八年级第一次月考1
- 格式:rtf
- 大小:118.57 KB
- 文档页数:4
遵义县铁厂(ti ě ch ǎn ɡ)镇中学八年级物理上册第一次月考试题一、选择题:(共10小题(xi ǎo t í),每小题3分,共30分)A 、火车减速进站B 、人造地球卫星在回收途中(t ú zh ōn ɡ)烧毁C 、划破夜空的流星(li úx īng)D 、骑自行车上学 2、以下是人类描述运动世界的几种方式,其中物理学家是 A 、用语言的韵律和意境 B 、用形态和色彩C、用旋律和节奏 D、用特定的概念、数学工具及试验方法 3、下列物品的尺度,最接近15cm 的是:A 、橡皮的宽度B 、课桌的高度C 、文具盒的厚度D 、圆珠笔的长度。
4、下列有关误差的说法中.正确的是A .多次测量取平均值可以减小误差B .误差就是测量中产生的错误C .只要认真测量,就可以避免误差D .选用精密的测量仪器可以消除误差 5、速度是用来表示:A 、运动路径的长短B 、运动时间的长短C 、运动的快慢程度D 、以上说法都不对6、甲、乙两人分别坐在并列的两个升降机中,甲看到乙在上升,楼房也在上升;乙看见楼房在上升,甲在下降。
如果以地面为参照物,则下列说法正确的是 A 、甲在上升,乙在下降 B 、甲、乙都下降,但甲比乙下降快 C 、甲、乙都下降,但甲比乙下降慢 D 、以上都不对7. 用图象可以表示物体的运动规律,在图2-4中用来表示匀速直线运动的是8.某物体在第一、第二分钟内共前进了260m ,第三分钟静止不动,第四分钟前进了100m ,则它在4min 内的平均速度为A、1.67m/sB、1.5m/sC、2.17m/sD、2m/s9. 游客坐在船中逆流而上,若说他是静止的,则选择的参照物是()A.船舱B.河水C.迎面(yíng miàn)驶来的船D.河岸上的树木10、第一次世界大战期间,一名正在飞行的法国(fǎɡuó)飞行员,顺手抓住了一颗子弹,说明(shuōmíng)这子弹A 速度很小B 速度与飞机(fēijī)相等,方向相反C 速度为零D 速度与飞机相等,方向(fāngxiàng)相同二、填空题(每空1分,共28分)1、物理学是研究自然界物质和的自然学科。
八年级上册第一次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪种细胞器在所有细胞中都存在?A. 线粒体B. 叶绿体C. 溶酶体D. 内质网2. 地球上生命起源的假说中,哪一种被广泛接受?A. 自然发生说B. 宇宙生命论C. 化学进化说D. 热泉生命起源说3. 下列哪个过程是光合作用的一部分?A. 光反应B. 呼吸作用C. 脱水缩合D. 有丝分裂4. 下列哪个是原核生物?A. 细菌B. 真菌C. 藻类D. 动物5. 下列哪种物质是DNA复制时所需的?A. RNA聚合酶B. DNA聚合酶C. 氨基酸D. 核糖核苷酸二、判断题(每题1分,共5分)1. 细胞壁对细胞具有支持和保护作用。
()2. 基因是遗传信息的携带者。
()3. 有丝分裂过程中,染色体数量在后期加倍。
()4. 蛋白质是生物体主要的能源物质。
()5. 光合作用只能在光照条件下进行。
()三、填空题(每题1分,共5分)1. 细胞中的能量转换器有_________和_________。
2. 基因位于_________上,它决定了生物的_________。
3. 有丝分裂间期主要进行_________的复制和有关蛋白质的合成。
4. 光合作用的实质是_________制造有机物,释放_________。
5. 呼吸作用的主要场所在_________。
四、简答题(每题2分,共10分)1. 简述细胞膜的功能。
2. 什么是遗传?什么是变异?3. 有丝分裂的意义是什么?4. 光合作用和呼吸作用的区别和联系是什么?5. 原核细胞和真核细胞有什么异同?五、应用题(每题2分,共10分)1. 如果一个细胞在分裂过程中染色体数量加倍,但细胞质未分裂,这是什么过程?它有什么意义?2. 某种植物在遮光条件下生长,其叶片颜色会变浅,为什么?3. 如果一个生物体的基因发生了突变,可能会导致什么后果?4. 为什么说线粒体是细胞的“动力车间”?5. 光合作用中,光反应和暗反应是如何协同工作的?六、分析题(每题5分,共10分)1. 分析细胞结构和功能的关系。
八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm6.六边形共有几条对角线()A.6B.7C.8D.97.下列图形具有稳定性的是()A.B.C.D.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加根木条才能固定.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.15.一个多边形的内角和是1800°,这个多边形是边形.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =.三、画图题17.(7分)作BC边上的中线AD,作∠B的角平分线线BE.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.22.(7分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;23.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD =10°,∠B=50°,求∠C的度数.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形【分析】根据全等三角形的性质得出AB=DE,AC=DF,BC=EF,即可判断A;根据全等三角形的性质得出△ABC和△DEF放在一起,能够完全重合,即可判断B、C;根据图形即可判断D.【解答】解:A、∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴AB+AC+BC=DE+DF+EF,故本选项错误;B、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,即两三角形的面积相等,故本选项错误;C、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,故本选项错误;D、如图△ABC和DEF不是等边三角形,但两三角形全等,故本选项正确;故选:D.【点评】本题考查了全等三角形的定义和性质的应用,能运用全等三角形的有关性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.【点评】注意:三角形的中线能将三角形的面积分成相等的两部分.4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,可分成(n﹣2)个三角形直接判断.【解答】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选:C.【点评】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<7,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.6.六边形共有几条对角线()A.6B.7C.8D.9【分析】根据对角线公式计算即可得到结果.【解答】解:根据题意得:=9,则六边形共有9条对角线,故选:D.【点评】此题考查了多边形的对角线,n边形对角线公式为.7.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.【点评】此题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度【分析】根据多边形的外角和等于360°即可得到结论.【解答】解:∵∠1+∠2+∠3+∠4=360°,∠2+∠3+∠4=320°,∴∠1=40°.故选:B.【点评】本题考查了多边形的内角和外角,熟记多边形的外角和等于360°是解题的关键.10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD 中,AB =AD ,∠B =80°,∴∠B =∠ADB =80°,∴∠ADC =180°﹣∠ADB =100°,∵AD =CD ,∴∠C ===40°.故选:B .【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加 3 根木条才能固定.【分析】首先根据三角形的稳定性,把六边形活动支架ABCDEF 分成三角形,然后根据从同一个顶点出发可以作出的对角线的条数解答即可.【解答】解:如图,,要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加3根木条才能固定.故答案为:3.【点评】此题主要考查了三角形的稳定性,要熟练掌握,解答此题的关键是熟记三角形具有稳定性.12.若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 19cm .【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm 是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm 是腰时,周长=8+8+3=19cm .故它的周长为19cm .故答案为:19cm .【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是1<a<4.【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围.【解答】解:∵三角形的三边长分别为3,2a﹣1,4,∴4﹣3<2a﹣1<4+3,即1<a<4.故答案为:1<a<4.【点评】考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系的性质.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是6.【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷60°,计算即可求解.【解答】解:这个正多边形的边数:360°÷60°=6.故答案为:6.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.15.一个多边形的内角和是1800°,这个多边形是12边形.【分析】首先设这个多边形是n边形,然后根据题意得:(n﹣2)×180=1800,解此方程即可求得答案.【解答】解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =40°.【分析】先根据角平分线的定义得到∠OBC =∠ABC ,∠OCB =∠ACB ,再根据三角形内角和定理得∠BOC +∠OBC +∠OCB =180°,则∠BOC =180°﹣(∠ABC +∠ACB ),由于∠ABC +∠ACB =180°﹣∠A ,所以∠BOC =90°+∠A ,然后把∠BOC =110°代入计算可得到∠A 的度数.【解答】解:∵BO 、CO 分别平分∠ABC 、∠ACB ,∴∠OBC =∠ABC ,∠OCB =∠ACB ,而∠BOC +∠OBC +∠OCB =180°,∴∠BOC =180°﹣(∠OBC +∠OCB )=180°﹣(∠ABC +∠ACB ),∵∠A +∠ABC +∠ACB =180°,∴∠ABC +∠ACB =180°﹣∠A ,∴∠BOC =180°﹣(180°﹣∠A )=90°+∠A ,而∠BOC =110°,∴90°+∠A =110°∴∠A =40°.