钻孔灌注桩反循环二次清孔工法
- 格式:docx
- 大小:22.44 KB
- 文档页数:6
一、灌注桩清孔的方法有哪几种?应按什么要求进行?1、抽浆法抽浆清孔比较彻底,适用于各种钻孔方法的摩擦桩、支承桩和嵌岩桩,但孔壁易坍塌的钻孔使用抽浆法清孔时,操作要注意,防止坍孔。
1)用反循环方法成孔时,泥浆相对密度一般控制在1。
1以下,孔壁不易形成泥皮,钻孔终孔后,只需将钻头稍提起空转,并维持反循环5~15min左右就可完全清除孔底沉淀土。
2)正循环成孔,空气吸泥机清孔。
空气吸泥机清孔原理与气举反循环原理相同,但以灌注水下混凝土的导管作为吸泥管.正循环成孔,砂石泵或射流泵清孔,导管作为砂石泵或射流泵的吸浆管清孔。
它的好处是清孔完毕,将特别弯管拆除,装上漏斗,即可开始灌注水下混凝土。
用反循环钻机成孔时,也可等安好灌浆导管后再用反循环方法清孔,以清除下钢筋笼和灌浆导管过程中沉淀的钻碴。
2、换浆法采用泥浆泵,通过钻杆以中速向孔底压入相对密度1.15左右,含砂率<4%的泥浆,把孔内悬浮钻碴多的泥浆替换出来。
对正循环回转钻来说,不需另加机具,且孔内仍为泥浆护壁,不易坍孔.但本法缺点较多,首先,若有较大泥团掉入孔底很难清除;再有就是相对密度小的泥浆是从孔底流入孔中,轻重泥浆在孔内会产生对流运动,要花费很长时间才能降低孔内泥浆相对密度,清孔所花时间太长;当泥浆含砂率较高时,绝不能用清水清孔,以免砂粒沉淀儿达不到清孔目的。
3、掏碴法主要针对冲或冲抓法所成的桩孔,采用抽渣筒进行抽渣清孔。
4、用砂浆置换钻碴清孔法先用抽渣简尽量清除大颗粒钻渣,然后以活底箱在孔底灌注o.6m厚的特殊砂浆.其相对密度较小,能浮在拌合混凝土之上。
采用比孔径稍小的搅拌器.慢速搅拌孔底砂浆,使其与孔底残留钻渣混合。
吊出搅拌器.插入钢筋笼,灌注水下混凝土.连续灌注的混凝土把混有钻渣并浮在混凝土之上的砂浆一直推到到孔口,达到清孔的目的.二、预制桩的使用范围如何?预制桩的打桩顺序如何确定?预制桩易以较厚底强风化或全风化岩层、坚硬黏土土层、密实碎石土、砂土、粉土层作桩端持力层,其上覆土层较软弱,不影响预制桩底穿透底地层。
钻孔灌注桩反循环二次清孔工法GGG(鲁)C1065-2019刘深远杨荣泉闫宗山万雨帆张光桥(山东省路桥集团有限公司山东省公路桥梁建设有限公司)1.前言钻孔灌注桩因孔底沉渣过厚往往会导致承载力折减,根据以往工程对地下桩超声波检测结果分析,在桩基混凝土灌注正常情况下,桩基混凝土边缘部位有缺陷,多数是混凝土内局部有夹块造成的。
经分析认为:夹块由两部分组成,即泥浆中的砂砾沉淀物以及钢筋笼下放过程从井壁上刮落的粘泥块过厚,在灌注桩时,沉淀物随着混凝土上升,因有钢筋笼或井壁阻隔,使沉淀物停滞在局部范围内,并最终造成成桩中局部缺陷。
在黄河中下游的钻孔灌注桩的设计文件中,通常明确要求沉渣厚度小于30cm,比现行规范要求高许多,且工程地质条件复杂,主要穿越地层为分砂层、亚砂层、粘土层,其间交替夹杂有胶结砾岩薄层,因此沉渣厚度控制是成孔质量控制的难点和重点。
因为从提钻到灌注砼,对于百米深桩来说通常需要12个小时以上,在这个过程中,因为泥浆静置时间过长,会产生一部分的沉淀,钢筋笼下放过程中也会从井壁上挂落部分泥块,这些就构成沉渣,可能会超过设计要求,如果不采取措施就灌注,容易引发各种质量事故。
因此,需要在灌注前二次清孔。
2.工法特点2.1清孔彻底:能满足孔底沉淀厚度≤30cm的要求;2.2清孔速度快:从黄河三桥的实践情况看,如果正循环清孔情况比较好的话,一般采用气举反循环清孔50分钟左右就可以达到要求;2.3转换迅速:可以在10分钟内,由清孔状态转换到混凝土灌注状态;2.4经济便捷:本工法需用的机械设备少,材料用量少,制作简单,方便灵活;3.适用范围3.1、本工法适用范围:孔深150m 以内的孔径、对沉渣厚度要求较高,水上(陆地)钻孔灌注桩的施工。
3.2、适用地层:粘土层、砂层、砾石层、卵石层、岩层等地层4.施工工艺4.1清孔的意义钻孔深度达到设计要求并符合终孔条件后,应进行清孔。
清孔的主要目的是清除孔底沉渣,而孔底沉渣则是影响灌注桩承载能力的主要因素之一。
旋挖钻孔灌注桩二次清孔技术旋挖钻孔施工过程中应采取适当措施避免沉渣产生,在钢筋笼、灌注导管安放后,对沉渣过厚的桩孔,须选用合适的二次清孔工艺进行沉渣处理。
二次清孔是在完成旋挖成孔、下入钢筋笼和灌注导管后,利用灌注导管清除孔底沉渣的关键工序。
桩孔二次清孔工艺的合理选择,对清除孔底沉渣,保证桩身工程质量极其重要。
1、泥浆正循环清孔1.1、工艺原理泥浆正循环清孔工艺是普遍采用的一种清孔方式,是由泥浆泵泵送的泥浆经过胶管,与孔口的灌注导管连接,并把泥浆送到孔底;送到孔底的泥浆悬浮并携带孔底沉渣,再经过灌注导管与孔壁之间的环状空间返回地面,流入循环沟、沉淀池,然后进入泥浆池循环使用。
