6.3.4实践与探索(数字问题、利润问题)
- 格式:ppt
- 大小:283.00 KB
- 文档页数:10
§6.3 实践与探索(2)科目:七年级数学备课人:王淑轶导学目标:1、理解商品利润和储蓄问题中的数量关系,并能根据数量关系列出一元一次方程进行解答,并检验结果是否合理;2、进一步体会方程是刻画现实世界的有效数学模型,培养分析问题和用方程解决实际问题的能力;3、感受数学在实际生活中的应用价值。
内容分析:学习重点:分析问题中的等量关系,建立方程解决问题。
学习难点:确定题目中的等量关系。
导学过程:一、复习回顾,导入新课:1、王叔叔将a元钱存2年的定期储蓄。
已知年利率为p%,那么到期后王叔叔一共可以得到元。
2、某件商品标价a元,进价b元。
在促销活动期间打八折销售后,可获得利润元。
二、合作探究:1、小明爸爸前年存了年利率为2.43%的二年期定期储蓄。
今年到期后,所得利息正好为小明买了一只价值48.60元的计算器。
问小明爸爸前年存了多少元?2、某银行设立大学生助学贷款,分3~4年期和5~7年期两种。
贷款年利率分别为6.03%、6.21%,贷款利息的50%由国家财政贴补。
某大学生预计6年后能一次性偿还1.8万元,问他现在大约可以贷款多少元?(结果精确到0.1万元)思考:根据“预计6年后能一次性偿还1.8万元”,他应选择年期贷款,并由此可知贷款年利率为。
题中的等量关系为,列方程为。
解:3、学校准备添置一批课桌椅,原订购60套,每套100元。
店方表示:如果多购,可以优惠。
结果校方购了72套,每套减价3元,但商店获得同样多的利润。
求每套课桌椅的成本。
思考:设每套课桌椅成本为x元,那么“原订购60套,每套100元”时,售价为元,成本为元,利润为元;实际“购了72套,每套减价3元”,售价为元,成本为元,利润为元。
根据“获得同样多的利润”,可列方程为。
解:三、巩固练习:某商场将每台彩电按进价提高40%标价,然后在广告宣传中以八折的优惠价出售,实质上商场仍可每台获利300元。
这种彩电的进价和标价各是多少元?四、拓展延伸:实验中学去年为全体教职工投保了团体人身意外伤害保险,向保险公司缴纳了1200元保险费。
三一文库()/初中一年级〔长江作业本七年级下册数学答案[1]〕第6章一元一次方程§6.1 从实际问题到方程一、1.D 2. A 3. A二、1. x = - 6 2. 2x-15=25 3. x =3(12-x)三、1.解:设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米,可列方程为:5.8-x=3x+0.62.解:设苹果买了x千克, 则可列方程为: 4x+3(5-x)=173.解:设原来课外数学小组的人数为x,则可列方程为:§6.2 解一元一次方程(一)一、1. D 2. C 3.A二、1.x=-3,x= 2.10 3. x=5三、1. x=7 2. x=4 3. x= 4. x= 5. x=3 6. y=§6.2 解一元一次方程(二)一、1. B 2. D 3. A二、1.x=-5,y=3 2. 3. -3三、1. (1)x= (2)x=-2 (3)x= (4) x=-4 (5)x = (6)x=-22. (1)设初一(2)班乒乓球小组共有x人, 得:9x-5=8x+2. 解得:x=7 (2)48人3. (1)x=-7 (2)x=-3§6.2 解一元一次方程(三)一、1. C 2. D 3. B 4. B二、1. 1 2. 3. 10三、1. (1) x=3 (2) x=7 (3)x=–1 (4)x= (5) x=4 (6) x=2. 3( x-2) -4(x- )=4 解得 x=-33. 3元§6.2 解一元一次方程(四)一、1. B 2.B 3. D二、1. 5 2. , 3. 4. 15三、1. (1)y = (2)y =6 (3)(4)x=2. 由方程3(5x-6)=3-20x 解得x= ,把x= 代入方程a-x=2a+10x,得a =-8.∴当a=-8时,方程3(5x-6)=3-20x与方程a- x=2a+10x有相同的解.3. 解得:x=9§6.2 解一元一次方程(五)一、1.A 2. B 3. C二、1.2(x +8)=40 2. 4,6,8 3.2x+10=6x+5 4. 15 5. 160元三、1. 设调往甲处x人, 根据题意,得27+x=2[19+(20-x)]. 解得:x=172. 设该用户5月份用水量为x吨,依题意,得1.2×6+2(x-6)=1.4 x.