故答案为40°.【点评】本题考查了三角形内角和定理:三角形内角和是180°.三、画图题17.(7分)作BC 边上的中线AD ,作∠B 的角平分线线BE .【分析】根据尺规作图的要求作出中线AD ,角平分线BE 即可.【解答】解:如图,△ABC 的中线AD ,角平分线BE 即为所求.【点评】本题考查作图﹣复杂作图,三角形的中线,角平分线等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.【分析】根据直角三角形的两个角互余构建方程即可解决问题.【解答】解:设较小的锐角是x度,则另一角是4x度.则x+4x=90,解得:x=18°.答:这个直角三角形中这两个锐角的度数分别为18°和72°.【点评】本题主要考查了直角三角形的性质,两锐角互余,解题的关键是学会利用参数构建方程解决问题.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【解答】解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7.∴这个多边形的边数是7.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.【分析】根据全等三角形的判定定理SSS证得△ACB≌△ADB,则其对应角相等:∠CAB =∠DAB,即AB是∠CAD的平分线.【解答】解:AB是∠CAD的平分线.理由如下:在△ACB与△ADB中,,∴△ACB≌△ADB(SSS),∴∠CAB=∠DAB,即AB是∠CAD的平分线.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.【分析】由角平分线的定义,结合平行线的性质,易求∠EDC的度数.【解答】解:∵DE∥BC,∴∠ACB=∠AED=70°.∵CD平分∠ACB,∴∠BCD=∠ACB=35°.又∵DE ∥BC ,∴∠EDC =∠BCD =35°.【点评】本题考查了平行线的性质和角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.22.(7分)如图所示,已知AD 是△ABC 的边BC 上的中线.(1)作出△ABD 的边BD 上的高;(2)若△ABC 的面积为10,求△ADC 的面积;【分析】(1)利用尺规作AE ⊥BC ,垂足为E ,线段AE 即为所求;(2)利用三角形的中线把三角形分成两个面积相等的三角形即可;【解答】解:(1)如图线段AE 即为所求;(2)∵AD 是△ABC 的中线,∵S △ABD =S △ADC ,∵S △ABC =10,∴S △ADC =•S △ABC =5.【点评】本题考查作图﹣复杂作图,三角形的面积等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.23.(8分)如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD =10°,∠B =50°,求∠C 的度数.【分析】根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AD是BC边上的高,∠EAD=10°,∴∠AED=80°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【点评】本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.【分析】连接AD并延长AD至点E,根据三角形的外角性质求出∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C,即可求出答案.【解答】解:如图,连接AD并延长AD至点E,∵∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C∴∠BDC=∠BDE+∠CDE=∠CAD+∠C+∠BAD+∠B=∠BAC+∠B+∠C∵∠A=90°,∠B=21°,∠C=32°,∴∠BDC=90°+21°+32°=143°.【点评】本题考查了三角形的外角性质的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A 时,所经过的路线正好构成一个外角是20度的正多边形是关键.。
八年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________第I卷(选择题共40分)一.单选题.(共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个最符合题目要求。
1.下列各曲线是根据不同的函数绘制而成的,其中是中心对称图形的是( )2.若a<b<0,则下列条件一定成立的是( )A.ab<0B.a+b>0C.ac<bcD.a+c<b+c3.下列各式由左边到右边的变形中,是因式分解的为( )A.a2-16+3a=(a-4)(a+4)+3aB.10x2-5x=5x(2x-1)C.x2-4x+4=x(x-4)+4D.a(m+n)=am+an4.不等式x>4的解集在数轴上表示正确的是( )A. B. C. D.5.在平面直角坐标系中,已知点A的坐标为(1,4),如果将点A向右平移2个单位长度得到点A’,则点A’的坐标为( )A.(1,2)B.(1,6)C.(-1,4)D.(3,4)6.多项式12a3b-8ab2c的公因式是( )A.4a2B.4abC.2a2D.4abc7.下列多项式能用平方差公式进行因式分解的是( )A.x2-1B.x2+4C.x+9D.x2-6x8.下列多项式能直接用完全平方公式进行因式分解的是( )A.9x2-16y2B.4x2-4x+1C.x2+xy+y2D.9-3x+x29.如图,将△ABC绕点A逆时针旋转角a(0°<a<180°)得到△MDE,点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=25,则旋转角a的度数是( )A.70°B.60°C.50°D.40°(第9题图) (第10题图)10.如图,将点A 1(1,1)向上平移1个单位,再向右平移2个单位,得到点A 2;将点A 2向上平移2个单位,再向右平移4个单位,得到点A 3;将点A 3向上平移4个单位,再向右平移8个单位,得到点A 4……按这个规律平移得到点A n ,则点A 2024的横坐标为( )A.22024B.22004-1C.22023-1D.2203+1第II 卷(非选择题 共110分)二.填空题:(每题4分,共24分)11.用适当的符号表示下列关系:a 是正数 .12.因式分解:a 2+4a= .13.若m>n ,则m -n 0(填">"或"="或"<").14.若一次函数y=kx+b 的图象如图所示,则关于x 的不等式kx+b<0的解集是 .(第14题图) (第15题图) (第16题图)15.如图,将周长为10cm 的△ABC 沿 BC 方向平移得到△DEF ,连接AD ,四边形ABFD 的周长为15cm ,则平移的距离为 cm.16.如图,长方形ABCD 中,AB=5,BC=12,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B’处,当△CEB'为直角三角形时,BE 的长为 .三.解答题(共10小题,86分)17.(4分)解下列不等式,并把不等式的解集在数轴上表示出来:-x -1≤3x -518.(6分)解不等式组{x -3(x -1)>11+3x 2>x -1,并写出它的所有非负整数解.19.(每题3分,共18分)因式分解:(1)8m 2n+2mn (2)-15a ³b 2+9a 2b 2-3ab 3 (3)4a 2-1(4)a 2-4ab+4b 2 (5)3x 3-12x (6)mx 2+2m 2x+m 320.(6分)先分解因式,再求值:2x(a-2)-y(2-a),其中a=2,x=1.5,y=-2.21.(6分)在如图所示的平面直角坐标系中,已知点4(1,2),B(3,1).(1)C点的坐标为.(2)将三角形ABC先向下平移4个单位,在向左平移3个单位,得到三角形A1B1C1,画出三角A1B1C1:(3)三角形A1B1C1的面积为。
2023-2024学年八年级英语第一次月考卷(省卷专用)(考试时间:100分钟试卷满分:100分)I.听力(共两节,满分20分)第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项回答问题。
听每段对话前,你都有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
(共5小题,计5分)1.What does Mary think of her dog?A.It’s helpful.B.It’s unfriendly.C.It’s old.2.Who was the man helping when the woman called him?A.His parents.B.His brother.C.His friend.3.What happened to Jeff?A.He stayed up late and had a headache. B.He watched the basketball match. C.He had a toothache. 4.What was the boy doing at the time of the accident?A.Watching TV.B.Playing basketball.C.Playing games with his dad.5.How many books did Amy read during the reading week?A.Four.B.Five.C.Six.第二节(共15小题;每小题1分,满分15分)听下面6段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第六段材料,回答第6、7题。
6.Where has Jim gone for his holiday?A.London.B.Australia.C.Paris.7.Who did David go to Paris with?A.His friends.B.His parents.C.His sister.听第七段材料,回答第8、9题。