正循环二次清孔工艺原理见图所示:正循环二次清孔原理示意图1.2、清孔操作注意事项泥浆正循环清渣运行时须注意以下事项:(1)选择合适的泥浆泵,泥浆流量过大,对孔壁冲刷大,容易塌孔;泥浆流量小,沉渣上升速度慢,清渣效果差,耗费时间长。
实际施工中,流量、扬程作为选择泥浆泵的依据,可根据桩孔直径大小配制功率在12~30KW之间的3PN泥浆泵。
(2)减少管道接口,避免管道直径剧烈变化、运行方向剧烈变化,减小泥浆循环系统中的沿程阻力和局部阻力消耗。
(3)泥浆循环过程中,泥浆循环系统中含有较多的粗颗粒或岩渣,会反复循环带入孔内,影响清孔效果。
应定期对沉淀池、泥浆池废渣进行清理,可加大、加长泥浆循环沟,并派专人沟内捞渣。
(4)清孔过程中,根据清渣效果适时上下提放、左右移动导管,加快扰动孔底沉渣,以达到快速清渣的效果。
2、泥浆旋流器正循环清孔2.1、工艺原理为减少正循环二次清孔过程中泥浆中粗颗粒含量大,提高泥浆性能指标,缩短清孔时间,提升清孔效果,在泥浆正循环清孔系统中,引进了泥浆旋流器辅助清孔,即:在泥浆泵泵送泥浆入孔底的胶管上,在地面串联泥浆旋流器,在泥浆被泵入孔底前将泥浆中的粗颗粒排出,预先进行浆渣有效分离,保证优质泥浆进入孔底,减少岩渣的重复带入,并有效地提高了泥浆的携渣能力,大大缩短清孔时间,既提高工效,又保证清孔效果。
桩基正反循环问题及清孔问题
正循环回转钻孔原理:用泥浆以高压通过钻机的空心钻杆,从钻杆底部射出,底部的钻头(钻锥)在回转时将土层搅松成钻渣,被泥浆浮悬,随着泥浆上升而溢出流到井外泥浆溜槽,经过沉淀池沉淀净化,泥浆再循环使用。
井孔壁依靠水头和泥浆保护.
反循环回转钻孔原理:泥浆由钻杆外流(注)入井孔,用真空泵或其他方法(如空气吸泥机等)将钻渣从钻杆中吸出。
由于钻杆内径较井孔直径小得多,故钻杆内泥水上升速度较正循环快很多,就是清水也可把钻渣带上钻杆顶端,流到泥浆沉淀池,净化后泥浆可循环使用。
正循环钻成孔施工法是由钻机回转装置带动钻杆和钻头回转切削破碎岩土,钻进时用泥浆护壁、排渣;泥浆由泥浆泵输进钻杆内腔后,经钻头的出浆口射出、带动钻渣沿钻杆与孔壁之间的环状空间上升到孔口溢进沉淀池后返回泥浆池中净化、再供使用。
这样,泥浆在泥浆泵、钻杆、钻孔和泥浆池之间反复循环运行。
反循环钻进时,冲洗液是从钻杆与孔壁间的环状空间中流入孔底,并携带钻渣,经由钻杆内腔返回地面。
由于钻杆内腔断面积比钻杆与孔壁间的环状断面积小得多,故冲洗液在钻杆内腔能获得较大的上返速度。
而正循环钻进时,泥浆运行方向是从泥浆泵输进钻杆内腔,再带动钻渣沿钻杆与孔壁间的环状空间上升到泥浆池的,故冲洗液的上返速度低。
这些都是从一篇论文上看到的,感觉反循环不是这样的,他的意思是泥浆从钻杆内排出,实际当中应该是吸浆泵吸出的吧,真搞晕了!!
第一次清孔是清出孔底的沉渣,那孔内的泥浆要全部清除吗不然怎么放钢筋笼,如何清孔的,听说是稍提起钻头反循环清孔,那泥浆不还在里面吗清孔孔内德泥浆要全部清除吗?。
钻孔灌注桩反循环二次清孔工法钻孔灌注桩反循环二次清孔工法1.前言钻孔灌注桩因孔底沉渣过厚往往会导致承载力折减,根据以往工程对地下桩超声波检测结果分析,在桩基混凝土灌注正常情况下,桩基混凝土边缘部位有缺陷,,2.3.3.1、本工法适用范围:孔深150m以内的孔径、对沉渣厚度要求较高,水上(陆地)钻孔灌注桩的施工。
3.2、适用地层:粘土层、砂层、砾石层、卵石层、岩层等地层4.施工工艺4.1清孔的意义钻孔深度达到设计要求并符合终孔条件后,应进行清孔。
清孔的主要目的是清除孔底沉渣,而孔底沉渣则是影响灌注桩承载能力的主要因素之一。
清孔则是利用泥浆在流动时所具有的动能冲击桩孔底部的沉渣,使沉渣中的岩粒、砂粒等处于悬浮状态,再利用泥浆胶体的粘结力使悬浮着的沉渣随着泥浆的循环流动被带出桩孔,最终将桩孔内的沉渣清干净,这就是泥浆的排渣和清孔作用。
钻孔灌注桩灌注前,由于从提钻到导管陈放完毕这个过程很长,对于钻孔灌注桩来说,必然会使第一次清孔后的沉渣增加,如果不采取措施,沉渣过多,容易引起灌注事故,直接影响桩基的承载力,危及结构安全。
因此,必须高度重视灌注前的二次清孔工作。
4.2清孔方式选择的理论依据R。
当G>P式中:δ--球形颗粒的直径,m;ρkg/m3~4。
v0ρ=1.1浆中砂砾等沉淀物有下沉的趋势,如果泥浆泵流量偏小,将出现大颗粒砂砾悬浮在一定高度以下;如果想把大的沉渣颗粒排出孔外,一方面是加大泥浆的循环速度,另一方面是加大泥浆的密度,但是,受现有泥浆泵排量的限制,泥浆的循环速度不可能提高很多,加大泥浆比重的方法也不可行。
另外因为井壁处泥浆比井中心部位流速慢,造成泥浆含砂率不均匀,最终不能将泥浆中大颗粒完全置换到井外去,因此本工法不采用这种方法。
如果用正循环清孔,φ2.0m的孔的断面积为3.14m2,常用6PNL砂石泵额定排量为280m3/h,假定采用2台并联送水,泥浆携带钻渣后进入钻杆与孔壁形成的环闭空间后上返速度是很低的,满排量时浆液的上返速度仅达到0.05m/s。
