2007年广东省高考数学(文科)试题及详细解答
- 格式:doc
- 大小:460.50 KB
- 文档页数:6
2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.2.(5分)α是第四象限角,cosα=,则sinα=()A.B.C.D.3.(5分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(5分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(5分)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种6.(5分)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)7.(5分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(5分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.49.(5分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(5分)函数y=2cos2x的一个单调增区间是()A.B.C.D.11.(5分)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.12.(5分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8二、填空题(共4小题,每小题5分,满分20分)13.(5分)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为.14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.16.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.三、解答题(共6小题,满分80分)17.(10分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA (Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.18.(12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.19.(12分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(12分)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.21.(12分)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.22.(12分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P (Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•全国卷Ⅰ)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.【分析】集合S、T是一次不等式的解集,分别求出再求交集.【解答】解:S={x|2x+1>0}={x|x>﹣},T={x|3x﹣5<0}={x|x<},则S∩T=,故选D.2.(5分)(2007•全国卷Ⅰ)α是第四象限角,cosα=,则sinα=()A.B.C.D.【分析】根据同角的三角函数之间的关系sin2+cos2α=1,得到余弦的值,又由角在第四象限,确定符号.【解答】解:∵α是第四象限角,∴sinα=,故选B.3.(5分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(5分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(5分)(2007•全国卷Ⅰ)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种【分析】根据题意,先分析甲,有C42种,再分析乙、丙,有C43•C43种,进而由乘法原理计算可得答案.【解答】解;根据题意,甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,有C42种,乙、丙各选修3门,有C43•C43种,则不同的选修方案共有C42•C43•C43=96种,故选C.6.(5分)(2007•全国卷Ⅰ)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)【分析】本题考查的是不等式所表示的平面区域内点所满足的条件的问题,解决此问题只需将点代入验证即可【解答】解:将四个点的坐标分别代入不等式组,解可得,满足条件的是(0,﹣2),故选C.7.(5分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(5分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(5分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g (x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g (x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(5分)(2007•全国卷Ⅰ)函数y=2cos2x的一个单调增区间是()A.B.C.D.【分析】要进行有关三角函数性质的运算,必须把三角函数式变为y=Asin(ωx+φ)的形式,要先把函数式降幂,降幂用二倍角公式.【解答】解:函数y=2cos2x=1+cos2x,由﹣π+2kπ≤2x≤2kπ,解得﹣π+kπ≤x≤kπ,k为整数,∴k=1即有它的一个单调增区是,故选D.11.(5分)(2007•全国卷Ⅰ)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.【分析】(1)首先利用导数的几何意义,求出曲线在P(x0,y0)处的切线斜率,进而得到切线方程;(2)利用切线方程与坐标轴直线方程求出交点坐标(3)利用面积公式求出面积.【解答】解:若y=x3+x,则y′|x=1=2,即曲线在点处的切线方程是,它与坐标轴的交点是(,0),(0,﹣),围成的三角形面积为,故选A.12.(5分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为0.25.【分析】由题意知本题是一个统计问题,需要用样本的概率估计总体中位于这个范围的概率,试验发生包含的事件数时20,袋装食盐质量在497.5g~501.5g之间的可以数出有5,利用概率公式,得到结果.【解答】解:从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为P==0.25.故答案为:0.2514.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x 对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.【分析】先确定球心位置,再求球的半径,然后可求球的体积.【解答】解:正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的球心恰好是底面ABCD的中心,球的半径是1,体积为.故答案为:16.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为三、解答题(共6小题,满分80分)17.(10分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B的正弦值,再由△ABC为锐角三角形可得答案.(2)根据(1)中所求角B的值,和余弦定理直接可求b的值.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.【分析】(1)3位购买该商品的顾客中至少有1位采用一次性付款的对立事件是3位顾客中无人采用一次性付款,根据独立重复试验公式得到3位顾客中无人采用一次性付款的概率,再根据对立事件的公式得到结论.(2)3位顾客每人购买1件该商品,顾客的付款方式为一次性付款和分期付款,且购买该商品的3位顾客中有1位采用分期付款,根据互斥事件的公式得到结果.【解答】解:(Ⅰ)记A表示事件:“3位顾客中至少1位采用一次性付款”,则表示事件:“3位顾客中无人采用一次性付款”.P()=(1﹣0.6)3=0.064,.(Ⅱ)记B表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.B0表示事件:“购买该商品的3位顾客中无人采用分期付款”.B1表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则B=B0+B1.P(B0)=0.63=0.216,P(B1)=C31×0.62×0.4=0.432.P(B)=P(B0+B1)=P(B0)+P(B1)=0.216+0.432=0.648.19.(12分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC 的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(12分)(2007•全国卷Ⅰ)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.【分析】(1)依题意有,f'(1)=0,f'(2)=0.求解即可.(2)若对任意的x∈[0,3],都有f(x)<c2成立⇔f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围.【解答】解:(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即解得a=﹣3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3﹣9x2+12x+8c,f'(x)=6x2﹣18x+12=6(x﹣1)(x﹣2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<﹣1或c>9,因此c的取值范围为(﹣∞,﹣1)∪(9,+∞).21.(12分)(2007•全国卷Ⅰ)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.【分析】(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.【解答】解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则===.22.(12分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.。
