所以()f df o ρ∆-=,进而函数(,)f x y 在点()0,0可微. 练习[1] (电子科技大学2005年)设函数)(x f 定义在()b a ,上,()b a c ,∈,又设)(x H 和)(x G 分别在),[],,(b c c a 上连续且在),(c a 和()b c ,内是)(x f 的原函数.令⎩⎨⎧<≤+<<=bx c C x G c x a x H x F ,)(,),()(0,其中选择0C 使)(x F 在c x =处连续,就下列情况,回答)(x F 是否是)(x f 在()b a ,上的原函数.(1))(x f 在c x =处连续;`(2) c x =是)(x f 的第一类间断点; (3) c x =是)(x f 的第二类间断点.解(1)当)(x f 在cx =处连续时,因为)()(lim )(lim )()(lim)(c f x f x F cx c F x F c F c x c x c x =='=--='→→→,所以)(x F 是)(x f 在()b a ,上的原函数.(2)因为 c x =是)(x f 的第一类间断点,且)(x F 在c x =处连续, 所以)()(lim )(lim c f x f x f cx cx ≠==+→→或)(lim )(lim x f x f cx cx =+→→≠.当)()(lim )(lim c f x f x f cx c x ≠==+→→时,由)(lim )(lim )()(lim )(x f x F c x c F x F c F c x c x c x +++→→→+='=--='得,)()(lim )(c f x f c F cx ≠='+→+,所以)(x F 不是)(x f 在()b a ,上的原函数.当)(lim )(lim x f x f cx c x =+→→≠时, )(c f 不存在,即)()(c f c F ≠'.所以)(x F 不是)(x f 在()b a ,上的原函数.(3)不能判断.例如⎪⎩⎪⎨⎧=≠-=--.,,,sin sin )(0001121x x xnx x nx x f n n 当21,=n 时,0=x 是)(x f 的第二类间断点,取⎪⎩⎪⎨⎧=≠=,,,,sin )(0001x x xx x F n当2=n 时,)(sin lim )()(lim )(00100000f xx x F x F F x x ===--='→→,故)(x F 是)(x f 在()b a ,上的原函数.当1=n 时,)(sin lim )()(lim)(00100000f xx F x F F x x =≠=--='→→,故)(x F 不是)(x f 在()b a ,上的原函数.[2] (电子科技大学2003年,江苏大学2004年)证明区间()b a ,上的单调函数)(x f 的一切不连续点都为第一类间断点.证明 不妨设函数)(x f 是单调增函数,并且设()b a x ,∈0是函数)(x f 的间断点.因为())()(lim 0000x f x f x f x x ≤=--→,())()(lim 0000x f x f x f x x ≥=++→,并且函数在0x 不连续,所以不等式())(000x f x f ≤-,())(000x f x f ≥+至少有一个取>或<号,所以0x 是跳跃间断点,即区间()b a ,上的单调函数)(x f 的一切不连续点都为第一类间断点.[3](上海交通大学2003年,深圳大学2006年)定义函数如下:。
中科院2005年研究生入学数学分析试题及解答中国科学院硕士研究生2005年入学考试《数学分析》试题1. (15分)计算:0x →2. (15分)设,0,a b a b >≠,证明2ln ln a b a b a b -<<+-.3. (10分)求111lim 12n n n n →∞⎛⎫+++⎪+⎝⎭.4. (10分)判断级数1(1)nn n∞=-∑的敛散性.5. (15分)设函数(,)f x y 在点(0,0)的某个邻域中连续,222()(,)x y tF t f x y dxdy+≤=⎰⎰,求0()lim t F t t +→'.6. (15分)求球面2222xy z a++=包含在柱面22221x y a b+=(b a ≤)内的那部分面积.7. (15分)设函数(,)()f x y xy ϕ=,其中(0)0ϕ=,且()u ϕ在0u =的某个邻域中满足()u k u αϕ≤,其中常数12α>,0k >。