钻孔灌注桩反循环二次清孔工法编制单位:山东省路桥集团有限公司编制时间:2008年7月钻孔灌注桩反循环二次清孔工法1.前言钻孔灌注桩因孔底沉渣过厚往往会导致承载力折减.根据以往工程对地下桩超声波检测结果分析.在桩基混凝土灌注正常情况下.桩基混凝土边缘部位有缺陷.多数是混凝土内局部有夹块造成的。
经分析认为:夹块由两部分组成.即泥浆中的砂砾沉淀物以及钢筋笼下放过程从井壁上刮落的粘泥块过厚.在灌注桩时.沉淀物随着混凝土上升.因有钢筋笼或井壁阻隔.使沉淀物停滞在局部范围内.并最终造成成桩中局部缺陷。
在黄河中下游的钻孔灌注桩的设计文件中.通常明确要求沉渣厚度小于30cm.比现行规范要求高许多.且工程地质条件复杂.主要穿越地层为分砂层、亚砂层、粘土层.其间交替夹杂有胶结砾岩薄层.因此沉渣厚度控制是成孔质量控制的难点和重点。
因为从提钻到灌注砼.对于百米深桩来说通常需要12个小时以上.在这个过程中.因为泥浆静置时间过长.会产生一部分的沉淀.钢筋笼下放过程中也会从井壁上挂落部分泥块.这些就构成沉渣.可能会超过设计要求.如果不采取措施就灌注.容易引发各种质量事故。
因此.需要在灌注前二次清孔。
2.工法特点2.1清孔彻底:能满足孔底沉淀厚度≤30cm的要求;2.2清孔速度快:从黄河三桥的实践情况看.如果正循环清孔情况比较好的话.一般采用气举反循环清孔50分钟左右就可以达到要求;2.3转换迅速:可以在10分钟内.由清孔状态转换到混凝土灌注状态;2.4经济便捷:本工法需用的机械设备少.材料用量少.制作简单.方便灵活;3.适用范围3.1、本工法适用范围:孔深150m 以内的孔径、对沉渣厚度要求较高.水上(陆地)钻孔灌注桩的施工。
3.2、适用地层:粘土层、砂层、砾石层、卵石层、岩层等地层4.施工工艺4.1清孔的意义钻孔深度达到设计要求并符合终孔条件后.应进行清孔。
清孔的主要目的是清除孔底沉渣.而孔底沉渣则是影响灌注桩承载能力的主要因素之一。
泥浆旋流器在冲孔灌注桩施工中二次清孔施工工法一、前言冲孔灌注桩是一种基础施工技术,广泛应用于土木工程、建筑工程等领域。
清孔是冲孔灌注桩施工中的一个重要环节,影响着整个工程的质量和稳定性。
传统的清孔施工工法存在着工艺繁琐、耗时长等问题。
为了解决这些问题,泥浆旋流器在冲孔灌注桩施工中逐渐被引入,通过二次清孔施工工法来提高施工效率和质量。
二、工法特点泥浆旋流器在冲孔灌注桩施工中的二次清孔施工工法具有以下特点:1. 施工效率高:通过泥浆旋流器进行二次清孔施工可以大幅度提高清孔速度,减少施工时间。
2. 施工质量好:泥浆旋流器能够有效地清理孔壁,防止孔壁塌陷和侧漏现象,提高桩基的稳定性。
3. 工艺简单:相比传统工法,泥浆旋流器在冲孔灌注桩施工中的二次清孔工法操作简便,易于掌握和操作。
三、适应范围泥浆旋流器在冲孔灌注桩施工中的二次清孔施工工法适用于以下情况:1. 软土地层和岩石地层:清孔工艺可以适应不同的地质条件,无论是软土地层还是岩石地层均适用。
2. 清孔深度较大的情况:泥浆旋流器可以适应较大的清孔深度,提高施工的灵活性。
3. 桩径较大的情况:泥浆旋流器能够适应不同桩径的施工要求,满足不同工程的需求。
四、工艺原理泥浆旋流器在冲孔灌注桩施工中的二次清孔施工工法基于如下工艺原理:1. 通过旋流器产生高速旋转的泥浆流,形成离心力,使泥浆流速增加,清洗孔壁更加彻底。
2. 通过控制旋流器的旋转速度和流量,可以调节泥浆的力学参数,保证清洗效果并防止孔壁塌方和侧漏现象。
五、施工工艺以下是泥浆旋流器在冲孔灌注桩施工中的二次清孔工法的具体施工步骤:1. 设置泥浆旋流器和泥浆池,并连接各个管道。
2. 将泥浆注入泥浆池,通过泥浆泵将泥浆送入旋流器。
3. 开始旋流器,控制旋转速度和泥浆流量,使泥浆从旋流器喷头喷出,并冲刷孔壁。
4. 依次对每个孔进行清孔,注意对孔壁进行均匀清洗。
5. 清孔完成后,关闭泥浆旋流器和泥浆池。
六、劳动组织泥浆旋流器在冲孔灌注桩施工中的二次清孔工法需要经过以下劳动组织:1. 确定施工人员的数量和分工,包括操作泥浆旋流器、调节泥浆参数等。
钻孔灌注桩正循环和反循环施工工艺正循环是冲洗液由泥浆泵通过钻杆送入孔底,再从孔底从孔内上返到地面;反循环的冲洗液刚好与正循环的路由相反。
一般施工中都是用反循环的[正循环旋转钻孔]:泥浆由泥浆泵以高压从泥浆池输进钻杆内腔,经钻头的出浆口射出。
底部的钻头在旋转时将土层搅松成为钻渣,被泥浆悬浮,随泥浆上升而溢出,经过沉浆池沉淀净化,泥浆再循环使用。
井孔壁靠水头和泥浆保护。
[反循环旋转钻孔]:泥浆由泥浆池流入钻孔内,同钻渣混合。
在真空泵抽吸力作用下,混合物进入钻头的进渣口,经过钻杆内腔,泥石泵和出浆控制筏排泄到沉淀池中净化,再供使用。
由于钻杆内径较井孔直径小得多,故钻杆内泥水上升比正循环快4~5倍,在桥梁钻孔桩成孔中处于主导地位。
反循环钻在软塑土、松散的沙、砾、卵及含有长木棒、树根等一杂物的垫土层中钻进,当泥浆性能较差、循环流量(流速)不当时很易发生坍塌。