江西省2024-2025学年八年级上学期第一次月考数学试题一、单选题1. 在ABC 中,已知3AC =,4BC =,则AB 的取值范围是( )A. 68AB <<B. 17AB <<C. 214AB <<D. 114AB <<【答案】B【解析】【分析】根据三角形三边关系求解.【详解】解: 在ABC 中,3AC =,4BC =, ∴BC AC AB BC AC −<<+,∴4343AB −<<+,即17AB <<.故选B .【点睛】本题考查三角形三边关系的应用,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边.2. 如图,△ABC ≌△ABD ,若∠ABC =30°,∠ADB =100°,则∠BAC 的度数是( ).A. 30°B. 100°C. 50°D. 80°【答案】C【解析】 【分析】根据全等三角形的性质得到∠C 的度数,然后利用三角形内角和定理计算即可.【详解】解:∵△ABC ≌△ABD ,∴∠C =∠ADB =100°,∴∠BAC =180°-100°-30°=50°,故选C.【点睛】本题考查了全等三角形的性质和三角形内角和定理,熟知全等三角形的对应边相等,对应角相等是解题关键.3. 如图,在ABC 中,AB AC =,AE AF =,AD BC ⊥,垂足为D .则全等三角形有( )A. 2组B. 3组C. 4组D. 5组【答案】C【解析】 【分析】本题主要考查了全等三角形的性质和判定,先根据HL 证明Rt ADE ≌Rt ADF ,可得DE DF =,进而得出Rt ABD △≌Rt ACD △,可得BD CD =,即可得出BE CF =,再根据SSS 证明ABE ≌ACF △,ACE △≌ABF △,可得答案.【详解】∵AE AF =,AD AD =,∴Rt ADE ≌Rt ADF ,∴DE DF =.∵AB AC =,AD AD =,∴Rt ADB △≌Rt ADC ,∴BD CD =,∴B D D E C D D F −=−,即BE CF =.∵AB AC =,AE AF =,∴ABE ≌ACF △.∵B D D F C D D E +=+,即BF CE =.∵AB AC =,AE AF =,∴ABF △≌ACE △.全等三角形有4组.故选:C .4. 如图,在ABC 中,,ABC ACB ∠∠的平分线交于点O ,连接AO ,过点O 作,,OD BC OE AB ABC ⊥⊥△的面积是16,周长是8,则OD 的长是( )A. 1B. 2C. 3D. 4【答案】D【解析】 【分析】本题主要考查了角平分线的性质,先过点O 作OF AC ⊥于点F ,然后根据角平分线的性质,证明OE OF OD ==,然后根据ABC 的面积AOB =△的面积BOC +△的面积AOC +△的面积,求出答案即可.【详解】如图所示:过点O 作OF AC ⊥于点F ,OB ,OC 分别是ABC ∠和ACB ∠角平分线,OD BC ⊥,OE AB ⊥,OF AC ⊥,OE OD OF ∴==,16ABC AOB BOC AOC S S S S =++= , ∴11116222AB OE BC OD AC OF ⋅+⋅+⋅=, 11116222AB OD BC OD AC OD ⋅+⋅+⋅=, 1()162OD AB BC AC ++=, 8++= AB BC AC ,4OD ∴=,故选:D .5. 如图,ABC ∆中,AB BC =,点D 在AC 上,BD BC ⊥.设BDC α∠=,ABD β∠=,则( )的A. 3180αβ+°B. 2180αβ+°C. 390αβ−=°D. 290αβ−=°【答案】D【解析】 【分析】根据三角形外角等于不相邻两个内角的和,直角三角形两锐互余解答【详解】解:AB BC = ,A C ∴∠=∠,A αβ−∠= ,90C α+∠=°,290αβ∴=°+,290αβ∴−=°,故选:D .【点睛】本题考查了三角形外角,直角三角形,熟练掌握三角形外角性质,直角三角形两锐角性质,是解决此类问题的关键6. 下列条件,不能判定两个直角三角形全等的是( )A. 两个锐角对应相等B. 一个锐角和斜边对应相等C. 两条直角边对应相等D. 一条直角边和斜边对应相等【答案】A【解析】【分析】本题主要考查全等的判定方法,熟练掌握判定方法是解题的关键.根据判定方法依次进行判断即可.【详解】解:A 、两个锐角对应相等,不能判定两个直角三角形全等,故A 符合题意;B 、一个锐角和斜边对应相等,利用AAS 可以判定两个直角三角形全等,故B 不符合题意;C 、两条直角边对应相等,利用SAS 可以判定两个直角三角形全等,故C 不符合题意;D 、一条直角边和斜边对应相等,利用HL 可以判定两个直角三角形全等,故D 不符合题意;故选:A .7. 如图,在ACD 和BCE 中,,,,,AC BC AD BE CD CE ACE m BCD n ===∠=∠= ,AD 与BE 相交于点P ,则BPA ∠的度数为( )A. n m −B. 2n m −C. 12n m −D. 1()2n m − 【答案】D【解析】 【分析】由条件可证明△ACD ≌△BCE ,根据全等三角形的性质得到∠ACB 的度数,利用三角形内角和可求得∠APB=∠ACB ,即可解答.【详解】在△ACD 和△BCE 中AC BC AD BE CD CE===∴△ACD ≌△BCE (SSS ),∴∠ACD=∠BCE ,∠A=∠B ,∴∠BCA+∠ACE=∠ACE+∠ECD ,∴∠ACB=∠ECD=12(∠BCD-∠ACE )=12×(n-m ) ∵∠B+∠ACB=∠A+∠BPA ,∴BPA ∠=∠ACB=1()2n m −. 故选D .【点睛】此题考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.8. 如图,EB 交AC 于M ,交FC 于D ,AB 交FC 于N ,90E F ∠=∠=°,B C ∠=∠,AE AF =,给出下列结论:①12∠=∠;②BE CF =;③ACN ABM ≌;④CD DN =.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】 【分析】根据90E F ∠=∠=°,B C ∠=∠,AE AF =,可得ABE ACF ≌,三角形全等的性质BE CF =;BAE CAF ∠=∠可得①12∠=∠;由ASA 可得ACN ABM ≌,④CD DN =不成立.【详解】解:∵90E F ∠=∠=°,B C ∠=∠,AE AF =,∴ABE ACF ≌,∴BE CF =;BAE CAF ∠=∠,故②符合题意;∵BAE BAC CAF BAC ∠−∠=∠−∠,∴12∠=∠;故①符合题意;∵ABE ACF ≌∴B C ∠=∠,AB AC =,又∵BAC CAB ∠=∠∴ACN ABM ≌,故③符合题意;∴AM AN =,∴MC BN =,∵,B C MDC BDN ∠=∠∠=∠, ∴MDC NDB ≌,∴CD DB =,∴CD DN =不能证明成立,故④不符合题意.故选:B .【点睛】本题考查三角形全等的判定方法和三角形全等的性质,难度适中.9. 已知AOB ∠,下面是“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图痕迹.该尺规作图的依据是( )A. SASB. SSSC. AASD. ASA【答案】B【解析】 【分析】本题主要考查了尺规作图作一个角等于已知角、全等三角形判定等知识点,掌握尺规作图作一个角等于已知角的作法成为解题的关键.根据“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图痕迹,结合全等三角形的判定定理即可解答.【详解】解:由题意可知,“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图的依据是SSS .故选:B .10. 如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AB AC >,下列结论正确的是( )A. AB AD CB CD −>−B. AB AD CB CD −=−C. AB AD CB CD −<−D. AB AD −与CB CD −的大小关系不确定【答案】A【解析】 【分析】先通过在AB 上截取AE =AD ,得到一对全等三角形,利用全等三角形的性质得到对应边相等,再利用三角形的三边关系和等量代换即可得到A 选项正确.【详解】解:如图,在AB 上取AE AD =,对角线AC 平分BAD ∠,BAC DAC ∴∠=∠,在ACD ∆和ACE ∆中,的AD AE BAC DAC AC AC = ∠=∠ =, ()ACD ACE SAS ∴∆≅∆,CD CE ∴=,BE CB CE >− ,AB AD CB CD ∴−>−.故选:A .【点睛】本题考查了全等三角形的判定与性质、角平分线的定义和三角形的三边关系,要求学生能根据已知条件做出辅助线构造全等三角形,并能根据全等三角形的性质得到不同线段之间的关系,利用三角形三边关系判断大小,解决本题的关键是牢记概念和公式,正确作辅助线构造全等三角形等.二、填空题11. 若正多边形的一个外角为60°,则这个正多边形的边数是______.【答案】六##6【解析】【分析】本题考查了多边形的外角和,熟练掌握任意多边形的外角和都是360度是解答本题的关键.根据任意多边形的外角和都是360度求解即可.【详解】解:360606°÷°=.故答案为:六.12. 四条长度分别为2cm ,5cm ,8cm ,9cm 的线段,任选三条组成一个三角形,可以组成的三角形的个数是___________个.【答案】2【解析】【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【详解】解:四条木棒的所有组合:2,5,8和2,5,9和5,8,9和2,8,9;∵2+5=7<8,∴2,5,8不能组成三角形;∵2+5=7<9,∴2,5,9不能组成三角形;∵5+8=13>9,∴5,8,9能组成三角形;∵2+8=10>9,∴2,8,9能组成三角形.∴ 5,8,9和2,8,9能组成三角形.只有2个三角形.故答案是:2.【点睛】此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.13. 如图,在ABC 中,AD BC ⊥,AE 平分BAC ∠,若140∠=°,230∠=°,则B ∠=______.【答案】40°##40度【解析】【分析】本题考查了三角形的角平分线,高线的定义;由AE 平分BAC ∠,可得角相等,由140∠=°,230∠=°,可求得EAD ∠的度数,在直角三角形ABD 在利用两锐角互余可求得答案.【详解】解:AE 平分BAC ∠12EAD ∴∠=∠+∠,12403010EAD ∴∠=∠−∠=°−°=°,Rt ABD 中,9090401040BBAD ∠=°−∠=°−°−°=°. 故答案为:40°.14. 如图,BE 平分∠ABC ,CE 平分外角∠ACD ,若∠A =52°,则∠E 的度数为_____.【答案】26°【解析】【分析】根据三角形的外角等于和它不相邻的两个内角的和即可得答案.【详解】∵BE 平分∠ABC ,CE 平分外角∠ACD ,∴∠EBC =12∠ABC ,∠ECD =12∠ACD , ∴∠E =∠ECD ﹣∠EBC =12(∠ACD ﹣∠ABC ) ∵∠ACD-∠ABC=∠A ,∴∠E =12∠A =12×52°=26° 故答案为26°【点睛】本题考查三角形外角性质,三角形的一个外角,等于和它不相邻的两个内角的和;熟练掌握外角性质是解题关键.15. 如图1,123456∠+∠+∠+∠+∠+∠为m 度,如图2,123456∠+∠+∠+∠+∠+∠为n 度,则m n −=__________.【答案】0【解析】【分析】将图1原六边形分成两个三角形和一个四边形可得到m 的值,将图2原六边形分成四个三角形可得到n 的值,从而得到答案.【详解】解:如图1,将原六边形分成两个三角形和一个四边形,,1234562180360720m ∴°=∠+∠+∠+∠+∠+∠=×°+°=°,如图2,将原六边形分成四个三角形,,∴°=∠+∠+∠+∠+∠+∠=×°=°,1234564180720n∴==,m n720∴−=,m n故答案为:0.【点睛】本题考查了多边形的内角和,此类问题通常连接多边形的顶点,将多边形分割成四边形和三角形,通过计算四边形和三角形的内角和,求得多边形的内角和.16. 