2007年普通高等学校招生全国统一考试文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1. 答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2. 每小题选出答案后 ,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次实验中发生的概率是P ,那么 V =343R πn 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)k kn k n n p k C p p -=-(k=0,1,2,……,n )一、选择题(1)设{|210}S x x =+>,{|350}T x x =-<,则S T ⋂= A.∅B 。
1{|}2x x <C 。
5{|}3x x >D 。
15{|}23x x -<< (2)a 是第四象限角,12cos 13a =,则sin a =(A )513(B) 513-(C)512(D) 512-(3)已知向量a=(-5,6),b=(6,5),则a 与b(A )垂直 (B )不垂直也不平行 (C )平行且同向 (D )平行且反向(4)已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为(A )221412x y -=(B )221124x y -= (C )221106x y -=(D )221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有(A )36种(B )48种(C )96种(D )192种(6)下面给出的四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是(A )(0,2)(B )(-2,0)(C ) (0,-2)(D )(2,0)(7)如图,正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B与AD 1所成角的余弦值为(A )15 (B ) 25(C ) 35(D ) 45(8)设1a >,函数()log a f x x =在区间[],2a a 上的最大值与最小值之差为12,则a =(A (B )2 (C )(D )4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的(A )充要条件 (B )充分而不必要的条件 (C )必要而不充分的条件 (D )既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是(A )(,44ππ-) (B )(0,2π) (C )(3,44ππ) (D )(2π,π)(11)曲线2313y x x =+在点(1,43)处的切线与坐标轴围成的三角面积为(A )19 (B )29 (C )13 (D )23(12)抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是(A )4(B )(C )(D )82007年普通高等学校招生全国统一考试文科数学 第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
秘密★启用前2007年广州市普通高中学生学业水平测试数 学(文科)本试卷分选择题和非选择题两部分,共4页.满分100分. 考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡上.用2B 铅笔将答题卡上试卷类型(A )涂黑.在答题卡右上角的“试室号”栏填写本科目试室号,在“座位号列表”内填写座位号,并用2B 铅笔将相应的信息点涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回.参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+第一部分 选择题(共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合题目要求的.(1)已知全集{}1,2,3,4,5U =,集合{}1,3,5,A = 则C UA =(A ){}2,4 (B ){}1,3,5 (C ) {}1,2,3,4,5 (D )∅(2)函数()ln 2y x =-的定义域是(A )[)1,+∞ (B )(),2-∞(C )()1,2(D )[)1,2(3)已知m +i 1n =-i ,其中,m n 是实数,i 是虚数单位,则m n +=(A )-1 (B )0(C )1(D )2(4)已知3,,sin ,25πθπθ⎛⎫∈= ⎪⎝⎭则tan θ=(A )34-(B )43- (C )34 (D )43(5)已知向量a 表示“向东航行1km”,向量b 表示“向南航行1km”,则向量a +b 表示 (A )向东南航行2km (B(C )向东北航行2km (D(6)在下列命题中, 错误的是 (A )如果两个平面有三个不共线的公共点,那么这两个平面重合 (B )如果两条直线都与第三条直线平行,那么这两条直线平行 (C )如果两条直线都与第三条直线垂直,那么这两条直线垂直(D )如果两个平行平面同时与第三个平面相交,那么它们的交线平行(7)直线34140x y +-=与圆()()22114x y -++=的位置关系是(A )相交且直线过圆心 (B )相切(C )相交但直线不过圆心 (D )相离(8)已知命题p ∶x ≥1,命题q ∶x 2≥x ,则p 是q 的 (A )充分不必要条件 (B )必要不充分条件(C )充要条件(D )既不充分也不必要条件(9)不等式x 2– y 2≥0所表示的平面区域(阴影部分)是(A ) (B ) (C ) (D )(10)已知空间直角坐标系O xyz -中有一点()1,1,2A --,点B 是xOy 平面内的直线 1x y +=上的动点,则,A B 两点的最短距离是(A(B)2(C )3 (D )172第二部分 非选择题(共70分)二、填空题:本大题共5小题,其中(11)~(13)是必做题,(14)~(15)是选做题,要求每位考生只从(14)、(15)题中任选一题作答. 每小题3分,满分12分. 第(13)小题的第一个空1分、第二个空2分.(11) 已知向量a (),1m =,向量b ()1,2=-,若a ⊥b ,则实数m 的值是 . (12) 某班50名学生的一次数学质量测验成绩的频率分布直方图如图所示,则成绩不低于70分的学生人数是 .(13) 已知函数 则()1f = ,()32log 2f += .(14)如图,平行四边形ABCD 中, ::AE EB m n =,若AEF ∆的面积等于a cm 2,则CDF ∆的面积 等于 cm 2.(15)把参数方程sin cos sin 2x y θθθ=-⎧⎨=⎩(θ为参数)化为普通方程是 .三、解答题:本大题共6小题,共58分.解答应写出文字说明、演算步骤或推证过程. (16)(本小题满分8分)已知函数()1cos 2f x x x =+(x ∈R ). (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 的最大值和最小值.(17)(本小题满分10分)设等差数列{}n a 的前n 项和为n S , 已知335,9a S ==. (Ⅰ)求首项1a 和公差d 的值; (Ⅱ)若100n S =,求n 的值.EBCD FA0.0100.0120.0360.0240.018(18)(本小题满分10分)同时掷两颗质地均匀的骰子(六个面分别标有数字1,2,3,4,5,6的正方体), 两颗骰子向上的点数之和记为ξ. (Ⅰ)求5ξ=的概率()5P ξ=; (Ⅱ)求5ξ<的概率()5P ξ<.(19)(本小题满分10分)如图,已知四棱锥P ABCD -的底面ABCD 是菱形, PA ⊥平面ABCD , 点F 为PC 的中点. (Ⅰ)求证://PA 平面BDF ; (Ⅱ)求证:平面PAC ⊥平面BDF .(20)(本小题满分10分) 已知a ∈R ,函数()3211232f x x ax ax =-++(x ∈R ). (Ⅰ)当1a =时,求函数()f x 的单调递增区间;(Ⅱ)函数()f x 是否在R 上单调递减,若是,求出a 的取值范围;若不是,请说明理由;(Ⅲ)若函数()f x 在[]1,1-上单调递增,求a 的取值范围.(21)(本小题满分10分)如图,已知椭圆C :22221x y a b+=(0)a b >>的离心率为45,左、右焦点分别为1F 和2F ,椭圆C 与x 轴的两交点分别为A 、B ,点P 是椭圆上一点(不与点A 、B 重合),且∠APB =2α,∠F 1PF 22β=.(Ⅰ)若45β=,三角形F 1PF 2的面积 为36,求椭圆C 的方程; (Ⅱ)当点P 在椭圆C 上运动时,试证明 tan tan 2βα⋅是定值.AFPDCB2007年广州市普通高中学生学业水平测试数学(文科)试题参考答案及评分标准一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题3分,满分30分.二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,其中(11)~(13)是必做题,(14)~(15)是选做题,要求每位考生只从(14)、(15)题中任选一题作答.每小题3分,满分12分. 第(13)小题的第一个空1分、第二个空2分.(11)2 (12)35 (13)3;6 (14)21n a m ⎛⎫+ ⎪⎝⎭(15)21,x y x ⎡=-∈⎣三、解答题(16)(本小题满分8分) 解:(Ⅰ) ()1cos 2f x x x =+ sin cos cos sin66x x ππ=+s i n ()6xπ=+. …… 2分∴函数()f x 的最小正周期为2π. …… 4分(Ⅱ)当sin()16x π+=时,函数()f x 的最大值为1. …… 6分当sin()16x π+=-时,函数()f x 的最小值为1-. …… 8分(17) (本小题满分10分) 解: (Ⅰ)335,9a S ==,1125,339.a d a d +=⎧∴⎨+=⎩ …… 4分解得11,2.a d =⎧⎨=⎩ …… 6分(Ⅱ)由100n S =,得()121002n n n -+⨯=, …… 8分 解得10n =或10n =-(舍去).10n ∴=. …… 10分 (18) (本小题满分10分)解: (Ⅰ):显然,ξ的取值有11种可能,它们是2,3,4,5,6,7,8,9,10,11,12. …… 4分点数和为5出现4次,∴()415369P ξ===. 答:5ξ=的概率是19. …… 6分(Ⅱ)点数和为2出现1次, 点数和为3出现2次, 点数和为4出现3次,∴()5P ξ<()()()12312343636366P P P ξξξ==+=+==++=. …… 9分 答:5ξ<的概率是16. …… 10分 (19)(本小题满分10分)(Ⅰ)证明: 连结AC ,BD 与AC 交于点O ,连结OF . ABCD 是菱形,O ∴是AC 的中点.点F 为PC 的中点,//OF PA ∴. …… 2分OF ⊂平面,BDF PA ⊄平面BDF ,∴//PA 平面BDF . …… 4分 (Ⅱ)证明: PA ⊥平面ABCD ,AC ⊂平面ABCD , PA AC ∴⊥.OAFPDCB//,OF PA OF AC ∴⊥.ABCD 是菱形,AC BD ∴⊥. …… 6分 OF BD O =,AC ∴⊥平面BDF . …… 8分 AC ⊂平面PAC ,∴平面PAC ⊥平面BDF . …… 10分 (20) (本小题满分10分) 解: (Ⅰ) 当1a =时,()3211232f x x x x =-++, 2()2f x x x '∴=-++. …… 2分令()0f x '>,即220x x -++>, 即220x x --<,解得12x -<<.