解得 x=8. 于是1.4x=11.2(元) .3. 设学生人数为x人时,两家旅行社的收费一样多. 根据题意,得240+120x=144(x+1),解得 x=4.§6.3 实践与探索(一)一、1. B 2. B 3. A二、1. 36 2. 3. 42,270三、1. 设原来两位数的个位上的数字为x,根据题意,得10x+11-x=10(11-x)+x+63. 解得 x=9. 则原来两位数是29. 2.设儿童票售出x张,则成人票售出(700-x)张.依题意,得30x+50(700-x)=29000 . 解得:x=300, 则700-x=700-300=400人. 则儿童票售出300张,成人票售出400张.§6.3 实践与探索(二)一、1. A 2. C 3. C二、1. x+ x+1+1=x 2. 23.75% 3. 2045三、1. 设乙每小时加工x个零件,依题意得,5(x+2)+4(2x+2)=200 解得x=14.则甲每小时加工16个零件,乙每小时加工14个零件.2. 设王老师需从住房公积金处贷款x元,依题意得,3.6%x+4.77%(250000-x)=10170. 解得 x=150000. 则王老师需从住房公积金处贷款150000元,普通住房贷款100000元.3. 设乙工程队再单独做此工程需x个月能完成,依题意,得解得 x = 14. 小时第7章二元一次方程组§7.1 二元一次方程组和它的解一、1. C 2. C 3. B二、1. 2. 5 3.三、1. 设甲原来有x本书、乙原来有y本书,根据题意,得2. 设每大件装x罐,每小件装y罐,依题意,得 .3. 设有x辆车,y个学生,依题意§7.2二元一次方程组的解法(一)一、1. D 2. B 3. B二、1. 2.略 3. 20三、1. 2. 3. 4.§7.2二元一次方程组的解法(二)一、1. D 2. C 3.A二、1. , 2. 18,12 3.三、1. 2. 3. 4.四、设甲、乙两种蔬菜的种植面积分别为x、y亩,依题意可得:解这个方程组得§7.2二元一次方程组的解法(三)一、1. B 2.A3.B 4. C二、1. 2. 9 3. 180,20三、1. 2. 3.四、设金、银牌分别为x枚、y枚,则铜牌为(y+7)枚,依题意,得解这个方程组, , 所以 y+7=21+7=28.§7.2二元一次方程组的解法(四)一、1. D 2. C 3. B二、1. 2. 3, 3. -13三、1. 1. 2. 3. 4. 5. 6.四、设小明预订了B等级、C等级门票分别为x张和y张. 依题意,得解这个方程组得§7.2二元一次方程组的解法(五)一、1. D 2. D 3. A二、1. 24 2. 6三、1. (1)加工类型项目精加工粗加工加工的天数(天)获得的利润(元)6000x 3. 28元,20元8000y(2)由(1)得:解得∴答:这批蔬菜共有70吨.2.设A种篮球每个元,B种篮球每个元,依题意,得解得3.设不打折前购买1件A商品和1件B商品需分别用x元,y元,依题意,得解这个方程组,得因此50×16+50×4-960=40(元).§7.3实践与探索(一)一、1. C 2. D3.A。
章节测试题1.【题文】列方程或方程组解应用题:某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?【答案】购进甲商品100件,乙商品60件.【分析】利用图表假设出两种商品的进价,得出它们的和为160件,也可表示出利润,得出二元方程组求出即可.【解答】解:设甲商品购进x件,则乙商品购进(160-x)件解得,x=100160-x=60(件)答:购进甲商品100件,乙商品60件.2.【题文】用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个等边三角形底面组成,硬纸板用如图两种方法裁剪(裁剪后边角料不再利用).现有19张硬纸板,其中x张硬纸板用方法一裁剪,其余硬纸板用方法二裁剪.(1)分别求裁剪出的侧面和底面的个数.(用含x的代数式表示)(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?【答案】(1)(2x+76)个,(95-5x)个;(2)30个【分析】(1)由x张用A方法剪,可得用19-x)张用B方法剪,再结合题意可用x分别表示出侧面个数和底面个数;(2)先由侧面个数和底面个数比为3:2建立方程,然后求出x的值并检验,再由求出侧面的总数就可以求得盒子的个数.