主要是泥浆循环方式不同,将旋转钻孔机分为正循环钻进和反循环钻进。
正循环钻进是泥浆自供应池由泥浆泵泵出,输入软管送往水龙头上部进口,再注入旋转空心钻杆头部,通过空心钻机一直流到钻头底部排出,旋转中的钻头将泥浆润滑,并将泥浆扩散到整个孔底,携同钻碴浮向钻孔顶部,从孔顶溢排地面上泥浆槽。
反循环钻进与正循环钻进的差异在钻进时泥浆不经水龙头直接注入钻孔四周,泥浆下达孔底,经钻头拌和使孔内部浆液均匀达到扩壁,润滑钻头,浮起钻碴,此时压缩空气不断送入水龙头,通过固定管道直到钻头顶部,按空气吸泥原理,将钻渣从空心钻杆排入水龙头软管溢出。
怎么样判断桩基已入岩?首先你得根据岩土工程勘察报告来进行初步判断,在报告中所描述的深度附近如果进尺发生明显变化,此时你应该将这个深度做一下记录,并仔细观测泥浆中岩屑成份,如果发现基岩碎屑,则可以证明桩基已经入岩。
如何判断桩基已打至中风化层?首先要详细了解勘察报告的地质分部情况,再根据试桩时采集确定的入岩样品来确定。
桩基施工时首先根据机跳反应和孔深来初步判断是否有可能已入岩层,然后现场采集反浆所含岩石样品和试桩时确定的中风化层样品做对比,再根据所采集样品中所含中风化岩层样品的比例来判断是否已进入坚固岩层还是岩层上部松散层。
目录冲(钻)孔灌注桩气举反循环清孔工法1、前言冲(钻)孔灌注桩因承载力大、稳定性好、沉降量小、受施工水位或地下水位高低的影响较小等优点,被广泛地应用于高层建筑、公路桥梁等工程的基础工程。
孔底沉渣厚度的控制是冲(钻)孔灌注桩成孔质量的关键,其质量的优劣将直接影响灌注桩的承载力,有效控制孔底沉渣是控制成桩质量的重要环节之一。
一般冲(钻)孔灌注桩施工需要进行两次清孔作业:第一次清孔是在桩孔施工达到设计深度以后,利用原成孔机具进行,其目的是以替换泥浆为主,清除浮渣为辅,以泥浆性能基本达到要求为标准;第二次清孔是在浇灌桩身混凝土之前,利用灌浆导管进行,其目的是以清除沉渣为主,替换泥浆为辅,以孔底沉渣厚度达到设计要求为标准。
在以正循环工艺施工冲(钻)孔灌注桩时,第二次清孔(以下简称二次清孔)一般均利用导管正循环工艺,效果也很好。
但是在施工较大桩径或超长桩的条件下,除非另配大泵,增加泵量,否则清孔效果下降;而在施工以卵砾石层为持力层的条件下,正循环二次清孔更难以将粒径较大的卵石或碎石清除干净。
当然也有改用泵吸反循环进行二次清孔,在上述施工条件下,其效果显着优于正循环,但砂石泵设备较笨重,机具密封性能要求高,设备在桩孔之间搬动安装不便,故障率也相对较高,若连接部件密封性能出现问题时,就可能影响反循环清孔的效果和时间,清孔工作效率不稳定。
鉴于上述两种清孔方法方法所存在的问题,本工法采用气举反循环清孔工艺,既简化施工难度,又提高了清孔效率,并且有效保证施工质量。
本工法已在多个工程中推广应用,取得了良好的效果。
2、特点此工法清孔能力强、效率高、清孔较彻底,尤其在施工较大桩径或超长桩和施工以卵砾石层为持力层的条件下优势明显;此工法需要的机械设备少,制作简单,操作方便,能够有效提高工作效率。
3、适用范围本工法适用于所有冲(钻)孔灌注桩二次清孔,尤其在施工较大桩径或超长桩的条件下和施工以卵砾石层为持力层的条件下优势明显。
4、工艺原理气举反循环清孔是利用空压机的压缩空气,通过安装在导管内的风管送至桩孔内,高压气与泥浆混合,在导管内形成一种密度小于泥浆的浆气混合物,浆气混合物因其比重小而上升,在导管内混合器底端形成负压,下面的泥浆在负压的作用下上升,并在气压动量的联合作用下,不断补浆,上升至混合器的泥浆与气体形成气浆混合物后继续上升,从而形成流动,因为导管的内断面积大大小于导管外壁与桩壁间的环状断面积,便形成了流速、流量极大的反循环,携带沉渣从导管内反出,排出导管以外。
钻孔灌注桩反循环二次清孔工法钻孔灌注桩反循环二次清孔工法1.前言钻孔灌注桩因孔底沉渣过厚往往会导致承载力折减,根据以往工程对地下桩超声波检测结果分析,在桩基混凝土灌注正常情况下,桩基混凝土边缘部位有缺陷,多数是混凝土内局部有夹块造成的。
经分析认为:夹块由两部分组成,即泥浆中的砂砾沉淀物以及钢筋笼下放过程从井壁上刮落的粘泥块过厚,在灌注桩时,沉淀物随着混凝土上升,因有钢筋笼或井壁阻隔,使沉淀物停滞在局部范围内,并最终造成成桩中局部缺陷。
在黄河中下游的钻孔灌注桩的设计文件中,通常明确要求沉渣厚度小于30cm,比现行规范要求高许多,且工程地质条件复杂,主要穿越地层为分砂层、亚砂层、粘土层,其间交替夹杂有胶结砾岩薄层,因此沉渣厚度控制是成孔质量控制的难点和重点。
因为从提钻到灌注砼,对于百米深桩来说通常需要12个小时以上,在这个过程中,因为泥浆静置时间过长,会产生一部分的沉淀,钢筋笼下放过程中也会从井壁上挂落部分泥块,这些就构成沉渣,可能会超过设计要求,如果不采取措施就灌注,容易引发各种质量事故。
因此,需要在灌注前二次清孔。