如图,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③ ACN≌ ABM;④CD=DN.其中符合题意结论的序号是_____.【答案】①②③【解析】【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【详解】∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴△ACN≌△ABM(ASA),即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE-∠BAC,∠2=∠CAF-∠BAC,∴∠1=∠2,即结论①正确;∴△AEM ≌△AFN (ASA ),∴AM =AN ,∴CM =BN ,∵∠CDM =∠BDN ,∠C =∠B ,∴△CDM ≌△BDN ,∴CD =BD ,无法判断CD =DN ,故④错误,∴题中正确的结论应该是①②③.故答案为:①②③.【点睛】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.三、解答题17. 如图,已知点D ,E 分别AB ,AC 上,B C ∠=∠,DC BE =,求证:ABE ACD △△≌.【答案】见解析【解析】【分析】本题考查了全等三角形的判定,根据已知条件选择恰当的判定方法是解题的关键.【详解】解:在ABE 和ACD 中,B C A A BE DC ∠=∠ ∠=∠ =, ∴()AAS ABE ACD ≌.18. 如图,请你仅用无刻度直尺作图.在(1)在图①中,画出三角形AB 边上的中线CD ;(2)在图②中,找一格点D ,使得ABC CDA △△≌.【答案】(1)见解析 (2)见解析【解析】【分析】(1)如图,连接CD 即可;(2)按如图所示,找到点D ,连接AD CD ,即可.【小问1详解】【小问2详解】如图,CDA 即为所求;【点睛】本题考查了作图,三角形中线的性质、全等三角形的判定方法,掌握中线的性质及全等三角形判定的方法是关键.19. (1)在ABC 中,ABC ∠的角平分线和ACB ∠的角平分线交于点P ,如图1,试猜想P ∠与A ∠的关系,直接写出结论___________:(不必写过程)(2)在ABC 中,一个外角ACE ∠的角平分线和一个内角ABC ∠的角平分线交于点P ,如图2,试猜想P ∠与A ∠的关系,直接写出结论____________;(不必写过程) (3)在ABC 中,两个外角EBC ∠的角平分线和FCB ∠的角平分线交于点P ,如图3,试猜想P ∠与A ∠的关系,直接写出结论_________,并予以证明.【答案】(1)1902P A∠=°+∠;(2)12P A∠=∠;(3)1902P A∠=°−∠【解析】【分析】(1)根据三角形的内角和定理表示出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后根据三角形的内角和定理列式整理即可;(2)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,再根据角平分线的定义可得∠PBC=12∠ABC,∠PCE=12∠ACE,然后整理即可得证;(3)根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠PBC+∠PCB,然后利用三角形的内角和定理列式整理即可得解.【详解】解:(1)1902P A ∠=°+∠;理由:在△ABC中,∠ABC+∠ACB=180°-∠A,∵点P为角平分线的交点,∴1=2PBC ABC∠∠,1=2PCB ACB∠∠,∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A,在△PBC中,∠P=180°-(90°-12∠A)=90°+12∠A;故答案为:1902P A ∠=°+∠;(2)12P A ∠=∠.理由:由三角形的外角性质得,∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,∵外角∠ACE的角平分线和内角∠ABC的角平分线交于点P,∴∠PBC=12∠ABC,∠PCE=12∠ACE,∴12(∠A+∠ABC)=∠P+12∠ABC,∴∠P=12∠A;(3)1902P A ∠=°−∠; 证明: 外角EBC ∠的角平分线和FCB ∠的角平分线交于点P ,11()()22PBC PCB A ACB A ABC ∴∠+∠=∠+∠+∠+∠ 111()90222A A ABC ACB A =∠+∠+∠+∠=∠+° 在PBC ∆中,11180909022P A A ∠=°−∠+°=°−∠. 故答案为:1902P A ∠=°−∠; 【点睛】本题考查的是三角形内角和定理,角平分线的定义和三角形外角的性质,熟记性质与概念是解题的关键,要注意整体思想的利用.20. 如图,在ABC 中,AE 为边BC 上的高,点D 为边BC 上的一点,连接AD .(1)当AD 为边BC 上的中线时,若6AE =,ABC 的面积为30,求CD 的长;(2)当AD 为BAC ∠的角平分线时,若6636C B ∠=°∠=°,,求DAE ∠的度数.【答案】(1)5 (2)15°【解析】【分析】本题考查了用三角形中线求三角形面积、三角形外角性质、直角三角形性质.(1)利用三角形中线定义及三角形面积求出CD 长;(2)利用三角形内角和先求BAC ∠,再用外角性质和直角三角形性质求出DAE ∠.【小问1详解】∵AD 为边BC 上的中线, ∴1152ADC ABC S S == , ∵AE 为边BC 上的高, ∴1152DC AE ××=, ∴5CD =.【小问2详解】∵6636C B ∠=°∠=°,∴18078BAC B C =°−−=°∠∠∠,∵AD 为BAC ∠的角平分线,∴39BAD DAC ∠=∠=°,∴393675ADC BAD B ∠=∠+∠=°+°=°,∵AE BC ⊥,∴90AED ∠=°,∴9015DAE ADC ∠=°−∠=°21. 如图,点A ,D ,B ,E 在同一直线上,AC =DF ,AD =BE ,BC =EF .求证:AC ∥DF .【答案】详见解析【解析】【分析】根据等式的性质得出AB =DE ,利用SSS 证明△ABC 与△DEF 全等,进而解答即可.【详解】证明:∵AD =BE ,∴AD +DB =BE +DB ,∴AB =DE ,在△ABC 与△DEF 中,AB DE AC DF BC EF = = =,∴△ABC ≌△DEF (SSS ),∴∠A =∠FDE ,∴AC ∥DF .【点睛】此题主要考查了平行线的性质和判定,全等三角形的判定和性质,做题的关键是找出证三角形全等的条件.22. 如图,在ACB △中,90ACB ∠=°,CD AB ⊥于D .(1)求证:ACD B ∠=∠;(2)若AF 平分CAB ∠分别交CD 、BC 于E 、F ,求证:CEF CFE ∠=∠.【答案】(1)见解析 (2)见解析【解析】【分析】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中. (1)由于ACD ∠与B ∠都是BCD ∠的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出9090CFA CAF AED DAE ∠=°−∠∠=°−∠,,再根据角平分线的定义得出CAF DAE ∠=∠,然后由对顶角相等的性质,等量代换即可证明CEF CFE ∠=∠.【小问1详解】证明:90ACB ∠=° ,CD AB ⊥于D ,90ACD BCD ∴∠+∠=°,90B BCD ∠+∠=°,ACD B ∴∠=∠;【小问2详解】证明:在Rt AFC △中,90CFA CAF ∠=°−∠,同理Rt AED △中,90AED DAE ∠=°−∠.又AF 平分CAB ∠,CAF DAE ∴∠=∠,AED CFE ∴∠=∠,又CEF AED ∠=∠ ,CEF CFE ∴∠=∠.23. 如图,AC ,BD 相交于点O ,OB OD =,A C ∠=∠,求证:△≌△AOB COD .在【答案】见解答【解析】【分析】本题主要考查全等三角形的判定,熟练掌握判定方法是解题的关键.根据全等三角形的判定方法证明即可.【详解】证明:AOB 和COD △中,A C AOB COD OB OD∠=∠ ∠=∠ = , (AAS)AOB COD ∴≌△△.24. 材料阅读:如图①所示的图形,像我们常见的学习用品—— 圆规.我们不妨把这样图形叫做 “规形图 ”.解决问题:(1)观察“规形图 ”,试探究BDC 与A B C ∠∠∠,,之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下两个问题:Ⅰ.如图② ,把一块三角尺 DEF 放置在ABC 上,使三角尺的两条直角边DE DF ,恰好经过点B C ,,若40A ∠=°,则ABD ACD +=∠∠ ° . Ⅱ.如图③ ,BD 平分ABP CD ∠,平分ACP ∠,若40130A BPC ∠=°∠=°,,求BDC ∠的度数.【答案】(1) BDC A B C ∠=∠+∠+∠,理由见解析(2)Ⅰ.50;Ⅱ. 85°【解析】【分析】本题考查的是三角形内角和定理,三角形外角性质以及角平分线的定义得运用.根据题意连接AD 并延长至点 F ,利用三角形外角性质即可得出答案.Ⅰ.由(1)可知BDC A B C ∠=∠+∠+∠,因为40A ∠=°,90D ∠=︒,所以904050ABD ACD ∠+∠=°−°=°;Ⅱ.由(1)的已知条件,由于BD 平分ABP CD ∠,平分ACP ∠,即可得出在1452ABD ACD ABP ACP ∠+∠=∠+∠=°(),因此4540=85BDC ∠=°+°°. 【小问1详解】 解:如图连接AD 并延长至点 F , 根据外角的性质,可得 BDF BAD B ∠=∠+∠, CDF C CAD ∠=∠+∠, 又∵BDC BDF CDF BAC BAD CAD ∠=∠+∠∠=∠+∠,, ∴BDC BAC B C ∠=∠+∠+∠;【小问2详解】解:Ⅰ. 由(1)可得,BDC ABD ACD A ∠=∠+∠+∠; 又∵4090A D ∠=°∠=°,, ∴9040=50ABD ACD ∠+∠=°−°°, 故答案为:50; Ⅱ.由(1),可得BPC ABP ACP BDC BAC ABD ACD ∠=∠+∠+∠∠=∠+∠+∠,, ∴1304090ABP ACP BPC BAC ∠+∠=∠−∠=°−°=°, 又∵BD 平分ABP CD ∠,平分ACP ∠, ∴1452ABD ACD ABP ACP ∠+∠=∠+∠=°(), ∴4540=85BDC ∠=°+°°.。
八年级上册英语第一次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个单词的发音与其他选项不同?A. catB. dogC. fishD. bird2. 选择正确的介词填空:“He is _______ the school.”A. inB. onC. atD. to3.下列哪个单词是过去式?A. walkB. walkedC. walkingD. walks4. 选择正确的代词填空:“_______ is my book.”A. ThisB. TheseC. ThatD. Those5. 选择正确的疑问词填空:“_______ do you go to school?”A. WhoB. WhatC. WhereD. When二、判断题(每题1分,共5分)6. “He like apples” 是正确的句子。