【解答】解:(1)侧面个数:个.底面个数:个.(2)由题意,得.解得.(个) .答:若裁剪出的侧面和底面恰好全部用完,能做30个盒子.3.【题文】元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了300元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出200元之后,超出部分按原价8.5折优惠.设某位顾客在元旦这天预计累计购物x元(其中x>300).(1)当x=400时,顾客到哪家超市购物优惠.(2)当x为何值时,顾客到这两家超市购物实际支付的钱数相同.【答案】(1) 到乙超市购物优惠;(2) 当x=600时,两家超市所花实际钱数相同.【分析】(1)根据两超市的优惠方案分别计算出当购物400元时,各自需支付的费用,并比较大小即可得出在哪家购买更优惠;(2)由题意可知,当累计购物x(x>300)元时,甲超市所支付费用为:[300+0.8(x-300)]元;乙超市所支付费用为:[200+0.85(x-200)]元;由两超市所花实际费用相等可列出方程,解方程即可得到答案.【解答】解:(1)由题意可得:当x=400时,在甲超市购物所付的费用是:0.8×400+60=380(元),在乙超市购物所付的费用是:0.85×400+30=370(元),∵380>370,∴当x=400时,到乙超市购物优惠;(2)根据题意得:300+0.8(x-300)=200+0.85(x-200),解得:x=600.答:当x=600时,两家超市所花实际钱数相同.4.【题文】马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.【答案】今年妹妹6岁,哥哥10岁.【分析】设妹妹的年龄为岁,由已知可得哥哥的年龄为岁,则2年后妹妹的年龄为岁,哥哥的年龄为岁,爸爸的年龄为岁,根据题意即可列出方程,解方程即可求得答案.【解答】解:设今年妹妹的年龄为x岁,哥哥的年龄为(16-x)岁,根据题意得:,解得:,∴.答:今年妹妹6岁,哥哥10岁.5.【题文】已知一个长方形的周长为60cm.(1)若它的长比宽多6cm,这个长方形的宽是多少cm?(2)若它的长与宽的比是2:1,这个长方形的长是多少cm?【答案】(1)这个长方形的宽是12cm;(2)这个长方形的长是20cm.【分析】(1)设长方形的宽为xcm,则长为(x+6)cm,根据长方形的周长为60cm列出方程解答即可;(2)设长方形的宽为acm,则长为2acm,根据长方形的周长为60cm列出方程解答即可.【解答】解:(1)设长方形的宽为xcm,则长为(x+6)cm,由题意得2[x+(x+6)]=60,解得:x=12.答:这个长方形的宽是12cm;(2)设长方形的宽为acm,则长为2acm,由题意得2(2a+a)=60,解得:a=10,2a=20.答:这个长方形的长是20cm.6.【题文】兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?【答案】3年前兄的年龄是弟的年龄的2倍.【分析】等量关系为:若干年后兄的年龄=2若干年后弟的年龄,把相关数值代入求解即可.【解答】解:设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的年龄是15+x,弟的年龄是9+x.由题意,得2×(9+x)=15+x,18+2x=15+x,2x﹣x=15﹣18,∴x=﹣3.答:3年前兄的年龄是弟的年龄的2倍.7.【题文】某商场用2500元购进了A,B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示:(1)这两种台灯各购进多少盏?(2)若A型台灯按标价的九折出售,B型台灯按标价的八折出售,那么这批台灯全部出售完后,商家共获利多少元?【答案】(1)购进A型台灯30盏,则购进B型台灯20盏;(2)商家共获利720元.【分析】(1)利用单价个数=总价列方程,求解.(2)按照折扣计算利润.【解答】解:(1)设购进A型台灯盏,则购进B型台灯盏,依题意列方程得:,解得:.则,答:购进A型台灯30盏,则购进B型台灯20盏.(2),答:商家共获利720元.8.【题文】A、B两地果园分别有苹果20吨和30吨,C、D两地分别需要苹果15吨和35吨.