2.工法特点2.1清孔彻底:能满足孔底沉淀厚度≤30cm的要求;2.2清孔速度快:从黄河三桥的实践情况看,如果正循环清孔情况比较好的话,一般采用气举反循环清孔50分钟左右就可以达到要求;2.3转换迅速:可以在10分钟内,由清孔状态转换到混凝土灌注状态;2.4经济便捷:本工法需用的机械设备少,材料用量少,制作简单,方便灵活;3.适用范围3.1、本工法适用范围:孔深150m 以内的孔径、对沉渣厚度要求较高,水上(陆地)钻孔灌注桩的施工。
3.2、适用地层:粘土层、砂层、砾石层、卵石层、岩层等地层4.施工工艺4.1清孔的意义钻孔深度达到设计要求并符合终孔条件后,应进行清孔。
清孔的主要目的是清除孔底沉渣,而孔底沉渣则是影响灌注桩承载能力的主要因素之一。
清孔则是利用泥浆在流动时所具有的动能冲击桩孔底部的沉渣,使沉渣中的岩粒、砂粒等处于悬浮状态,再利用泥浆胶体的粘结力使悬浮着的沉渣随着泥浆的循环流动被带出桩孔,最终将桩孔内的沉渣清干净,这就是泥浆的排渣和清孔作用。
65钻孔灌注桩反循环二次清孔工法简介钻孔灌注桩,又称“钻孔灌注桩基础”,是一种常用的基础工程中的一种。
它是将水泥、砾石、沙土、水等混合物从桩顶灌入孔中,并同时顺着孔内自下而上往外挤压出来,使填充物在孔内形成一个均质的柱状体而形成的坚固的基础。
钻孔灌注桩具有承压、承剪、抗弯等力学性能,可以承受地面和建筑物的荷载,同时又具有较好的适应性,可以应对各种地质条件。
在钻孔灌注桩施工过程中,桩孔顶面需要进行清洗,以便使灌注桩的质量得到保障。
而在清洗的过程中,产生了反循环现象,导致桩孔顶端的土层被带到孔口处,填充物受到了很大的影响,从而影响钻孔灌注桩的质量。
因此,进行反循环二次清孔工法可以很好的解决这个问题,保证钻孔灌注桩的质量。
反循环二次清孔工法工作原理在反循环二次清孔工法中,通过分层钻探,将孔深分成若干段,然后对每一段进行清洗,直到孔底。
这样,在清水的冲刷下,孔土彻底剔除,切断了孔底土与桩混凝土的联系,就可以有效地去除反循环带到孔口处的土层,保证填充物的质量。
反循环二次清孔工法的工作示意图如下:1. 第一步,下钻钻杆至洞底,将钻杆抽出,用高压洗车把钻孔壁洗净。
2. 第二步,装上清洗器,清洗干净的清洗液流回到地表,接收槽将清洗液集中进行储存与排放。
3. 第三步,根据计划分段,分别进行各阶段的二次清洗,确保孔底不带土进来。
反循环二次清孔工法的特点1.钻孔灌注桩反循环二次清孔工法可以很好地避免反循环现象,保证了灌注桩的质量。
2.分层钻探的方法,可以有效地对孔壁进行清洗,清洗液可以顺着孔内自下而上流回地表。
3.反循环二次清洗可以确保孔底不带土进来,使钻孔灌注桩更加坚固可靠。
4.在反循环二次清洗的过程中,清洗液可以循环使用,减少了资源的消耗。
结论总之,反循环二次清孔工法是一种比较成熟的钻孔灌注桩施工工艺,可以有效地避免反循环现象,保证了灌注桩的质量。
通过分层钻探,对每一段进行清洗,直到孔底,可以确保孔底不带土进来,保证了钻孔灌注桩的坚固可靠。
钻孔灌注桩反循环二次清孔工法10钻孔灌注桩反循环二次清孔工法1.前言钻孔灌注桩因孔底沉渣过厚往往会导致承载力折减,根据以往工程对地下桩超声波检测结果分析,在桩基混凝土灌注正常情况下,桩基混凝土边缘部位有缺陷,多数是混凝土内局部有夹块造成的。
经分析认为:夹块由两部分组成,即泥浆中的砂砾沉淀物以及钢筋笼下放过程从井壁上刮落的粘泥块过厚,在灌注桩时,沉淀物随着混凝土上升,因有钢筋笼或井壁阻隔,使沉淀物停滞在局部范围内,并最终造成成桩中局部缺陷。
在黄河中下游的钻孔灌注桩的设计文件中,通常明确要求沉渣厚度小于30cm,比现行规范要求高许多,且工程地质条件复杂,主要穿越地层为分砂层、亚砂层、粘土层,其间交替夹杂有胶结砾岩薄层,因此沉渣厚度控制是成孔质量控制的难点和重点。
因为从提钻到灌注砼,对于百米深桩来说通常需要12个小时以上,在这个过程中,因为泥浆静置时间过长,会产生一部分的沉淀,钢筋笼下放过程中也会从井壁上挂落部分泥块,这些就构成沉渣,可能会超过设计要求,如果不采取措施就灌注,容易引发各种质量事故。
因此,需要在灌注前二次清孔。
2.工法特点2.1清孔彻底:能满足孔底沉淀厚度≤30cm的要求;2.2清孔速度快:从黄河三桥的实践情况看,如果正循环清孔情况比较好的话,一般采用气举反循环清孔50分钟左右就可以达到要求;2.3转换迅速:可以在10分钟内,由清孔状态转换到混凝土灌注状态;2.4经济便捷:本工法需用的机械设备少,材料用量少,制作简单,方便灵活;3.适用范围3.1、本工法适用范围:孔深150m 以内的孔径、对沉渣厚度要求较高,水上(陆地)钻孔灌注桩的施工。
3.2、适用地层:粘土层、砂层、砾石层、卵石层、岩层等地层114.施工工艺4.1清孔的意义钻孔深度达到设计要求并符合终孔条件后,应进行清孔。
清孔的主要目的是清除孔底沉渣,而孔底沉渣则是影响灌注桩承载能力的主要因素之一。