()7. “She am a teacher” 是正确的句子。
()8. “They goes to the park every weekend” 是正确的句子。
()9. “I am reading a book” 表示现在进行时态。
()10. “He can’t swim” 表示他现在不想游泳。
()三、填空题(每题1分,共5分)11. My mother is a _______. She works in a hospital.12. I _______ to the library every Saturday.13. _______ you like tea or coffee?14. They _______ a new car last week.15. She _______ her homework every evening.四、简答题(每题2分,共10分)16. What is the past tense of “go”?17. Write a sentence using the future tense with “will”.18. What is the opposite of “big”?19. Write a question us ing “How many”.20. What is the plural form of “child”?五、应用题(每题2分,共10分)21. Translate the following sentence into English: “他们在公园里散步。
八年级英语上册第一次月考试题Unit1-3(满分100分时间90分钟)一、单项选择(20分)( ) 1. ____is “Lucky 52” shown on CCTV-2? Every week.A. How longB. How oftenC. How many timesD. How soon ( ) 2. Don’t get off the bus ____ it stops.A. thenB. soC. becauseD. until( ) 3. It’s too hot. We should ____ the windows ____.A. take, openB. keep, openingC. keep, openD. keep, opened ( ) 4. ____ was your last vacation? Exciting.A. HowB. WhenC. WhatD. Where( ) 5. He goes to the movies with his daughter ____.A. once a weekB. one times a weekC. ones a weekD. two times a week( ) 6. Are you feeling ____ now?A. goodB. betterC. wellD. best ( ) 7. Reading in bed ____ eyes.A. is bad forB. is bad atC. is good forD. is good at( ) 8. That’s ____ nice.A. much tooB. too muchC. very muchD. so much ( ) 9. Tony ____ before exams.A. is stress outB. stressed outC. feel stressed outD. is stressed out( ) 10.It’s a good habit ____ breakfast every day.A. hadB. haveC. hasD. to have ( ) 11. I have a sore back. You should _____ down and rest.A. to lieB. lyingC. lieD. lied( ) 12. Where____ he ____ for his next vacation?A. does, leaveB. is, leaveC. is, leavingD. is, leaveing ( ) 13. I want to buy a bike. At last I decided ____ a black one.A. to buyB. buyC. buysD. buying ( ) 14. _____? We’re go ing sightseeing.A. What are you doing?B. Where are you leavingC. Who are you going withD. When are you going( ) 15. Jenny is talking _____ in class. Please tell her to stop.A. a lot ofB. a lotC. lots ofD. a little二、完形填空(15分)Robert is fifteen now. Two and a half years ago he came to the city and __1__ to study in a middle school. He studies hard and __2__ his classmates. And he often helps his friends __3__ lessons. But as he comes from a village, the headmaster who was born in a rich family__4__ him and tries to make excuses to punish (惩罚) him. The boy knows it and takes precautions against (提防) it. One afternoon__5__went to have lunch and he bought __6__. He was reading a book under a big tree while a dog was standing near him. At that moment __7__ came out and saw it. He became angry and said,” Don’t you know we don’t let __8_ feed dogs in the school?” “Yes, I do.” said the boy. “Why have you brought your dog __9__ school, then?” “It’s not my dog.” “Why does it follow you, then?” “You’re following me now, sir,” said the boy, “Can you say you are __10__?”( ) 1. A. begin B. begun C. was beginning D. began( ) 2. A. get on B. gets on wellC. gets on badly withD. get on bad with( ) 3. A. with his B. with theirC. doing hisD. doing their( ) 4. A. is bad to B. is bad forC. is good toD. is good for( ) 5. A. all the students B. all of studentC. the all studentsD. both of the students( ) 6 A. pieces of bread B. a breadC. a piece of breadD. some breads( ) 7. A. the teacher B. the headmasterC. his friendD. his classmate( ) 8. A. somebody B. anybody C. nobody D. none( ) 9. A. to B. for C. at D. in( ) 10. A. my dog B. mine C. the dog D. a dog三、补全对话(10分)Mary: What’s the matter with you, Alex?Alex: _1_____Mary: I’m sorry to hear that. _2_____.Alex: No. But I ate a roast duck (烤鸭)Mary: Oh, that’s too oily (油腻的). _3_____.Alex: I have.Mary: _4____.Alex: He said I had eaten too much fatty food. And he gave me some medicine.Mary: You should take it now. Here’s some medicine.Alex: Thank you.Mary: What advice did he give you?Alex: _5____.四、用方框中所给词语的适当形式填空,有两个多余选项。
人教版八年级上册第一次月考(第1、5 单元)2014.10.17一、积累与运用18分1、下列加横线的字注音和字形全部正确的一项是()A鳖见(pi e )锐不可!^_(d a ng)区企(z 6),邕景(ch o ngB.阻变(se) mn (y i »赤险(lu 6 荒造(mi u)C.理羊(m6)削纲(xu ©沙(qi力要突(sa D雪沸(s i) i溃退(k i)丰功伟迅(j i的防(t )i2.下列词语中有三个错别字,请指出并加以改正。
(3分)庄严肃木神情晃惚不可名状张皇失措以德报怨转弯抹角月明风清禁若寒蝉错别字:__________________________________________________________________3、依次填入下面句子横线处词语恰当的一项是()①人民解放军百万大军,从一千余华里的战线上, --------------- 敌阵,横渡长江。
②一轮红日当天,水面上------------ 一层烟气。
③老妇人--------- 身去拾起那蜡烛头,把那新的一支点着,插在那老地方。
④有一天,两个强盗----------- 了圆明园,一个强盗洗劫,另一个强盗放火。
A、打破、漂着、蹲下、闯进B、冲破、漂着、跪下、冲进C、冲破、浮着、蹲下、闯进D、攻破、浮着、蹲下、闯进4、下列各句加横线的成语使用不正确的一项是()A鬼子们拍打着水追过去,老头子张皇失措,船却走不动,鬼子紧紧追上了他。
B那小船转弯抹角钻进了苇塘的深处C她已经精疲力竭了,又坐在那里休息了好久,也许有一小时。
D和巴特农神庙不一样,这不是一件稀有的,举世无双的作品,这是幻想的某种规模巨大的典范。
5、下列句子没有语病的一句是()A.为满足广大游客的需要,华夏旅行社设计并开通了20余条旅游精品线路B.绿树葱茏,树上的鸟儿大约有一百多只。
C.能否贯彻落实科学发展观,是构建和谐社会、促进经济可持续发展的重要保证。