证明(,)f x y 在点(0,0)处可微,但函数(,)g x y =在点(0,0)处不可微. 8. (15分) 设()x ϕ在区间[0,)+∞上有连续的导数,并且(0)1ϕ=.令2222222()()x y z r f r x y z dxdydz ϕ++≤=++⎰⎰⎰(0r ≥).证明()f r 在0r =处三次可微,并求(0)f '''(右导数). 9. (20分)设函数()f x 在有限区间[,]a b 上可微,且满足()()0f a f b ''<(此处()f a '和()f b '分别表示f 在a 和b 处的右导数和左导数).则(,)c a b ∃∈,使得()0f c '=.10. (20分)设xe nn n e a x ∞==∑,求0123,,,a a a a ,并证明(ln )nn a e n γ-≥(2n ≥),其中γ是某个大于e 的常数.2005年中国科学院数学分析试题解答1. 解:利用()()11y y o y αα+=++,()0y →,()441135x o x =+⋅+,()()1122x o x =+-+,()113x o x =++,()112x o x =++, 所以,原式()()()()()44011315lim 111132x x o x x o x x o x x o x →⎛⎫+⋅+--+ ⎪⎝⎭=⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭()()0lim616x x o x x o x →+==--+. 2. 证明:不妨设0a b >>,欲证的不等式等价于ln211ab a a b b<<+-,令a x b=,不等式等价于2ln 11x x x <<+-,()1x >.令()ln f x x =-,()10f =, 因为()122f x x x x x '=+- 21022x x x x x x-==>,()1x >,所以()()10f x f >=,ln 0x ->,ln x x>,ln 1xx x<-,()1x >.令()()21ln 1x h x x x -=-+,()10h =,因为()()()()222114011x h x x x x x -'=-=>++, 所以()()1h x h >,即得()21ln 01x x x -->+,2ln 11xx x <+-,()1x >,故成立2ln 11x x x <<+-,()1x >,取a x b=,代入上式,不等式得证.3. 解:解法一 利用111ln 2n n c nε+++=++,其中lim 0n n ε→∞=, 211111ln 2212n n c n n nε++++++=+++, 111lim 12n n n n →∞⎛⎫+++ ⎪+⎝⎭11lim 12n n n →∞⎛⎫=++⎪+⎝⎭()()2lim ln 2ln n n n n c n c εε→∞⎡⎤=++-++⎣⎦ ()2lim ln 2n n n εε→∞⎡⎤=+-⎣⎦ln2=.解法二 111lim 12n nn n →∞⎛⎫+++⎪+⎝⎭111lim 1n n k kn n →∞=⎛⎫⎪= ⎪ ⎪+⎝⎭∑ ()11001ln 1ln 21dx x x ==+=+⎰. 4. 解:设n a n=,显然lim0n n a →∞=,{}n a 单调递减; 由莱布尼茨判别法知()11nn n ∞=-∑收敛,由()1n-≥,()3n ≥,得()11n n ∞=-∑发散,故()11nn ∞=-∑. 5. 解:()()200cos ,sin tF t dr f r r rd πθθθ=⎰⎰,()()20cos ,sin F t f t t td πθθθ'=⎰,由题设条件,可知()()0lim cos ,sin 0,0t f t t f θθ+→=,且关于[]0,2θπ∈是一致收敛; 于是()()2000lim lim cos ,sin t t F t f t t d tπθθθ++→→'=⎰ ()200lim cos ,sin t f t t d πθθθ+→=⎰ ()()200lim 0,00,02t f d f πθπ+→==⎰.6、计算下列曲面的面积:(1)圆柱面222a y x =+ 介乎平面0=+z x 和0=-z x 之间的部分; (2)球面2222az y x=++被椭圆柱面)0(12222a b b y a x ≤<=+所截下的部分。
西安电子科技大学数学分析考研大纲一、考试总体要求与考试要点1.考试对象考试对象为具有全国硕士研究生入学考试资格并报考西安电子科技大学理学院数学科学系硕士研究生的考生。
2.考试总体要求测试考生对数学分析的基本内容的理解、掌握和熟练程度。