清孔则是利用泥浆在流动时所具有的动能冲击桩孔底部的沉渣,使沉渣中的岩粒、砂粒等处于悬浮状态,再利用泥浆胶体的粘结力使悬浮着的沉渣随着泥浆的循环流动被带出桩孔,最终将桩孔内的沉渣清干净,这就是泥浆的排渣和清孔作用。
泥浆旋流器在冲孔灌注桩施工中二次清孔施工工法一、前言泥浆旋流器在冲孔灌注桩施工中二次清孔施工工法是一种有效的施工方法,能够提高灌注桩的质量和施工效率。
本文将详细介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例等内容。
二、工法特点泥浆旋流器在冲孔灌注桩二次清孔施工工法的主要特点包括:施工过程中不会产生振动和噪音,不影响周围环境;清孔施工速度快,施工效率高;能够清除孔内的泥浆和杂质,保证孔洞的质量;施工过程中控制了泥浆的稳定性,提高了桩基的稳定性和承载力。
三、适应范围该工法适用于各类地质条件下的冲孔灌注桩施工,尤其适用于土层稳定、含水量较高的地区。
不同地质条件下,可以根据实际需要调整工艺参数,以达到最佳施工效果。
四、工艺原理泥浆旋流器在冲孔灌注桩二次清孔施工中,通过旋流器将泥浆加入到冲孔孔洞中,并利用旋流的作用将孔洞内的泥浆和杂质分离出来。
通过控制旋流器的旋转速度、泥浆的注入速度和孔洞的清洗方式,能够有效地清除孔洞中的泥浆和杂质,保证孔洞的质量。
同时,通过添加适量的聚合物和控制泥浆的黏度,能够增加孔洞的稳定性和承载力。
五、施工工艺施工工法包括以下几个阶段:准备工作、清洗孔洞、泥浆注入、泥浆旋流清洗和孔洞检查。
在准备工作中,需要准备好所需材料和机具设备。
清洗孔洞阶段通过旋流器清洗孔洞,并将泥浆和杂质排出。
泥浆注入阶段需要根据需要控制泥浆的注入速度和黏度。
泥浆旋流清洗阶段通过旋流器清洗孔洞内的泥浆和杂质,确保孔洞的质量。
最后,进行孔洞检查,检查孔洞的稳定性和质量。
六、劳动组织施工过程中需要进行合理的劳动组织安排,包括人员的分工和岗位职责、施工进度的安排、材料和机具设备的供应等。
同时,要确保施工人员具备相应的技术和安全知识,做好安全教育和培训。
七、机具设备施工中需要使用的机具设备主要包括泥浆旋流器、泥浆搅拌机、泵站、清洗器等。
这些机具设备具有一定的特点和性能,需要进行合理的选择和使用。
钻孔灌注桩清孔方法一、正循环清孔法正循环清孔法是通过钻杆将冲洗液(通常为泥浆)压入孔底,携带钻渣从孔口溢出,从而达到清孔的目的。
在施工过程中,首先需要安装好正循环钻进系统,确保泥浆泵、钻杆、钻头等设备连接牢固且密封良好。
然后启动泥浆泵,将泥浆压入钻杆内,从钻头底部喷出。
泥浆在孔内上升的过程中,会将孔底的钻渣悬浮起来,并随着泥浆一起从孔口排出。
正循环清孔法的优点是设备简单,操作方便,适用于各种地层。
但其缺点也比较明显,清孔效率相对较低,对于较大颗粒的钻渣清除效果不佳,且容易造成泥浆的大量流失。
为了提高正循环清孔的效果,可以适当增加泥浆的比重和粘度,以增强其携带钻渣的能力。
同时,控制钻进速度和钻进深度,避免在孔底形成过多的钻渣堆积。
二、反循环清孔法反循环清孔法与正循环清孔法相反,是通过砂石泵或空气吸泥机将孔底的泥浆和钻渣吸出,形成负压,使孔外的新鲜泥浆通过钻杆与孔壁之间的环状间隙流入孔底,从而实现清孔。
反循环清孔法又分为泵吸反循环清孔和气举反循环清孔两种方式。
泵吸反循环清孔是利用砂石泵的抽吸作用,使钻杆内腔形成负压,在大气压的作用下,孔底泥浆和钻渣被吸入钻杆内腔,然后通过砂石泵排出孔外。
这种方法清孔效率高,能迅速清除孔底的沉渣,尤其适用于大直径、深孔的灌注桩清孔。
气举反循环清孔则是利用压缩空气与钻杆内的泥浆混合,形成密度小于泥浆的气浆混合物。
由于压差的作用,气浆混合物迅速上升,从而将孔底的泥浆和钻渣带出孔外。
气举反循环清孔适用于深孔和复杂地层的灌注桩清孔,但设备相对复杂,操作要求较高。
在进行反循环清孔时,要注意控制抽吸的速度和压力,避免对孔壁造成过大的扰动,导致孔壁坍塌。
同时,要保证泥浆的性能满足清孔要求,防止出现塌孔等问题。
三、掏渣清孔法掏渣清孔法是用掏渣筒或抓斗将孔底的钻渣掏出,达到清孔的目的。
这种方法适用于在冲击钻成孔过程中的初步清孔。
在使用掏渣筒时,将其放入孔底,然后旋转或上下提拉,使筒内装满钻渣,再提出孔外倒掉。
钻孔灌注桩反循环二次清孔工法编制单位:山东省路桥集团有限公司编制时间:2008年7月钻孔灌注桩反循环二次清孔工法1.前言钻孔灌注桩因孔底沉渣过厚往往会导致承载力折减,根据以往工程对地下桩超声波检测结果分析,在桩基混凝土灌注正常情况下,桩基混凝土边缘部位有缺陷,多数是混凝土内局部有夹块造成的。
经分析认为:夹块由两部分组成,即泥浆中的砂砾沉淀物以及钢筋笼下放过程从井壁上刮落的粘泥块过厚,在灌注桩时,沉淀物随着混凝土上升,因有钢筋笼或井壁阻隔,使沉淀物停滞在局部范围内,并最终造成成桩中局部缺陷。
在黄河中下游的钻孔灌注桩的设计文件中,通常明确要求沉渣厚度小于30cm,比现行规范要求高许多,且工程地质条件复杂,主要穿越地层为分砂层、亚砂层、粘土层,其间交替夹杂有胶结砾岩薄层,因此沉渣厚度控制是成孔质量控制的难点和重点。