八年级数学上学期第一次月考试卷满分:100分 考试时间:90分钟一.选择题(每题2分,共20分)1. ★ )A .B .C .D .2. 在平面直角坐标系中, P (2,﹣3)在( ★ )A .第一象限B .第二象限C .第三象限D .第四象限 3. 下列四组线段中能构成直角三角形的是( ★ )A .4,5,6B .8,12,13C .2,3,4D .14. 下列各数中是无理数的是( ★ )A . 2BC .38D .722 5. 在平面直角坐标系中,将点(1,2)向左平移2个单位长度后的点是( ★ )A .(﹣1,2)B .(3,2)C .(1,4)D .(1,0)6. 为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( ★ ) A .0.7米B .0.8米C .0.9米D .1.0米7. 下列各式中计算正确的是( ★ )A .9)9(2-=-B .525±=C 1=-D .2)2(2-=-8. 如果b 的平方根是±1,那么b2017等于( ★ )A .±1B .﹣1C .±2017D .19. 如图,等腰直角三角形ABC 中,∠BAC =900,将△ABP绕点A 逆时针旋转后与△ACP ’重合,若AP =3,则PP ’的长是( ★ )A 、3B 、23C 、32D 、4 10.如图,在Rt △ABC 中,∠ACB =90°,AB =6,以AC 和BC 边向外作等腰直角三角形AFC 和等腰直角三角形BEC .设△BEC 的面积为S 1,△AFC 的面积为S 2,则S 1+S 2=( ★ ) A .4 B .9 C .18 D .36 二.填空题(每题3分,共24分) 11.9的算术平方根是 ★12.点P (1,2)关于x 轴的对称点P ’的坐标是 ★ 13.在 Rt △ABC 中,斜边AB =2,则AB 2+BC 2+AC 2= ★14x 的值很多,请写出一个你喜欢的数 ★15.2的相反数是 ★16.如果P (m +3,2m +4)在y 轴上,那么点P 的坐标是★17.如图,已知圆柱底面圆直径AB =16π,高BC =12,P 为BC 中点,蚂蚁从点A 爬到点P 的最短距离是 ★ 18.例:化简1027+解: ∵752)5()2(22=+=+,102522=⨯∴()=+=+⨯+=+25255222102752+根据上述例题的方法化简625-得 ★ 选择填空的答题卡:1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 15、 16、 17、 18、 三.解答题(56分)19.(60( 3.14)3π-20.(6分)化简:21.(6分)化简:21()22.(6分)已知x =,y = 求x xy y 22-+的值.23.(7分)(7分)如图,在68⨯网格中,A 、B 、C 三点都在小正方形的顶点上.(1)(1分)线段AB 的长度是 理数(填“有”或“无”);(2)(2分)写出线段AC的长度:;(3)(4分)你认为△ABC 直角三角形(填“是”或“不是”),请根据你所学的知识解释你的判断.24.(7分)如图,在平直角坐标系中,直线l是第一、三象限的角平分线.(1)实验探究(2分):观察图形易知A(2,0)关于直线l的对称点A’坐标为(0,2).请在图中分别标明点B(5,3)和点C(-2,5)关于直线l的对称点B’和C’的位置,并写出它们的坐标:B’,C’.(2)归纳发现(2分):结合图形,观察以上三组点的坐标特征,你会发现平面内任意一点P(m,n)关于第一、三象限的角平分线l的对称点P’的坐标为.(3)知识延伸(3分):已知点D(1,-3)和点E(-1,-4),试在直线l上确定一点Q,使得QD+QE的值最小.要求在图中标明点Q的位置,此QD+QE的最小值为.25.(8分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(4,0),点C的坐标为(0,6),点B在第一象限内,点P从原点出发,沿O-A-B-C-O的路线运动.(1)(2分)写出点B的坐标:;(2)(2分)计算OB的长度:;(3)(4分)当线段OP的长度等于5时,求出点P的坐标.26.(10分)平面直角坐标系中,经过点A(0,6)的直线a垂直于y轴,B(8,6)是直线a上的一点.点P从点B出发,以2cm/秒的速度沿直线a向左移动,同时点Q从原点出发,以1cm/秒的速度沿x轴向右移动.(1)(4分)如图①,则经过几秒后PQ平行于y轴?(2)(6分)如图②,当△OBP成为等腰三角形时,求点P的坐标.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!八年级(上)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有( )A.1个B.2个C.3个D.4个2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系( )A.平行B.垂直C.平行或垂直D.不确定3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有( )A.5个B.3个C.4个D.6个4.在下列给出的条件中,不能判定两个三角形全等的是( )A.两边一角分别相等B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为( )....三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P 到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.为圆心,以大于DE,则∠ 八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有( )A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系( )A.平行B.垂直C.平行或垂直D.不确定【考点】轴对称的性质.【分析】点P与点Q关于直线m成轴对称,即线段PQ关于直线m成轴对称;根据轴对称的性质,有直线m垂直平分PQ.【解答】解:点P和点Q关于直线m成轴对称,则直线m和线段QP的位置关系是:直线m垂直平分PQ.故选:B.【点评】此题考查了对称轴的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有( )A.5个B.3个C.4个D.6个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念可知:①两个点;②线段;③角;④长方形;⑤两条相交直线一定是轴对称图形;⑥三角形不一定是轴对称图形.故选A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.在下列给出的条件中,不能判定两个三角形全等的是( )A.两边一角分别相等B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等【考点】全等三角形的判定.【分析】根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL分别进行分析.【解答】解:A、两边一角分别相等的两个三角形不一定全等,故此选项符合题意;B、两角一边分别相等可用AAS、ASA定理判定全等,故此选项不合题意;C、两角一边对应相等,可用SAS或AAS定理判定全等,故此选项不合题意;D、三边分别相等可用SSS定理判定全等,故此选项不合题意;故选:A.【点评】本题考查三角形全等的判定方法,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为( )A.5B.10C.15D.20【考点】轴对称的性质.【分析】根据题意,观察可得:△ABC关于AD轴对称,且图中阴影部分的面积为△ABC面积的一半,先求出△ABC的面积,阴影部分的面积就可以得到.【解答】解:根据题意,阴影部分的面积为三角形面积的一半,∵S=×BC•AD=×4×5=10,△ABC∴阴影部分面积=×10=5.故选A.【点评】考查了轴对称的性质,根据轴对称得到阴影部分面积是解题的关键.8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的( )A.B.C.D.【考点】剪纸问题.【专题】压轴题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.【点评】本题主要考查学生的动手能力及空间想象能力.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= 90° .【考点】轴对称的性质.【分析】根据成轴对称的两个图形全等求得未知角即可.【解答】解:∵△ABC与△A′B′C′关于直线L对称,∴△ABC≌△A′B′C′,∴∠B=∠B′=50°,∵∠A=40°,∴∠C=180°﹣∠B﹣∠A=180°﹣50°﹣40°=90°,故答案为:90°.【点评】本题考查轴对称的性质,属于基础题,注意掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= 3 .【考点】全等三角形的性质.【分析】根据全等三角形对应边相等可得BC=EF,再根据三角形的周长的定义列式计算即可得解.【解答】解:∵△ABC≌△DEF,∴BC=EF=4,∵△ABC的周长为12,AB=5,∴AC=12﹣5﹣4=3.故答案为:3.【点评】本题考查了全等三角形的性质,三角形的周长的定义,熟记性质是解题的关键.中,,∵,,故答案为:5或10.【点评】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,A AS,SAS,SSS,HL.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.【考点】作图-轴对称变换.【分析】过点B作BD⊥AC于点D,延长BD至点B′,使DB′=DB,连接AB′,CB′即可.【解答】解:如图,△A′B′C′即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P 到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)【考点】作图—应用与设计作图.【分析】根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.【解答】解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P都是所求的点.1【点评】此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力. 22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.【考点】全等三角形的判定与性质.【分析】根据HL推出Rt△BDE≌Rt△ADC,推出∠C=∠BED=75°,根据等腰三角形的性质和三角形的内角和定理求出∠ABD=∠BAD=45°,∠EBD=15°,即可求出答案.【解答】解:∵AD是△ABC一边上的高,∴∠BDE=∠ADC=90°,在Rt△BDE和Rt△ADC中,,∴Rt△BDE≌Rt△ADC(HL),∴∠C=∠BED=75°,∵∠BDE=90°,AD=BD,∴∠ABD=∠BAD=45°,∠EBD=15°,∴∠ABE=∠ABD﹣∠EBD=45°﹣15°=30°.【点评】本题考查了全等三角形的性质和判定,三角形内角和定理,等腰三角形的性质的应用,解此题的关键是推出△BDE≌△ADC,注意:全等三角形的对应边相等,对应角相等.