∴函数()f x 的单调递增区间是()1,2-. …… 4分(Ⅱ) 若函数()f x 在R 上单调递减,则()0f x '≤对x ∈R 都成立,即220x ax a -++≤对x ∈R 都成立, 即220x ax a --≥对x ∈R 都成立.280a a ∴∆=+≤, …… 6分 解得80a -≤≤.∴当80a -≤≤时, 函数()f x 在R 上单调递减. …… 7分(Ⅲ) 解法一:函数()f x 在[]1,1-上单调递增,()0f x '∴≥对[]1,1x ∈-都成立,∴220x ax a -++≥对[]1,1x ∈-都成立.()22a x x ∴+≥对[]1,1x ∈-都成立,即22x a x +≥对[]1,1x ∈-都成立. …… 8分令()22x g x x =+, 则()()()()222224()22x x x x x g x x x +-+'==++. 当10x -<≤时,()0g x '<;当01x <≤时,()0g x '>.()g x ∴在[]1,0-上单调递减,在[]0,1上单调递增.()()111,13g g -==,()g x ∴在[]1,1-上的最大值是()11g -=.1a ∴≥. …… 10分解法二:函数()f x 在[]1,1-上单调递增,()0f x '∴≥对[]1,1x ∈-都成立,∴220x ax a -++≥对[]1,1x ∈-都成立.即220x ax a --≤对[]1,1x ∈-都成立. …… 8分令()22g x x ax a =--,则()()1120,1120.g a a g a a =--≤⎧⎪⎨-=+-≤⎪⎩ 解得1,31.a a ⎧≥⎪⎨⎪≥⎩ 1a ∴≥. …… 10分(21) (本小题满分10分) 解:(Ⅰ)由于三角形F 1PF 2为直角三角形,则2221212PF PF F F +=,即22121212()2PF PF PF PF F F +-=,三角形F 1PF 2的面积为36,∴121362PF PF =,即1272PF PF =, ∴2222722a c -⨯=()(),即2222272a c -=⨯()(), ∴236b =. …… 2分椭圆C 的离心率为45,则21625c a =2,即221625a b a -=2,∴2100a =.∴椭圆C 的方程为22110036x y +=. …… 4分 (Ⅱ)不妨设点P (,)x y 在第一象限,则在三角形12PF F 中,2221212122cos2F F PF PF PF PF β=+-, 222121212()2(1+cos2)F F PF PF PF PF β=+-,即2212442(1cos2)c a PF PF β=-+,∴2221222221cos 22cos cos b b b PF PF βββ===+. ∴12F F PS ∆=2221221sin 2sin sin 2tan 22cos cos b b PF PF b ββββββ===. 12122F F P S c y cy ∆=⨯⨯=, ∴2tan b cy β=,即2tan cybβ=. …… 6分作PC x ⊥轴,垂足为C .tan AC a x APC PC y +∠==,tan CB a xCPB PC y-∠==,∴2222222tan 2tan()1a x a xay y y APC CPB a x x y a y α+-+=∠+∠==-+--.22221x y a b +=, ∴22222a y x a b=-.∴2222222222tan 2(1)aya ab a x y ac y ybα===+---. …… 8分 ∴22tan tan 2c e aβα⋅==--. 离心率45e =, ∴5tan tan 22βα⋅=-. ∴tan tan 2βα⋅是定值, 其值为52-. ……10分。
2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)文科数学(必修+选修Ⅰ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟.2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…, 一、选择题1.cos330=( )A .12B .12-CD .2.设集合{1234}{12}{24}U A B ===,,,,,,,,则()U A B = ð( )A .{2}B .{3}C .{124},,D .{14},3.函数sin y x =的一个单调增区间是( ) A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭, 4.下列四个数中最大的是( )A .2(ln 2)B .ln(ln 2)C .D .ln 25.不等式203x x ->+的解集是( ) A .(32)-, B .(2)+∞, C .(3)(2)-∞-+∞ ,, D .(2)(3)-∞-+∞ ,, 6.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-7.已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( )A B C D 8.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .49.把函数e xy =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( )A .e 2x+B .e 2x-C .2ex -D .2ex +10.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A .10种 B .20种 C .25种 D .32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B C .12D 12.设12F F ,分别是双曲线2219y x +=的左、右焦点.若点P 在双曲线上,且120PF PF = ,则12PF PF +=( )AB .CD .第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .14.已知数列的通项52n a n =-+,则其前n 项和n S = .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.821(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为 .(用数字作答)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式. 18.(本小题满分12分) 在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.19.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .20.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD E F ,, 分别为AB SC ,的中点. (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小.AEBCFSD21.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x =相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB的取值范围.22.(本小题满分12分) 已知函数321()(2)13f x ax bx b x =-+-+ 在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<. (1)证明0a >;(2)若z =a +2b ,求z 的取值范围。
广东高考文科数学近7年试题分类汇编1.集合与简易逻辑(2007年高考广东卷第1小题)已知集合1{10{0}1M x x N x x=+>=>-,,则M N =(C )A .{11}x x -<≤B .{1}x x >C .{11}x x -<<D .{1}x x -≥(2008年高考广东卷第1小题)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是(D ) A. A B ⊆B. B C ⊆C. B ∪C = AD. A ∩B = C(2009年高考广东卷第1小题).已知全集U=R ,则正确表示集合M= {-1,0,1} 和N= { x |x 2+x=0} 关系的韦恩(V enn )图是 【答案】B【解析】由N= { x |x 2+x=0}{1,0}-得N M ⊂,选B.(2010年高考广东卷第1小题)若集合A ={0,1,2,3},B ={1,2,4},则集合A B =( A.)A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0}(2010年高考广东卷第8小题) “x >0”是成立的( A.)A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 (2011年高考广东卷第2小题)已知集{}{}22(,),1,(,),1A x y x y x y B x y x y x y =+==+=为实数,且为实数,且,则A B 的元素个数为(C)A .4 B.3 C.2 D. 1(2012年高考广东卷第2小题)2.设集合{}1,2,3,4,5,6U =,{}1,3,5M =,则U C M =(A) A .{}2,4,6 B .{}1,3,5 C .{}1,2,4 D .U (2013年高考广东卷第1题)1.已知集合{}220,S x x x x R=+=∈,{}220,T x xx x R=-=∈,则ST =( A )A.{0}B.{0,2}C.{-2,0}D. {-2,0,2} 2.复数(2007年高考广东卷第2小题)若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( D ) A .2-B .12-C .12D .2(2008年高考广东卷第2小题)已知0<a <2,复数z = a + i (i 是虚数单位),则|z|的取值范围是( B )A. (1,5)B. (1,3)C. (1D. (1(2009年高考广东卷第2小题)下列n 的取值中,使ni =1(i 是虚数单位)的是 A.n=2 B .n=3 C .n=4 D .n=5 【答案】C 【解析】因为41i =,故选C.(2011年高考广东卷第1小题)设复数z 满足iz = 1,其中i 为虚数单位,则z = (A) A .- i B .i C .- 1 D .1 (2012年高考广东卷第1小题) 1.设i 为虚数单位,则复数34ii+=(D) A .43i -- B .43i -+ C .43i + D .43i - (2013年高考广东卷第3题)3.若i(x+yi)=3+4i,x,y ∈R,则x+yi 的模是( D ) A. 2 B. 3 C. 4 D. 5 3.