因为从提钻到灌注砼,对于百米深桩来说通常需要12个小时以上,在这个过程中,因为泥浆静置时间过长,会产生一部分的沉淀,钢筋笼下放过程中也会从井壁上挂落部分泥块,这些就构成沉渣,可能会超过设计要求,如果不采取措施就灌注,容易引发各种质量事故。
因此,需要在灌注前二次清孔。
2.工法特点清孔彻底:能满足孔底沉淀厚度≤30cm的要求;清孔速度快:从黄河三桥的实践情况看,如果正循环清孔情况比较好的话,一般采用气举反循环清孔50分钟左右就可以达到要求;转换迅速:可以在10分钟内,由清孔状态转换到混凝土灌注状态;经济便捷:本工法需用的机械设备少,材料用量少,制作简单,方便灵活;3.适用范围、本工法适用范围:孔深150m 以内的孔径、对沉渣厚度要求较高,水上(陆地)钻孔灌注桩的施工。
、适用地层:粘土层、砂层、砾石层、卵石层、岩层等地层4.施工工艺清孔的意义钻孔深度达到设计要求并符合终孔条件后,应进行清孔。
清孔的主要目的是清除孔底沉渣,而孔底沉渣则是影响灌注桩承载能力的主要因素之一。
清孔则是利用泥浆在流动时所具有的动能冲击桩孔底部的沉渣,使沉渣中的岩粒、砂粒等处于悬浮状态,再利用泥浆胶体的粘结力使悬浮着的沉渣随着泥浆的循环流动被带出桩孔,最终将桩孔内的沉渣清干净,这就是泥浆的排渣和清孔作用。
钻孔灌注桩灌注前,由于从提钻到导管陈放完毕这个过程很长,对于钻孔灌注桩来说,必然会使第一次清孔后的沉渣增加,如果不采取措施,沉渣过多,容易引起灌注事故,直接影响桩基的承载力,危及结构安全。
因此,必须高度重视灌注前的二次清孔工作。
清孔方式选择的理论依据沉淀物主要由泥块和沉淀砂砾组成。
泥块主要是由钢筋笼下放刮落的井壁泥皮造成的;而砂砾沉淀物主要由泥浆中的悬浮颗粒造成的。
确定沉渣颗粒在泥浆处于悬浮状态的临界沉降速度v0的思路是:假定颗粒为球形,其重力为G,颗粒在液体中的浮力为P,球形颗粒在液体中的沉降阻力为R。
当G>P时,岩屑下降,速度逐渐增大,R值也随之增大。
当R值达到足以使作用在岩屑上的三种力保持平衡时, 即R=G-P时,岩屑将以恒速v0下降。
通过推导可得出沉降速度(即雷廷格尔公式)为式中:δ--球形颗粒的直径,m;ρs—颗粒的密度,kg/m3;ρ—泥浆的密度,kg/m3;k—颗粒的形状系数,圆形颗粒k为4~,不规则形状的颗粒k为~4。
泥质孔的颗粒的最大尺寸与钻具和地质条件有关。
根据最大颗粒直径可求出v0,从而求得泥浆流量。
假设球形颗粒的直径δ=;颗粒的密度ρs=×103kg/m3;泥浆的密度ρ=×103kg/m3;颗粒形状系数k=4;求的v0=s。
4. 3传统正循环清孔法的弊端正循环清孔是泥浆由钻杆或导管注入孔底,带动沉淀物上浮,在重力作用下泥浆中砂砾等沉淀物有下沉的趋势,如果泥浆泵流量偏小,将出现大颗粒砂砾悬浮在一定高度以下;如果想把大的沉渣颗粒排出孔外,一方面是加大泥浆的循环速度,另一方面是加大泥浆的密度,但是,受现有泥浆泵排量的限制,泥浆的循环速度不可能提高很多,加大泥浆比重的方法也不可行。
另外因为井壁处泥浆比井中心部位流速慢,造成泥浆含砂率不均匀,最终不能将泥浆中大颗粒完全置换到井外去,因此本工法不采用这种方法。
如果用正循环清孔,φ的孔的断面积为,常用6PNL砂石泵额定排量为280m3/h,假定采用2台并联送水,泥浆携带钻渣后进入钻杆与孔壁形成的环闭空间后上返速度是很低的,满排量时浆液的上返速度仅达到s。
根据上述公式可见正循环钻进只有依靠高浓度高密度泥浆来悬浮钻渣,最终端沉渣厚度不能保证符合设计要求,从而容易引发质量隐患。
表1钻孔用泥浆泵的主要性能反循环清孔4.4.1反循环清孔通常采用两种方式,一种是泵吸反循环,另一种是气举反循环。
泵吸反循环是通过砂石泵的抽吸作用,在钻杆内腔形成负压,在孔内液柱和大气压的作用下,孔壁与环状空间的泥浆流向孔底,将沉渣带进钻杆(导管)内腔,再经过砂石泵排至地面沉淀池内;沉淀钻渣后,泥浆流向孔内,形成反循环。
采用泵吸反循环法进行二次清孔,目前常用8BS砂石泵额定排量为400m3/h,假定采用φ的导管进行清孔,满负荷时泥浆上返流速可以达到s,可以看出该速度远大于钻渣上返所需流速s的要求,因此进入导管内的钻渣能够被有效的抽吸上来。
由于现有的离心泵的泵压较小,无法满足直径2m,深达120多米的钻孔灌注桩清孔的需要,因此,本工法推荐对于直径,设计深度90m以下的桩,采用泵吸反循环法进行二次清孔;对于直径,设计深度120m的桩采用气举反循环法进行二次清孔。
4.4.2 气举反循环4.4.2.1气举反循环的原理气举反循环的原理是:压缩空气经风管向导管(排渣管)内送风,风管内的空气与泥浆混合物密度(约为)小于导管(排渣管)内泥浆密度(约为),形成负压区,在大气压的作用下,汽水混合物排出管外;孔底泥浆及沉淀物的混合物沿着导管上升,补充到负压区;为防止孔中泥浆水头过小,及时用泥浆泵将优质(含砂率低)泥浆补充到孔内,并形成循环系统。