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)利用“边边边”求出△ABC和△ADE全等,根据全等三角形对应角相等可得∠BAC=∠D AE,然后都减去∠CAD即可得证;(2)根据全等三角形对应角相等可得∠B=∠ADE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EDC=∠BAD,从而得解.【解答】(1)证明:在△ABC和△ADE中,,∴△ABC≌△ADE(SSS),∴∠BAC=∠DAE,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即:∠EAC=∠BAD;(2)解:∵△ABC≌△ADE,∴∠B=∠ADE,由三角形的外角性质得,∠ADE+∠EDC=∠BAD+∠B,∴∠EDC=∠BAD,∵∠BAD=42°,∴∠EDC=42°.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:为圆心,以大于DE ,∴∠MOP=∠NOP,∴OP平分∠AOB.【点评】本题考查了用刻度尺作角平分线的方法,全等三角形的判定与性质,难度不大.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【考点】全等三角形的判定与性质.【分析】(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,以及三角形的内角和定理,即可证得∠DHF=∠CBF=60°,从而求解.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.【点评】本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,,则∠ 中,,中,,【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.。
八年级第一次月考一.选择题(共8小题共24分)1.下列运算中,计算结果正确的是()A.m﹣(m+1)=﹣1 B.(2m)2=2m2C.m3•m2=m6D.m3+m2=m52.有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1B.2C.3D.43.(2012•巴中)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线4.设△ABC的三边长分别为a、b、c,其中a、b满足|a+b﹣4|+(a﹣b+2)2=0,则第三边的长c的取值范围是()A.3<c<5 B.2<c<3 C.1<c<4 D.2<c<45.(2014•宁津县模拟)如图,已知AB∥CD,若∠A=15°,∠E=25°,则∠C等于()A.15°B.25°C.35°D.40°6.三角形的三个外角之比为2:2:3,则此三角形为()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形7.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()度.A.450 B.540 C.630 D.7208.(2014•绵阳)下列计算正确的是()A.a2•a=a2B.a2÷a=a C.a2+a=a3D.a2﹣a=a二.填空题(共6小题)9.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是_________.10.计算:(a3)2+a5的结果是_________.11.若三角形的两边长分别为3和5,且周长为奇数,则第三边可以是_________(只填符合条件的一个即可).12.(小明同学把一个含有45°角的直角三角板放在如图的两条平行线m,n上,测得∠α=120°,则∠β的度数是_________.13.如图,已知△ABC中,∠B的平分线与∠C的外角平分线相交于点P,若∠A=70°,则∠P=_________.14.若把一个多边形剪去一个角,剩余部分的内角和为1440°,那么原多边形有_________条边.三.解答题(共11小题)15.计算:(1)a2•(﹣a)3•(﹣a4);(2)(x+y)3•(x+y)5;(3)(a+b)2m•(a+b)m﹣1•(a+b)2(m+1).16.已知:162×43×26=22x﹣1,[(10)2]y=1012,求2x+y的值.17.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.18.证明:三角形的一个外角等于和它不相邻的两个内角和.19.(2013•邵阳)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.20.(2003•泸州)如图,△ABC是某村一遍若干亩土地的示意图,在党的“十六大”精神的指导下,为进一步加大农村经济结构调整的力度,某村决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供两种分法.要求:画出图形,并简要说明分法.21.如图,已知AB∥CD,∠A=100°,∠C=75°,∠1:∠2=5:7,求∠B的度数.22.如图,在△ABC中,点D、E分别为BC、AD的中点,若S△ABC=1,求S△ABE.23.如图,求∠A+∠B+∠C+∠D+∠E的度数和.24.如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.25.(2011•青海)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:_________.2014年10月06日ywaizwt的初中数学组卷参考答案与试题解析一.选择题(共8小题)1.(2014•攀枝花)下列运算中,计算结果正确的是()A.m﹣(m+1)=﹣1 B.(2m)2=2m2C.m3•m2=m6D.m3+m2=m5考点:幂的乘方与积的乘方;合并同类项;去括号与添括号;同底数幂的乘法.分析:根据合并同类项的法则,同底数幂的乘法与积的乘方的知识求解即可求得答案.解答:解:A、m﹣(m+1)=﹣1,故A选项正确;B、(2m)2=4m2,故B选项错误;C、m3•m2=m5,故C选项错误;D、m3+m2,不是同类项不能合并,故D选项错误.故选:A.点评:此题考查了合并同类项的法则,同底数幂的乘法与积的乘方的知识,解题要注意细心.2.(2013•南通)有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1B.2C.3D.4考点:三角形三边关系.分析:从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.解答:解:四条木棒的所有组合:3,6,8和3,6,9和6,8,9和3,8,9;只有3,6,8和6,8,9;3,8,9能组成三角形.故选:C.点评:此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.3.(2012•巴中)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线考点:三角形的面积;三角形的角平分线、中线和高.专题:应用题.分析:根据等底等高的三角形的面积相等解答.解答:解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.点评:本题考查了三角形的面积,主要利用了“三角形的中线把三角形分成两个等底同高的三角形”的知识,本知识点是中学阶段解三角形的面积经常使用,一定要熟练掌握并灵活应用.4.设△ABC的三边长分别为a、b、c,其中a、b满足|a+b﹣4|+(a﹣b+2)2=0,则第三边的长c的取值范围是()A.3<c<5 B.2<c<3 C.1<c<4 D.2<c<4考点:三角形三边关系;非负数的性质:绝对值;非负数的性质:偶次方.分析:首先根据方程及非负数的性质求得a,b的值,再根据三角形三边关系:两边之和大于第三边,两边之差小于第三边来确定c的取值范围即可.解答:解:∵a、b满足|a+b﹣4|+(a﹣b+2)2=0,|a+b﹣4|≥0,(a﹣b+2)2≥0.∴a+b﹣4=0,a﹣b+2=0.∴a=1,b=3.∴c的取值范围为:3﹣1<c<3+1.即:c的取值范围为:2<c<4.故选D.点评:此题主要考查学生对三角形三边关系及非负数的性质的理解及运用能力.5.(2014•宁津县模拟)如图,已知AB∥CD,若∠A=15°,∠E=25°,则∠C等于()A.15°B.25°C.35°D.40°考点:平行线的性质;三角形的外角性质.专题:证明题.分析:根据三角形外角性质求出∠EFB,根据平行线的性质得出∠C=∠EFB,代入求出即可.解答:解:∵∠A=15°,∠E=25°,∴∠EFB=∠A+∠E=40°,∵AB∥CD,∴∠C=∠EFB=40°,故选D.点评:本题考查了平行线性质和三角形外角性质,能得出∠C=∠EFB是解此题的关键.6.三角形的三个外角之比为2:2:3,则此三角形为()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形考点:三角形的外角性质;三角形内角和定理.分析:因为三角形的三个外角之比为2:2:3,可以设一个外角是2x°,那么其他两个外角一定是2x°,3x°,根据三角形外角和定理,三个外角的和是360°,就可列方程求解.解答:解:设一个外角是2x°,那么其他两个外角一定是2x°,3x°.根据题意列方程,得2x°+2x°+3x°=360°,解得x=(51)°,则三个外角分别是:度,度,度.与这三角相邻的三个内角分别是:度,度,度.因为都是锐角,所以此三角形是锐角三角形.故选A.点评:本题考查三角形外角的性质及三角形的外角和定理,实际上证明了三角形的外角和是360°,解答的关键是沟通外角和内角的关系.7.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()度.A.450 B.540 C.630 D.720考点:三角形的外角性质;多边形内角与外角.专题:计算题.分析:根据题意,画出图象,由图可知∠3+∠4=∠8+∠9,因为五边形内角和为540°,从而得出答案.解答:解:如图∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7,=∠1+∠2+∠8+∠9+∠5+∠6+∠7,=五边形的内角和=540°,故选B.点评:本题考查了五边形内角和,同时需要考生认真通过图形获取信息,通过连线构造五边形从而得出结论.8.(2014•绵阳)下列计算正确的是()A.a2•a=a2B.a2÷a=a C.a2+a=a3D.a2﹣a=a考点:同底数幂的除法;合并同类项;同底数幂的乘法.分析:根据合并同类项的法则,同底数幂的乘法与除法的知识求解即可求得答案.解答:解:A、a2a=a3,故A选项错误;B、a2÷a=a,故B选项正确;C、a2+a=a3,不是同类项不能计算,故C选项错误;D、a2﹣a=a,不是同类项不能计算,故D选项错误;故选:B.点评:本题主要考查合并同类项的法则,同底数幂的乘法与除法的知识,熟记法则是解题的关键.二.填空题(共6小题)9.(2006•舟山)如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是三角形稳定性.考点:三角形的稳定性.分析:将其固定,显然是运用了三角形的稳定性.