向量(2007年高考广东卷第4小题)若向量a b ,满足1a b ==,a 与b 的夹角为60°,则a a a b +=··( B )A.12B.32C.1 D.2(2008年高考广东卷第3小题)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a + 3b =(B ) A. (-5,-10) B . (-4,-8) C. (-3,-6) D. (-2,-4)(2009年高考广东卷第3小题)已知平面向量a =,1x () ,b =2,x x (-), 则向量+a b ( )A 平行于x 轴 B.平行于第一、三象限的角平分线 C.平行于y 轴 D.平行于第二、四象限的角平分线【解析】+a b 2(0,1)x =+,由210x +≠及向量的性质可知,C 正确.(2010年高考广东卷第5小题)若向量a =(1,1),b =(2,5),c =(3,x )满足条件 (8a -b )·c=30,则x = (C) A .6 B .5 C .4 D .3(2011年高考广东卷第3小题)已知向量(1,2),(1,0),(3,4)a b c ===.若λ为实数,()//,a b c λλ+=则 (B) A .14 B.12C.1D. 2 (2012年高考广东卷第3小题)若向量(1,2),(3,4)AB BC ==,则AC =(A) A . (4,6) B . (4,6)-- C . (2,2)-- D . (2,2)(2012年高考广东卷第10小题) 对任意两个非零的平面向量,αβ,定义αβαβββ⋅=⋅.若平面向量,a b 满足0a b ≥>,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且αβ和βα都在集合|2n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b =(D)A .52 B . 32 C . 1 D . 12(2013年高考广东卷)10.设a 是已知的平面向量且a ≠0。
2007年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分。
考试用时l20分钟。
参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+. 用最小二乘法求线性同归方程系数公式一、选择题:本大题共l0小题,每小题5分,满分50分.在每小题给出的四个选项中。
只有一项是符合题目要求的。
1.已知集合M={x|10x +>},N={x|101x>-},则M ∩N= A .{x|-1≤x <0} B .{x |x>1} C .{x|-1<x <0} D .{x |x ≥-1}2.若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b = A .-2 B .12-C. D .2 3.若函数3()f x x =(x R ∈),则函数()y f x =-在其定义域上是 A .单调递减的偶函数 B.单调递减的奇函数 C .单凋递增的偶函数 D.单涮递增的奇函数4.若向量a 、b 满足|a |=|b |=1,a 与b 的夹角为60︒,则a a +a b =A .12 B .32C. 12+ D .25.客车从甲地以60km /h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以 80km /h 的速度匀速行驶l 小时到达丙地。
下列描述客车从甲地出发,经过乙地,最后到达 丙地所经过的路程s 与时间t 之间关系的图象中,正确的是6若l 、m 、n 是互不相同的空间直线,n 、口是不重合的平面,则下列命题中为真命题的是 A .若//,,l n αβαβ⊂⊂,则//l n B .若,l αβα⊥⊂,则l β⊥ C. 若,l n m n ⊥⊥,则//l m D .若,//l l αβ⊥,则//αβ 7.图l 是某县参加2007年高考的 学生身高条形统计图,从左到右的各条形表示的学生人数依次记 为1A 、2A 、…、m A (如2A 表示身高(单位:cm )在[150, 155)内的学生人数).图2是统计 图l 中身高在一定范围内学生人数的一个算法流程图.现要统计 身高在160~180cm (含 160cm ,不含180cm )的学生人数,那么在流程图中的判断框内应填写的条件是A .9i <B .8i <C .7i <D .6i <8.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是A .310 B .15 C .110 D .1129.已知简谐运动()2sin()()32f x x ππϕϕ=+<的图象经过点(0,1),则该简谐运动的最小正周期T 和初相ϕ分别为A .6,6T πϕ==B .6,3T πϕ==C .6,6T ππϕ==D .6,3T ππϕ==10.图3是某汽车维修公司的维修点环形分布图公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件.在使用前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在 相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n 件 配件从一个维修点调整到相邻维修点的调动件次为n )为 A .18 B .17 C .16 D .15二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.11.在平面直角坐标系xoy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点P(2,4),则该抛物线的方程是 .12.函数()ln (0)f x x x x =>的单调递增区间是 .13.已知数列{n a }的前n 项和29n S n n =-,则其通项n a = ;若它的第k 项满足58k a <<,则k = .14.(坐标系与参数方程选做题)在极坐标系中,直线l 的方程为sin 3ρθ=,则点(2,)6π到直线l 的距离为 .15.(几何证明选讲选做题)如图4所示,圆O 的直径AB=6,C 为圆周 上一点,3BC =过C 作圆的切线l ,过A 作l 的垂线AD ,垂足为D , 则∠DAC= .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分14分)已知ΔABC 三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c ,0). (1)若AB ·AC=0,求c 的值;(2)若5c =,求sin ∠A 的值. 17.(本小题满分12分)已知某几何体的俯视图是如图5所示的矩形,正视图(或称主 视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视 图)是一个底边长为6、高为4的等腰三角形. (1)求该几何体的体积V ; (2)求该几何体的侧面积S 18(本小题满分12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生 产能耗y (吨标准煤)的几组对照数据 (1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法于x 的线性回归方程y bx a =+;求出y 关(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性 同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=) 19(本小题满分14分)在平面直角坐标系xoy 中,已知圆心在第二象限、半径为2/2的圆C 与直线y x =相切于坐标原点O .椭圆22219x y a +=与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由. 20.(本小题满分14分)已知函数2()1f x x x =+-,α、β是方程()0f x =的两个根(αβ>),()f x '是f(x)的导数设11a =,1()()n n n n f a a a f a +=-',(1,2,)n =. (1)求α、β的值;(2)已知对任意的正整数n 有n a α>,记ln n n n a b a βα-=-,(1,2,)n =.求数列{n b }的前n 项和n S . 21.(本小题满分l4分)已知a 是实数,函数2()223f x ax x a =+--.如果函数()y f x =在区间[1,1]-上有 零点,求a 的取值范围.2007年普通高考广东(文科数学)试卷(A 卷)参考答案一选择题: 1-10 CDBBC DBAAC二填空题: 11. 28y x = 12. 1,e ⎡⎫+∞⎪⎢⎣⎭13. 2n-10 ; 8 14. 2 15. 30︒三解答题:16.解: (1) (3,4)AB =-- (3,4)A C c =-- 由 3(3)16253AB AC c c =--+=-= 得 253c =(2) (3,4)AB =-- (2,4)AC =-17解: 由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V-ABCD ;(1) ()1864643V =⨯⨯⨯= (2) 该四棱锥有两个侧面V AD. VBC 是全等的等腰三角形,且BC 边上的高为1h == 另两个侧面V AB. VCD 也是全等的等腰三角形,AB 边上的高为25h ==因此112(685)4022S =⨯⨯⨯⨯=+18解: (1) 散点图略 (2)4166.5i ii X Y ==∑ 4222221345686ii X==+++=∑ 4.5X = 3.5Y =266.54 4.5 3.566.563ˆ0.7864 4.58681b -⨯⨯-===-⨯- ; ˆˆ 3.50.7 4.50.35a Y bX =-=-⨯= 所求的回归方程为 0.70.35y x =+ (3) 100x =, 1000.35y =+预测生产100吨甲产品的生产能耗比技改前降低9070.3519.65-=(吨)19解:(1) 设圆C 的圆心为 (m, n)则 222m nn =-⎧⎪⎨=⎪⎩ 解得22m n =-⎧⎨=⎩所求的圆的方程为 22(2)(2)8x y ++-=(2) 由已知可得 210a = 5a =椭圆的方程为221259x y += ,右焦点为 F( 4, 0) ;假设存在Q 点()2,2θθ-++使QF OF =,整理得sin 3cos θθ=+ 代入 22sin cos 1θθ+= 得:210cos 70θθ++= ,cos 11010θ--==<-因此不存在符合题意的Q 点. 20解:(1) 由 210x x +-=得x =(2) ()21f x x '=+ 221112121n n n n n n n a a a a a a a ++-+=-=++ ∴ 12n n b b += 又111l nl 4a b a βα-===- ∴数列{}n b 是一个首项为公比为2的等比数列; 21解: 若0a = , ()23f x x =- ,显然在上没有零点, 所以 0a ≠令 ()248382440a a a a ∆=++=++= 得a =当a =时, ()y f x =恰有一个零点在[]1,1-上; 当 ()()()()11150f f a a -=--< 即 15a << 时, ()y f x =也恰有一个零点在[]1,1-上; 当 ()y f x =在[]1,1-上有两个零点时, 则()()208244011121010a a a a f f >⎧⎪∆=++>⎪⎪-<-<⎨⎪≥⎪⎪-≥⎩ 或()()208244011121010a a a a f f <⎧⎪∆=++>⎪⎪-<-<⎨⎪≤⎪⎪-≤⎩解得5a ≥或32a --<因此a 的取值范围是 1a > 或32a -≤2008年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分。