4.4.2.2气举反循环的设备气举反循环的设备非常简单,主要的构造见图2所示。
除了风管、排渣金属管、排渣软管、法兰盘接头外,现场只需要一台9~20m3/h空压机就可完成整套施工工艺。
图2给出了两种形式的气举反循环设备。
形式1是直接利用导管作为排渣管,优点是操作简便、工序转换速度快,现场只要沉放风管即可,缺点是需要的风量较大,需要大型的空压机。
形式2是在导管内增加了一根金属排渣管,其缺点是现场操作量比形式1复杂,其优点是现场需要一个较小的空压机就可实现。
由理论计算和工程实践,以120m钻孔灌注桩为例,在此给出气举反循环系统的几个参考数据:风管的入水深度在30~40m,要求制作的风管长度为36m,分为3节,每节12m,中间用法兰盘连接;风压(mpa)可按公式H/100+计算,H为风管口入水深度(m),考虑到风管接头密实性等因素,需要~风压;风量可以根据《桥涵》(上册)(人民交通出版社)空气吸泥机一章的有关公式计算;5.质量标准及质量控制清孔完成后,孔底沉渣应严格控制在30cm以内,泥浆指标合格(泥浆相对密度:~;粘度:17~20s;含沙率:<2﹪),并应立即进行检查验收。
检查验收合格后,应立即灌注水下混凝土,以免渣土重新沉淀,造成沉渣过厚而影响桩的承载力。
因为泵吸反循环比较简单,运用较多,在此只提出气举反循环的操作注意事项:①出浆管底口距离井口深度不宜小于30m,以形成足够的备压,但也不能小于5m,否则不能形成有效的反循环体系;②出浆管及高压进气管的法兰盘连接紧密,确保不漏气;③气举反循环过程中,保证有足够的优质泥浆补充到井孔内,并且要在开启反循环前先送浆,时刻观察护筒内泥浆面的变化情况,防止泥浆补充不足,水头下降过大造成塌孔;④为防止孔内沉淀物堵塞出浆管,在气举反循环前,要把导管提离孔底一段距离,待反循环形成后,视出浆清孔逐步下沉;⑤由于桩孔较大,要左、右移动导管及前后移动平台,使清孔比较彻底。
6.机具设备泵吸反循环清孔设备:排渣软管、8BS砂石泵。
气举反循环清孔设备:除了风管、排渣金属管、排渣软管、法兰盘接头外,现场只需要一台9~20m3/h空压机就可完成整套施工工艺。
7.安全措施、起重安全:本工法用到的主要的施工机械是汽车吊,因此要注意起重安全,严格执行起重操作规程,不能因为起重点重量不大而掉以轻心。
、用电安全:、严格用电管理,施工现场的一切电源电路的安装和拆除,必须由持证电工操作,电器必须严格接地、接零和漏电保护器,场地电缆应架空,严禁拖地和埋压土中。
8.环保措施1)施工机械注意保养,维修时防止油料洒落污染河水;2)废弃砼,清洗罐车、导管的废水必须集中处理。
3)经常对施工机械进行保养,尽量减少噪音污染。
4)施工过程中的废弃物、边角料、包装袋等及时收集、清理、集中处理。
9.效益分析反循环法二次清孔技术给我们带来的第一个效益就是质量安全:灌注混凝土是保证成桩质量的关键工序,“断桩”、“夹泥”、“堵管”等常见的灌注质量事故都与孔内混凝土上部压力过大有一定关系。
正循环为了有效的排渣,选用的泥浆(泥浆)密度高、浓度大,势必造成孔内压力大,这样混凝土人导管排出的阻力增大,浇注困难;另外正循环钻孔过程中因泥浆浓度高、密度大所形成的孔底沉渣,很难从孔中完全清除,所以其中一部分在浇注过程中卷入泥浆中更加大混凝土抬升的阻力,这种阻力在灌注临近结束时更加明显(可以观察此时孔内排出的泥浆密度、浓度明显加大,流淌缓慢,偶尔有大块的絮状泥块出现),若处理不当,很容易使临近桩顶10m左右混凝土质量差、强度低,而该部分又是桩受力的关键位置。
反循环二次清孔技术的运用使钻渣清理较为彻底,因此灌注较为顺畅,桩顶沉渣少,桩身混凝土质量明显提高。
反循环法二次清孔技术大大缩短了百米深桩的清孔时间,提高了成孔效率。
通常,对于百米深桩而言,采用正循环法进行清孔,要达到沉渣厚度小于30cm的要求,大约需要10个小时的时间,而采用反循环法进行二次清孔,一般只要1个小时就可以达到浇注状态。
经济效益明显。
对于黄河中下游这种地质条件而言,如采用反循环法成孔,一个设计钻深120m,直径2.0m的钻孔灌注桩的成孔时间大约为5天;采用正循环法成孔,反循环清孔的工艺,成孔时间在7天左右;但是反循环施工工艺的设备功率大约是正循环工艺设备的2倍,这样算下来,每一个孔大约可以节约30%的费用。
综上所述,反循环本身所具有的特点,给提高成孔效率、成桩质量和综合经济效益等方面带来一系列的好处。
10.工程实例从施工经济性、安全性出发,济南黄河三桥项目对全部的钻孔灌注桩工程采用正循环钻孔,反循环清孔的施工方案,成功的把沉渣厚度控制在设计要求以内,取得了满意的效果。
黄河三桥钻孔灌注桩施工从2005年3月20日开始,到2005年12月16日结束,直径~,孔深80~120m,共完成337棵桩,全部采用反循环清孔法进行灌注前二次清孔,保证了沉渣厚度控制设计文件中不大于30cm的要求,经超声波检测表明全部达到I类桩标准。