解答:解:一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.点评:注意能够运用数学知识解释生活中的现象,考查三角形的稳定性.10.(2006•杭州)计算:(a3)2+a5的结果是a6+a5.考点:幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘计算即可.解答:解:(a3)2+a5=a3×2+a5=a6+a5.点评:本题考查了幂的乘方的性质,熟练掌握运算性质是解题的关键,要注意不是同类项的不能合并.11.(2010•漳州)若三角形的两边长分别为3和5,且周长为奇数,则第三边可以是3或5或7(其中一个即可)(只填符合条件的一个即可).考点:三角形三边关系.专题:开放型.分析:根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围;再根据已知的两边和是8,即为偶数,结合周长为奇数,则第三边应是奇数,即可求解.解答:解:根据三角形的三边关系,得第三边应大于5﹣3=2,而小于5+3=8.又三角形的两边长分别为3和5,且周长为奇数,所以第三边应是奇数,则第三边是3或5或7(任意填其中一个即可).点评:考查了三角形的三边关系,关键是结合已知的两边和周长,分析出第三边应满足的条件.12.(2014•开封二模)小明同学把一个含有45°角的直角三角板放在如图的两条平行线m,n上,测得∠α=120°,则∠β的度数是75°.考点:平行线的性质;三角形的外角性质.分析:根据两直线平行,同位角相等可得∠1=∠α,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠2,然后根据对顶角相等可得∠β=∠2.解答:解:∵m∥n,∴∠1=∠α=120°,∴∠2=∠1﹣45°=120°﹣45°=75°,∴∠β=∠2=75°.故答案为:75°.点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图,理清各角度之间的关系是解题的关键.13.如图,已知△ABC中,∠B的平分线与∠C的外角平分线相交于点P,若∠A=70°,则∠P=35°.考点:三角形的外角性质;三角形内角和定理.分析:由三角形外角性质得,∠ACD=∠A+∠ABC=70°+∠ABC;角平分线的定义,求得∠DCP=∠ACD=(70°+∠ABC)=35°+∠ABC,∠CBP=∠ABC;再由三角形外角性质得,∠DCP=∠CBP+∠P即35°+∠ABC=∠ABC+∠P,求得∠P=35°.解答:解:∵∠ACD是△ABC的外角∴∠ACD=∠A+∠ABC=70°+∠ABC∵CP是∠ACD的平分线∴∠DCP=∠ACD=(70°+∠ABC)=35°+∠ABC∵BP是∠ABC的平分线∴∠CBP=∠ABC∵∠DCP是△BCP的外角∴∠DCP=∠CBP+∠P35°+∠ABC=∠ABC+∠P∴∠P=35°.故答案为:35°.点评:考查三角形外角性质,角平分线的定义及三角形内角和定理.14.若把一个多边形剪去一个角,剩余部分的内角和为1440°,那么原多边形有9、10或11条边.考点:多边形内角与外角.分析:根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,少1条边或相等可得答案.解答:解:设新多边形是n边形,由多边形内角和公式得(n﹣2)180°=1440°,解得n=10,原多边形是10﹣1=9,10+1=11,故答案为:9、10或11.点评:本题考查了多边形的内角和定理及剪去一个角的方法,得出剩下的部分的形状可能与原多边形边数相等或比原多边形边数多1或少1是解题的关键.三.解答题(共11小题)15.计算:(1)a2•(﹣a)3•(﹣a 4);(2)(x+y)3•(x+y)5;(3)(a+b)2m•(a+b)m ﹣1•(a+b)2(m+1).考点:同底数幂的乘法.分析:(1)根据乘方的特点,先化成同底数的,再根据同底数幂的乘法,底数不变指数相加,可得答案;(2)根据同底数幂的乘法,底数不变指数相加,可得答案;(3)根据同底数幂的乘法,底数不变指数相加,可得答案;解答:解:(1)原式=a2+3+4=a9;(2)原式=(x+y)3+5=(x+y)8;(3)y原式=(a+b)2m+(m﹣1)+2(m+1)=(a+b)5m+1.点评:本题考察了同底数幂的乘法,(1)先化成同底数的,再根据底数不变指数相加得出答案.16.已知:162×43×26=22x﹣1,[(10)2]y=1012,求2x+y的值.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:运用同底数幂的乘法和幂的乘方的性质,求x,y的值,再代入求2x+y的值.解答:解:∵162×43×26=22x﹣1,[(10)2]y=1012,∴28×26×26=22x﹣1,102y=1012,∴2x﹣1=20,2y=12解得x=,y=6.∴2x+y=2×+6=21+6=27.故答案为27.点评:本题主要考查幂的乘方和同底数幂的乘法,熟练掌握运算性质是解题的关键.17.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据同底数幂的乘法、幂的乘方与积的乘方运算法则进行运算即可.解答:解:(1)原式=(×10)1000×(﹣10)+(×)2013×=﹣10+=﹣;(2)原式=﹣(×)99××=﹣.点评:本题考查了幂的乘方与积的乘方,解答本题的关键是掌握幂的乘方与积的乘方运算法则.18.证明:三角形的一个外角等于和它不相邻的两个内角和.考点:三角形的外角性质;三角形内角和定理.专题:证明题.分析:写出已知、求证,然后根据三角形的内角和定理以及平角等于180°列式整理即可得证.解答:已知:如图,∠1是△ABC的一个外角,求证:∠1=∠A+∠B,证明:在△ABC中,∠A+∠B+∠2=180°,∵∠1+∠2=180°,∴∠1=∠A+∠B.点评:本题主要考查了三角形外角性质的证明,是文字叙述性命题,要注意证明格式,写出已知、求证,然后写出证明推理步骤.19.(2013•邵阳)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.考点:平行线的判定;角平分线的定义;三角形内角和定理.专题:证明题.分析:(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.解答:(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF(内错角相等,两直线平行);(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.点评:此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.20.(2003•泸州)如图,△ABC是某村一遍若干亩土地的示意图,在党的“十六大”精神的指导下,为进一步加大农村经济结构调整的力度,某村决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供两种分法.要求:画出图形,并简要说明分法.考点:作图—基本作图;三角形.专题:操作型.分析:根据题意,就是要将△ABC分为四等份,即面积相等的四份,一种是取三边的中点,两两相连,并与三角形的另一个顶点和其对边上的中点相连,所得的四个三角形的面积互相相等;另一种,在一边上取四等分点,分别连接这条边对应的顶点和这三个点,可知四个三角形等底同高,故面积相等.解答:解:第一种是取各边的中点,分别取,AB.BC,AC的中点D,E,Y,连接DE,EY和AE,所形成的四个三角形面积相等(如下图).第二种,在BC边上取四等分点D,E,F,分别连接AD,AE,AF,所形成的四个三角形面积相等(如下图).点评:本题主要考查的是三角形的中点的性质和等分点的性质.21.如图,已知AB∥CD,∠A=100°,∠C=75°,∠1:∠2=5:7,求∠B的度数.考点:平行线的性质;三角形内角和定理;三角形的外角性质.分析:设∠1=5x°,∠2=7x°,在△ABE中,∠B=180°﹣∠A﹣∠2=80°﹣7x°,在△CDE中,∠CDE=180°﹣∠C﹣∠1﹣∠2=105°﹣12x°,根据平行线的性质得出∠B=∠CDE,代入得出方程80°﹣7x°=105°﹣12x°,求出即可.解答:解:设∠1=5x°,∠2=7x°,在△ABE中,∠B=180°﹣∠A﹣∠2=180°﹣100°﹣7x°=80°﹣7x°,在△CDE中,∠CDE=180°﹣∠C﹣∠1﹣∠2=180°﹣75°﹣5x°﹣7x°=105°﹣12x°,∵AB∥CD,∴∠B=∠CDE,∴80°﹣7x°=105°﹣12x°,解得:x=5,∴∠B=80°﹣7x°=45°.点评:本题考查了三角形的内角和定理,平行线的性质的应用,关键是能根据题意得出方程.22.如图,在△ABC中,点D、E分别为BC、AD的中点,若S△ABC=1,求S△ABE.考点:三角形的面积.分析:根据三角形的中线平分三角形面积进而得出答案.解答:解:∵点D、E分别是BC、AD边的中点,∴S△ABD =S△ABC,S△ABE =S△ABD,∴S△ABE =S△ABC,∵S△ABC=1,∴S△ABE=1×=.点评:此题主要考查了三角形面积求法以及三角形中线的性质,利用三角形中线的性质得出S△ABE =S△ABC是解题关键.23.如图,求∠A+∠B+∠C+∠D+∠E的度数和.考点:三角形的外角性质;三角形内角和定理.分析:由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.解答:解:如图可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∠B+∠E+∠4=180°,即∠B+∠E+∠A+∠D+∠C=180°.点评:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.24.如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.考点:平行线的性质;三角形的外角性质.专题:开放型;探究型.分析:本题考查的是平行线的性质以及平行线的判定定理.(1),(2)都需要用到辅助线利用两直线平行,内错角相等的定理加以证明;(3),(4)是利用两直线平行,同位角相等的定理和三角形外角的性质加以证明.解答:解:(1)∠A+∠C+∠P=360;(2)∠A+∠C=∠P;(3)∠A+∠P=∠C;(4)∠C+∠P=∠A.说明理由(以第三个为例):已知AB∥CD,根据两直线平行,同位角相等及三角形的一个外角等于两不相邻内角之和,可得∠C=∠A+∠P.点评:考生应熟知平行线的有关知识点,这是中考常考的题型.25.(2011•青海)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:∠BOC=90°﹣∠A.考点:三角形的外角性质;三角形内角和定理.专题:压轴题.分析:(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O 与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.解答:解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.点评:本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.。