2007年广东省高考数学(文科)试题及详细解答一、选择题:本大题共l0小题,每小题5分,满分50分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.已知集合{|10}M x x =+>,1{|0}1N x x=>-,则M N =A .{x|-1≤x <1}B .{x |x>1}C .{x|-1<x <1}D .{x |x ≥-1} 【解析】(1,),(,1)M N =-+∞=-∞,故MN (1,1)=-,选(C).2.若复数(1+bi)(2+i)是纯虚数(i 是虚数单位,b 是实数),则b= A .-2 B .12-C. 12D .2 【解析】(1)(2)(2)(21)bi i b b i ++=-++,依题意202b b -=⇒=, 选(D). 3.若函数f(x)=x 3(x ∈R),则函数y=f(-x)在其定义域上是A .单调递减的偶函数 B.单调递减的奇函数 C .单凋递增的偶函数 D .单涮递增的奇函数【解析】函数3()y f x x =-=-单调递减且为奇函数,选(B). 4.若向量,a b 满足||||1a b ==,a 与b 的夹角为60︒,则a a a b ⋅+⋅=A .12 B .32C.12+ D .2【解析】23||||||cos602a a ab a a b ⋅+⋅=+⋅︒=,选(B). 5.客车从甲地以60km /h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km /h 的速度匀速行驶l 小时到达丙地。
下列描述客车从甲地出发,经过乙地,最后到达 丙地所经过的路程s 与时间t 之间关系的图象中,正确的是【解析】依题意的关键字眼“以80km /h 的速度匀速行驶l 小时到达丙地”选得答案(C).6.若,,l m n 是互不相同的空间直线,,αβ是不重合的平面,则下列命题中为真命题的是【解析】逐一判除,易得答案(D).7.图l 是某县参加2007年高考的学 生身高条形统计图,从左到右的各条形表示的学生人数依次记为4,、A :、…、A ,。
2007年普通高等学校招生全国统一考试(广东卷)文科基础本试卷共12页,75题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.每题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.考生必须保持答题卡的整洁。
考试结束后,将试卷和答案卡一并交回。
本试卷共75题,全部是单项选择题,每题2分。
在每题的四个选项中,只有一项是符合题目要求的,多选、错选均不得分。
1.货币在商品流通中起着重要作用。
下列对于货币的正确认识是A.货币只有流通手段的职能B.货币就是金银、金银就是货币C.有商品交换、就有货币D.货币能表现一切商品的价值2.气候、时间、地域、宗教信仰、习俗等因素的变化,都会引起商品价格的变动。
它们对商品价格的影响,是因为改变了A.该商品的供求关系B.该商品的价值量C.该商品的个别劳动生产率D.该商品的社会劳动生产率3.在同一时空条件下,生产同样的商品,不同的生产者有的赚钱有的赔钱,共根本原因在于 A.生产技术条件不同 B.所耗费的个别劳动时间不同 C.出售产品的价格不同 D.所耗费的社会必要劳动时间不同4.下表是“2002-2006年我国城乡居民家庭恩格尔系统情况”。
根据材料,针对这段时期,下列说法正确的是2002年2003年2004年2005年2006年城镇居民家庭恩格尔系数(%) 37.7 37.1 37.7 36.7 35.8 农村居民家庭恩格尔系数(%)46.245.647.745.543.0A.城乡居民生活水平总体呈下降趋势B.城乡居民生活水平总体呈上升趋势C.城镇居民生活水平不断提高,农村居民生活水平不断下降D.农村居民生活水平不断提高,城镇居民生活水平不断下降5.某位国有独资企业技术骨干的年收入,由工资、奖金、股票投资收入等构成。
2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T =( )A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( ) A.513B.513-C.512 D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A.221412x y -= B.221124x y -= C.221106x y -= D.221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种 C.96种 D.192种(6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02),B.(20)-,C.(02)-,D.(20),(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( ) A.15B.25C.35D.45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) B.2C.D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件 B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( ) A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭,D.ππ2⎛⎫ ⎪⎝⎭,(11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19B.29C.13D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A.4B.C.D.8第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g ~501.5g 之间的概率约为_____.(14)函数()y f x =的图像与函数3log (0)y xx =>的图像关于直线y x =对称,则()f x =____________.(15)正四棱锥S ABCD -,点S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_________.(16)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)若a =,5c =,求b .(18)(本小题满分12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. (19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD ,已知45ABC ∠=︒,2AB =,BC =SA SB == (Ⅰ)证明:SA BC ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小. (20)(本小题满分12分)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围. (21)(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,SCDAB5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S . (22)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F ,过1F 的直线交椭圆于B ,D 两点,过2F 的直线交椭圆于A ,C 两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.2007年普通高等学校招生全国统一考试文科数学试题(必修+选修1)参考答案一、选择题1.D 2.B 3.A 4.A 5.C 6.C 7.D 8.D 9.B 10.D 11.A 12.C 二、填空题13.0.25 14.3()xx ∈R 15.4π3 16.13三、解答题 17.解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)根据余弦定理,得2222cos b a c ac B =+-272545=+-7=.所以,b =18.解:(Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=,()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.0.648=.19.解法一:(1)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥, 依题设AD BC ∥,故SA AD ⊥,由AD BC ==SA =SD又sin 452AO AB ==DE BC ⊥,垂足为E ,则DE ⊥平面SBC ,连结SE .ESD ∠为直线SD 与平面SBC 所成的角. 所以,直线SD 与平面SBC所成的角为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,因为2AO BO AB ===1SO =,DBCASE又BC =0)A ,,(0B,(0C ,. (001)S ,,,(21)SA =-,,, (0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)(21)SD SA AD SA CB =+=-=--,,(20)OA =,,. OA 与SD 的夹角记为α,SD 与平面ABC 所成的角记为β,因为OA 为平面SBC 的法向量,所以α与β互余.22cos 11OA SD OASDα==,sin 11β=,所以,直线SD 与平面SBC 所成的角为. 20.解:(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>. 所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<, 解得 1c <-或9c >, 因此c 的取值范围为(1)(9)-∞-+∞,,.21.解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q --==.(Ⅱ)1212n n n a n b --=. 122135232112222n n n n n S ----=+++++,① 3252321223222n n n n n S ----=+++++,②②-①得22122221222222n n n n S ---=+++++-,12362n n -+=-.22.证明(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200001132222x y x y ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+,2221222121)(1)()432k BD x xk x x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点p ,且AC 的斜率为1k-. 所以,2222111)12332k k AC k k⎫+⎪+⎝⎭==+⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥.当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625.。