要求考生熟悉数学分析的基本理论、掌握数学分析的基本方法,具有较强的抽象思维能力、逻辑推理能力和运算能力。
3.考试内容和要点(一) 实数集与函数1、实数:实数的概念;实数的性质;绝对值不等式。
2、函数:函数的概念;函数的定义域和值域;复合函数;反函数。
3、函数的几何特性:单调性;奇偶性;周期性。
要求:理解和掌握绝对值不等式的性质,会求解绝对值不等式;掌握函数的概念和表示方法,会求函数的定义域和值域,会证明具体函数的几何特性。
(二) 数列极限1、数列极限的概念(N ε-定义)。
2、数列极限的性质:唯一性;有界性;保号性。
3、数列极限存在的条件:单调有界准则;两边夹法则。
要求:理解和掌握数列极限的概念,会使用N ε-语言证明数列的极限;掌握数列极限的基本性质、运算法则以及数列极限的存在条件(单调有界原理和两边夹法则),并能运用它们求数列极限;了解无穷小量和无穷大量的概念性质和运算法则,会比较无穷小量与无穷大量的阶。
(三) 函数极限1、函数极限的概念(εδ-定义、X ε-定义);单侧极限的概念。
2、函数极限的性质:唯一性;局部有界性;局部保号性。
3、函数极限存在的条件:海涅归结原则。
4、两个重要极限。
要求:理解和掌握函数极限的概念,会使用εδ-语言以及X ε-语言证明函数的极限;掌握函数极限的基本性质、运算法则,会使用海涅归结原理证明函数极限不存在;掌握两个重要极限并能利用它们来求极限;了解单侧极限的概念以及求法。
(四) 函数连续1、函数连续的概念:一点连续的定义;区间连续的定义;单侧连续的定义;间断点的分类。
2、连续函数的性质:局部性质及运算;闭区间上连续函数的性质(最值性、有界性、介值性、一致连续性);复合函数的连续性;反函数的连续性。
西安电子科技大学2005
一、填空(25分)
1.已知()()0ln 1sin lim 2tan x f x x x →+=,则()0lim x f x →=。
2.设()1sin ,00,0x x f x x x α⎧≠⎪=⎨⎪=⎩,则当α时,f 在0x =处连续,当α时,f 在0x =处可导且()0f '=。
3.设()21,0,0
x x x f x e x -⎧+<⎪=⎨≥⎪⎩,则()312f x dx -=⎰。
4.20ln ,1x dx x +∞
=+⎰。
5.设()21,01,0x f x x x ππ--<≤⎧=⎨+<≤⎩
,则其以2π为周期的傅里叶级数在x π=处收敛于。
二、(10分)设函数(),,u f x y z =具有连续偏导数,且(),z z x y =由方程
x y z xe ye z e
-=确定,求du 。
三、(16分)计算下列各题。
1.{}22max ,x y D e
dxdy ⎰⎰,其中(){},01,01D x y x y =≤≤≤≤。
2.()()()C
z y dx x z dy x y dz -+-+-⎰ ,其中C 是曲线2212x y x y z ⎧+=⎨-+=⎩从z 轴正向往z 轴负向看C 的方向是顺时针的。
四、(12分)求()()22222y axdydz z a dxdy x y z ∑++++⎰⎰,其中∑
为下半球面z =上侧,0a >为常数。
五、(12分)设10x >,且()1212n n n
x x x ++=+,1,2,,n n = ,证明{}n x 收敛并求极限。
六、(10分)求11n n n x n ∞=⎛⎫+ ⎪⎝
⎭∑的收敛域,并判定其一致收敛性。
七、(13分)讨论曲线4ln y x k =+与44ln y x x =+的交点的个数,其中k 为参数。
八、(13分)(1)
证明y 在()0,+∞上一致连续。
(2)设二元函数(),f x y 在点()0,0的某个邻域内连续,且有 ()()20
220,lim 1x y f x y xy x y →→-=+
试问()0,0是否为(),f x y 的极值点?请说明理由。
九、(13分)设f 在[]0,1上连续、非负、递减,01αβ<<<,证明 ()()0f x d x f x d x α
β
ααβ≥⎰⎰ 十、(13分)设f 在[],a b 上一阶可导,在(),a b 内三阶可导,且()()0f a f b ==,
()(),0f a f b +-''>,证明
(1)存在(),c a b ∈,使()0f c =;
(2)存在(),a b ξ∈,使()0f ξ''=;
(3)存在(),a b η∈,使()()f f ηη''=。
十一、设f 在0x =的某个邻域内有定义,且()0f ''存在,证明11n f n ∞
=⎛⎫ ⎪⎝⎭∑绝对收敛的充分必要条件是()()000f f '==。