2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T =( )A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( ) A.513B.513-C.512 D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A.221412x y -= B.221124x y -= C.221106x y -= D.221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种 C.96种 D.192种 (6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02),B.(20)-, C.(02)-, D.(20),(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( ) A.15B.25C.35D.45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )B.2C.D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件 B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( ) A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭,D.ππ2⎛⎫ ⎪⎝⎭,(11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19B.29C.13D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( )A.4B.C.D.8第Ⅱ卷注意事项: 2.第Ⅱ3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ):492496 494 495 498 497 501 502 504 496 497503506508507492496500501499(14)函数()y f x =的图像与函数3log (0)y xx =>的图像关于直线y x =对称,则()f x =____________.(15)正四棱锥S ABCD -,点S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_________.(16)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)若a =,5c =,求b .(18)(本小题满分12分)(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. (19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD ,已知45ABC ∠=︒,2AB =,BC =SA SB == (Ⅰ)证明:SA BC ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小. (20)(本小题满分12分)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围. (21)(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S . (22)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F ,过1F 的直线交椭圆于B ,D 两点,过2F 的直线交椭圆于A ,C 两点,且AC BD ⊥,垂足为P .SCDAB(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.2007年普通高等学校招生全国统一考试文科数学试题(必修+选修1)参考答案一、选择题1.D 2.B 3.A 4.A 5.C 6.C 7.D 8.D 9.B 10.D 11.A 12.C 二、填空题13.0.25 14.3()xx ∈R 15.4π3 16.13三、解答题 17.解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)根据余弦定理,得2222cos b a c ac B =+-272545=+-7=.所以,b =18.解:(Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=,()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.0.648=.19.解法一:(1)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥, 依题设AD BC ∥,故SA AD ⊥,由AD BC ==SA =SD又sin 452AO AB ==DE BC ⊥,垂足为E ,则DE ⊥平面SBC ,连结SE .ESD ∠为直线SD 与平面SBC 所成的角. 所以,直线SD 与平面SBC 所成的角为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,因为AO BO AB ===1SO =,又BC =0)A ,, (0B,(0C ,. (001)S ,,,(21)SA =-,,, (0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)(21)SD SA AD SA CB =+=-=--,,(20)OA =,,. OA 与SD 的夹角记为α,SD 与平面ABC 所成的角记为β,因为OA 为平面SBC的法向DBCASE量,所以α与β互余.22cos 11OA SD OA SDα==,sin 11β=,所以,直线SD 与平面SBC 所成的角为arcsin 11. 20.解:(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>; 当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>.所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<, 解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞,,.21.解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q --==.(Ⅱ)1212n n n a n b --=. 122135232112222n n n n n S ----=+++++,① 3252321223222n n n n n S ----=+++++,②②-①得22122221222222n n n n S ---=+++++-,12362n n -+=-.22.证明(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200001132222x y x y ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k+=-+,21223632k x x k -=+,2221222121)(1)()432k BD x x kx x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点p ,且AC 的斜率为1k-.所以,2211132k AC k⎫+⎪⎝⎭==⨯+四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625.。
2007年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分。
考试用时l20分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用28铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用28铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色宁迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用28铅笔填涂选做题的题号(或题组号)对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式y=sh,其中s是锥体的底面积,h是锥体的高.如果事件A、B互斥,那么P(A+B)=P(A)+P(B).用最小二乘法求线性同归方程系数公式一、选择题:本大题共l0小题,每小题5分,满分50分.在每小题给出的四个选项中。
只有一项是符合题目要求的。
1.已知集合M={x|1 1+x>0},N={x|>0},则M∩N=A.{x|-1≤x<0} B.{x |x>1}C.{x|-1<x<0} D.{x |x≥-1}2.若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b=A.-2 B. C. D.23.若函数f(x)=x3(x∈R),则函数y=f(-x)在其定义域上是A.单调递减的偶函数 B.单调递减的奇函数C.单凋递增的偶函数 D.单涮递增的奇函数4.若向量a、b满足|a|=|b|=1,a与b的夹角为60。
,则a·a+a·b=5.客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度匀速行驶l小时到达丙地。
2007年普通高等学校招生全国统一考试(广东卷)数 学(文科)参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+.用最小二乘法求线性回归方程系数公式1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-.一、选择题:本大题共l0小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|10x +>},N={x|101x>-},则M ∩N= A .{x|-1≤x <1} B .{x|x >1} C .{x|-1<x <1} D .{x|x ≥-1}2.若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b = A .-2 B .12-C.21D .2 3.若函数3()f x x =(x R ∈),则函数()y f x =-在其定义域上是A .单调递减的偶函数B .单调递减的奇函数C .单凋递增的偶函数 D.单调递增的奇函数4.若向量a 、b 满足|a |=|b |=1,a 与b 的夹角为60︒,则a a +a b = A .12 B .32 C. 12+.2 5.客车从甲地以60km /h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km /h 的速度匀速行驶l 小时到达丙地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是6.若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是 A .若//,,l n αβαβ⊂⊂,则//l n B .若,l αβα⊥⊂,则l β⊥ C. 若,l n m n ⊥⊥,则//l m D .若,//l l αβ⊥,则αβ⊥ 7.图l 是某县参加2007年高考的学生身高条形统计图,从左到右 的各条形表示的学生人数依次记 为1A 、2A 、…、10A (如2A 表示身高(单位:cm )在[150,155) 内的学生人数).图2是统计图l 中身高在一定范围内学生人数的 一个算法流程图.现要统计身高 在160~180cm (含160cm ,不 含180cm )的学生人数,那么在流程图中的判断框内应填写的条件是A .9i <B .8i <C .7i <D .6i <8.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是 A .310 B .15 C .110 D .1129.已知简谐运动()2sin()()32f x x ππϕϕ=+<的图象经过点(0,1),则该简谐运动的最小正周期T 和初相ϕ分别为 A .6,6T πϕ==B .6,3T πϕ==C .6,6T ππϕ==D .6,3T ππϕ==10.图3是某汽车维修公司的维修点环形分布图.公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件.在使用前发现需将A 、B 、C 、 D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能 在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n 件 配件从一个维修点调整到相邻维修点的调动件次为n )为A .18B .17C .16D .15二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.11.在平面直角坐标系xoy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点P(2,4),则该抛物线的方程是 .12.函数()ln (0)f x x x x =>的单调递增区间是 .13.已知数列{n a }的前n 项和29n S n n =-,则其通项n a = ;若它的第k 项满足58k a <<,则k = .14.(坐标系与参数方程选做题)在极坐标系中,直线l 的方程为sin 3ρθ=,则点(2,)6π到直线l 的距离为 .15.(几何证明选讲选做题)如图4所示,圆O 的直径AB=6, C 为圆周上一点,3BC =.过C 作圆的切线l ,过A 作l 的 垂线AD ,垂足为D ,则∠DAC= .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分14分)已知ΔABC 三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c ,0). (1)若0AB AC =,求c 的值;(2)若5c =,求sin ∠A 的值.17.(本小题满分12分)已知某几何体的俯视图是如图5所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视 图)是一个底边长为6、高为4的等腰三角形. (1)求该几何体的体积V ; (2)求该几何体的侧面积S.18.(本小题满分12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆy bxa =+; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3 2.543546 4.566.5⨯+⨯+⨯+⨯=)19.(本小题满分14分)在平面直角坐标系xoy 中,已知圆心在第二象限、半径为22的圆C 与直线y x =相切于坐标原点O .椭圆22219x y a +=与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.20.(本小题满分14分)已知函数2()1f x x x =+-,α、β是方程()0f x =的两个根(αβ>),()f x '是)(x f 的导数.设11a =,1()()n n n n f a a a f a +=-'(1,2,)n =. (1)求α、β的值;(2)已知对任意的正整数n 有n a α>,记ln n n n a b a βα-=-(1,2,)n =.求数列{n b }前n 项和n S .21.(本小题满分l4分)已知a 是实数,函数2()223f x ax x a =+--.如果函数()y f x =在区间[1,1]-上有零点,求a 的取值范围.2007年普通高等学校招生全国统一考试(广东卷)数学(文科)试题参考答案一、选择题: CDBBC DBAAC二、填空题: 11. 28y x = 12. 1,e ⎡⎫+∞⎪⎢⎣⎭ 13. 2n -10; 8 14. 2 15. 30︒三、解答题:16.解: (1) (3,4)AB =--, (3,4)AC c =--,由 3(3)162530AB AC c c =--+=-= 得 253c =. (2) (3,4)AB =--, (2,4)AC =-, cos5AB AC A AB AC∠===sin 5A ∠==. 17.解: 由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V-ABCD.(1) ()1864643V =⨯⨯⨯=. (2) 该四棱锥有两个侧面V AD,VBC 是全等的等腰三角形,且BC 边上的高为1h ==另两个侧面V AB,VCD 也是全等的等腰三角形,AB 边上的高为 25h ==.因此 112(685)4022S =⨯⨯⨯⨯=+18解: (1) 散点图略. (2)4166.5i ii X Y ==∑, 4222221345686ii X==+++=∑, 4.5X =, 3.5Y =,266.54 4.5 3.566.563ˆ0.7864 4.58681b -⨯⨯-===-⨯-, ˆˆ 3.50.7 4.50.35a Y bX =-=-⨯=. 所求的回归方程为 0.70.35y x =+.(3) 100x =, 700.3570.35y =+=.预测生产100吨甲产品的生产能耗比技改前降低9070.3519.65-=(吨). 19解:(1) 设圆C 的圆心为)0)(,(>n n m .则 222m nn =-⎧⎪⎨=⎪⎩解得22m n =-⎧⎨=⎩所求的圆的方程为 22(2)(2)8x y ++-=.(2) 由已知可得210a =,5a =.椭圆的方程为221259x y +=,右焦点为 F(4, 0). 假设存在Q 点(,)x y 使QF OF =, 则F 在OQ 的中垂线上,又O 、Q 在圆C 上,所以O 、Q 关于直线CF 对称.直线CF 的方程为340x y +-=,设Q (x,y ),则334022yx x y ⎧=⎪⎪⎨⎪+-=⎪⎩,解得45125x y ⎧=⎪⎪⎨⎪=⎪⎩所以存在点Q 412(,)55,使Q 到椭圆的右焦点F 的距离等于线段OF 的长.20解:(1) 由 210x x +-=得x =α∴=β=.(2) ()21f x x '=+, 221112121n n n n n n n a a a a a a a ++-+=-=++.(22112211.n n n n n n n nn a a a a a a a a βαβα++++++-==-⎛⎫ ⎪⎛⎫-== ⎪-⎝⎭∴ 12n n b b +=, 又1111ln4ln2a b a βα-+===-∴数列{}n b 是一个首项为 14ln2公比为2的等比数列.∴)()4ln1212421ln 122n n n S -+==--. 21解1: 若0a =,()23f x x =-, 显然在[1,1]-上没有零点, 所以 0a ≠. 令 ()248382440a a a a ∆=++=++=, 得a =当a =, ()y f x =恰有一个零点在[]1,1-上; 当()()()()11150f f a a -=--≤,即15a ≤≤时,()y f x =也有零点在[]1,1-上; 当 ()y f x =在[]1,1-上有两个零点时, 则()()208244011121010a a a a f f >⎧⎪∆=++>⎪⎪-<-<⎨⎪≥⎪⎪-≥⎩或()()208244011121010a a a a f f <⎧⎪∆=++>⎪⎪-<-<⎨⎪≤⎪⎪-≤⎩解得5a ≥或32a -<. 因此,a 的取值范围是 1a ≥ 或a ≤. 解2:a =0时,不符合题意,所以a ≠0.又2()223f x ax x a =+--=0在[-1,1]上有解2(21)32x a x ⇔-=-在[-1,1]上有解 212132x a x -⇔=-在[-1,1]上有解,问题转化为求函数22132x y x -=-在[-1,1]上的值域. 设t=3-2x ,x ∈[-1,1],则t ∈[1,5],21(3)217(6)22t y t t t --=⋅=+-,设2277(),'()t g t t g t t t -=+=,t ∈时,'()0g t <,g(t)单调递减,t ∈时,'()g t >0,g(t)单调递增,∴y的取值范围是3,1],∴2()223f x ax x a =+--=0在[-1,1]上有解⇔1a∈3,1]1a ⇔≥或a ≤.。
选校网 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库2007年广东省高考数学(文科)试题及详细解答一、选择题:本大题共l0小题,每小题5分,满分50分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.已知集合{|10}M x x =+>,1{|0}1N x x=>-,则M N = A .{x|-1≤x <1} B .{x |x>1} C .{x|-1<x <1} D .{x |x ≥-1} 2.若复数(1+bi)(2+i)是纯虚数(i 是虚数单位,b 是实数),则b= A .-2 B .12-C. 12D .2 3.若函数f(x)=x 3(x ∈R),则函数y=f(-x)在其定义域上是A .单调递减的偶函数 B.单调递减的奇函数 C .单凋递增的偶函数 D .单涮递增的奇函数4.若向量,a b 满足||||1a b ==,a 与b 的夹角为60︒,则a a a b ⋅+⋅=A .12 B .32 C.312+ D .2 5.客车从甲地以60km /h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km /h 的速度匀速行驶l 小时到达丙地。
下列描述客车从甲地出发,经过乙地,最后到达 丙地所经过的路程s 与时间t 之间关系的图象中,正确的是6.若,,l m n 是互不相同的空间直线,,αβ是不重合的平面,则下列命题中为真命题的是7.图l 是某县参加2007年高考的学 生身高条形统计图,从左到右的各条形表示的学生人数依次记为4,、A :、…、A ,。
(如A :表示身高(单位:cm)在[150,155)内的学生人数).图2是统计图l 中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm ,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是 A.i<9 B.i<8 C.i<7 D.i<68.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是9.已知简谐运动()2sin()(||)32f x x ππϕϕ=+<的图象经过点(0,1),则该简谐运动的最小正周期T 和初相ϕ分别为10.图3是某汽车维修公司的维修点环形分布图公司在年初分配给 A 、 B 、C 、D 四个维修点某种配件各50件.在使用前发现需将 A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件, 但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n)为 A .18 B .17 C .16 D .15二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分. 11.在平面直角坐标系xOy 中,已知抛物线关于x 轴对称,顶点在原点O ,且过点P(2,4),则该抛物线的方程是 . .12.函数f(x)=xlnx(x>0)的单调递增区间是 . .13.已知数列{an}的前n 项和S n =n 2-9n ,则其通项an= ;若它的第k 项满足5<a k <8,则k= 14.(坐标系与参数方程选做题)在极坐标系中,直线l 的方程为ρsin θ=3,则点(2,π/6)到直线l 的距离为 . 15.(几何证明选讲选做题)如图4所示,圆O 的直径AB=6,C 为圆周上一点,BC=3过C 作圆的切线l ,过A 作l 的垂线AD ,垂足为D , 则∠DAC= .三、解答题:本大题共6小题,满分80分. 16.(本小题满分14分)已知ΔABC_三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c ,0).(1)若0AB AC ⋅=,求c 的值; (2)若C=5,求sin ∠A 的值.17.(本小题满分12分)已知某几何体的俯视图是如图5所示的矩形,正视图(或称主 视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视 图)是一个底边长为6、高为4的等腰三角形. (1)求该儿何体的体积V ; (2)求该几何体的侧面积S 18(本小题满分12分)F 表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生 产能耗Y(吨标准煤)的几组对照数据3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,崩最小二乘法求出Y 关于x 的线性回归方程Y=bx+a ;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:32.5+43+54+64.5=66.5) 19(本小题满分14分)在平面直角坐标系xOy 巾,已知圆心在第二象限、半径为22的圆C 与直线y x =相切于坐标原点0.椭圆22219x y a +=与圆c 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程; (2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由. 20.(本小题满分14分)已知函数2()1f x x x =+-,,αβ是力程以()0f x =的两个根(α>β),()f x '是()f x 的导数,设11()1,()n n n n f a a a a f a +==-'(1,2,3,)n = (1)求,αβ的值;(2)已知对任意的正整数n 有n a α>,记lnn n n a b a βα-=-(1,2,3,)n = ,求数列{}n b 的前n 项和n S .21.(本小题满分l4分)已知a 是实数,函数2()223f x ax x a =+--.如果函数()y f x =在区间[-1,1]上有零点,求a 的取值范围. (别解:222230(21)32ax x a x a x +--=⇔-=-,题意转化为知[1,1]x ∈-求23221xa x -=-的值域, 令32[1,5]t x =-∈得276a t t=+-转化为勾函数问题.)选校网 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库 (按ctrl 点击打开)1.【解析】(1,),(,1)M N =-+∞=-∞,故M N (1,1)=-,选(C).2.【解析】(1)(2)(2)(21)bi i b b i ++=-++,依题意202b b -=⇒=, 选(D).3.【解析】函数3()y f x x =-=-单调递减且为奇函数,选(B).4.【解析】23||||||cos 602a a ab a a b ⋅+⋅=+⋅︒= ,选(B)5.【解析】依题意的关键字眼“以80km /h 的速度匀速行驶l 小时到达丙地”选得答案(C).6.【解析】逐一判除,易得答案(D).7.【解析】身高在160~180cm(含160cm ,不含180cm)的学生人数为4567A A A A +++,算法流程图实质上是求和,不难得到答案(B).8.【解析】随机取出2个小球得到的结果数有154102⨯⨯=种(提倡列举).取出的小球标注的数字之和为3或6的结果为{1,2},{1,5},{2,4}共3种,故所求答案为(A ) 9.【解析】依题意2sin 1ϕ=,结合||2πϕ<可得6πϕ=,易得6T =,故选(A).10.【解析】很多同学根据题意发现n=16可行,判除A,B 选项,但对于C,D 选项则难以作出选择,事实上,这是一道运筹问题,需要用函数的最值加以解决.设A B →的件数为1x (规定:当10x <时,则B 调整了1||x 件给A,下同!),B C →的件数为2x ,CD →的件数为3x ,DA →的件数为4x ,依题意可得415040x x +-=,125045x x +-=,235054x x +-=,345061x x +-=,从而215x x =+,311x x =+,4110x x =-,故调动件次11111()|||5||1||10|f x x x x x =+++++-, 画出图像(或绝对值的几何意义)可得最小值为16,故选(C).11.【解析】设所求抛物线方程为2y ax =,依题意2428a a =⇒=,故所求为28y x =12.【解析】由()ln 10f x x '=+>可得1x e >,答案:1(,)e+∞ 13.【解析】{an}等差,易得210n a n =-,解不等式52108k <-<,可得8k =14.【解析】法1:画出极坐标系易得答案2; 法2:化成直角方程3y =及直角坐标(3,1)可得答案2. 15.【解析】由某定理可知60DCA B ∠=∠=︒,又AD l ⊥,故30DAC ∠=︒.16.【解析】(1)(3,4),(3,4)AB AC c =--=--…………………………………………………………4分由0AB AC ⋅= 可得3(3)160c --+=………………6分, 解得253c =………………8分(2)当5c =时,可得5,25,5AB AC BC ===, ΔABC 为等腰三角形………………………10分过B 作BD AC ⊥交AC 于D ,可求得25BD =……12分 故25sin 5BD A AB ==……14分 (其它方法如①利用数量积AB AC ⋅求出cos A 进而求sin A ;②余弦定理正弦定理等!)17.【解析】画出直观图并就该图作必要的说明. …………………3分(2)64V =……………7分 (3)40242S =+………12分18.【解析】(1)画出散点图. …………………………………………………………………………3分 (2)4166.5i i i x y ==∑, 463x y ⋅=, 42186i i x ==∑, 2481x = …………………………………7分由所提供的公式可得0.7b= 0.35a =,故所求线性回归方程为0.70.35y x =+………10分 (3)100(0.71000.35)29.65-⨯+=吨. ………………………………………………………12分 19.【解析】(1)设圆的方程为2()()8x s y t -+-=………………………2分依题意228s t +=,||222s t -=,0,0s t <>…………5分 解得2,2s t =-=,故所求圆的方程为2(2)(2)8x y ++-=……………………7分(注:此问若结合图形加以分析会大大降低运算量!)(2)由椭圆的第一定义可得2105a a =⇒=,故椭圆方程为221259x y +=,焦点(4,0)F ……9分 设00(,)Q x y ,依题意2200(4)16x y -+=, 2200(2)(2)8x y ++-=…………………11分解得00412,55x y ==或000,0x y ==(舍去) ……………………13分 存在412(,)55Q ……14分20.【解析】(1)求根公式得152α-+=, 152β--=…………3分(2)()21f x x '=+………4分 21121n n n a a a ++=+………5分 221,1ααββ=-=-……7分2222112221212ln ln ln ln()2212n n n n n n n n n n n n n n a a a a a a b b a a a a a a ββββββαααααα+++--+--+-=====--+--+-……10分 ∴数列{}n b 是首项11151ln4ln2a b a βα-+==-,公比为q =2的等比数列………11分 ∴1(1)514(21)ln12n n n b q S q -+==⋅--………………………………………………………14分 21.【解析】若0a =,则()23f x x =-,令3()0[1,1]2f x x =⇒=∉-,不符题意, 故0a ≠………2分当()f x 在 [-1,1]上有一个零点时,此时48(3)01112a a a ∆=++=⎧⎪⎨-≤-≤⎪⎩或(1)(1)0f f -⋅≤………6分 解得372a --=或15a ≤≤ …………………………………………………………………8分 当()f x 在[-1,1]上有两个零点时,则48(3)01112(1)(1)0a a a f f ∆=++>⎧⎪⎪-≤-≤⎨⎪-⋅>⎪⎩………………………………10分解得373722112215a aa aa a⎧---+<<⎪⎪⎪≤-≥⎨⎪<>⎪⎪⎩或或或即3711522a a a--<≤<>或或………………12分综上,实数a的取值范围为371(,][,)22---∞+∞. ……………………………………14分。