已知从A、B到C、D的运价如下表:到C地到D地(1)若从A果园运到C地的苹果为x吨,则从A果园运到D地的苹果为_________吨,从A果园将苹果运往D地的运输费用为_________元;(2)用含x的式子表示出总运输费;(要求:列式后,再化简)(3)如果总运输费为545元时,那么从A果园运到C地的苹果为多少吨?【答案】 (20-x) 12(20-x)【分析】(1)A果园运到D地的苹果=A果园共有苹果吨数20-A果园运到C地的苹果为x吨;从A果园将苹果运往C地的运输费用为15×相应的吨数;(2)总运输费=A果园运到C地的总运费+A果园运到D地的总运费+B果园运到C地的总运费+B果园运到D地的总运费;(3)根据总运输费为545元,列出方程求解即可.【解答】解:(1)若从A果园运到C地的苹果为x吨,则从A果园运到D地的苹果为(20-x)吨,从A果园将苹果运往D地的运输费用为12(20-x)元;(2)15x+12(20-x)+10(15-x)+9(35-20+x)=2x+525.(3)由题意得2x+525=545,解得x=10.答:从A果园运到C地的苹果为10吨.9.【题文】一份试卷,一共30道选择题,答对一题得3分,答错一题扣1分,小红每题都答了,共得78分,那么小红答对了几道题?请根据题意,列出方程.【答案】3x-(30-x)×1=78.【分析】等量关系为:答题得分=答对的题得分-答错题扣的分,设答对了x道题,则答错了(30-x)道题,答对题得分为:3x,答错的题扣分为: (30-x),根据题意可列出方程.【解答】解:设小红答对了x道题,由题意得:3x-(30-x)×1=78.10.【题文】学校广播站要招收一名播音员,考查形象、知识面、普通话三个项目.按形象占10%,知识面占40%,普通话占50%,计算加权平均数,作为最后评定的总成绩.李文和孔明两位同学的各项成绩如下表:(1)计算李文同学的总成绩;(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩x应超过多少分?【答案】(1) 83分;(2)应超过90分.【分析】(1)根据每一个项目所占的百分比计算总成绩;(2)假设他们的成绩相等,列方程求解.【解答】解:(1)70×10%+80×40%+88×50%=83(分)所以李文同学的总成绩是83分.(2)当两人成绩相等时,则80×10%+75×40%+x×50%=83,∴x=90,即若孔明同学的总成绩要超过李文同学,则他的普通话成绩x应超过90分.11.【题文】一个两位数,十位上的数字比个位上的数字小4,如果把十位上的数与个位上的数对调后,那么所得的两位数比原来的两位数的2倍小12,求原来的两位数.【答案】48【分析】设原来十位上的数字为x,则个位上的数为x+4.根据等量关系“新两位数=原两位数×2-12”,列出方程,解方程求得x的值,即可得原来的两位数.【解答】解:设原来十位上的数字为x,则个位上的数为x+4.依题意得10(x+4)+x=2(10x+x+4)-12.解得x=4.则x+4=4+4=8.答:原来的两位数是48.12.【题文】一件工作,甲单独完成需7.5小时,乙单独完成需5小时,先由甲、乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务?【答案】小时.【分析】设共需要x小时完成任务.,根据总工作量=各部分的工作量之和建立等量关系列出方程解方程即可.【解答】解:设共需要x小时完成任务.由题意得(+)×1+=1.解得x=.答:共需小时完成任务.13.【题文】将一个底面直径是20厘米,高为9厘米的“矮胖”形圆柱,锻压成底面直径是10厘米的“痩长”形圆柱,高变成了多少?【答案】36cm【分析】设高变成了x厘米,根据“矮胖”形圆柱的体积=“痩长”形圆柱的体积,列出方程解方程即可.【解答】解:设高变成了x厘米,根据题意得π×102×9=π×52·x.解得x=36.答:高变成了36厘米.14.【答题】某种商品的进价为320元,为了吸引顾客,按标价的八折出售,这时仍可盈利至少25%,则这种商品的标价最少是______元。
业务利润贡献分析工作总结1. 工作背景在过去的一年中,我担任公司业务利润贡献分析的工作,通过对公司各项业务的盈利能力进行深入研究,为公司的决策层了有力的数据支持。
我的工作重点是分析不同业务线的利润贡献,识别盈利潜力,并提出相应的优化建议。
2. 工作内容2.1 数据收集与处理我负责收集并整理公司各业务线的财务数据,包括销售额、成本、费用等关键指标。
为了确保数据的准确性和完整性,我与财务部门、销售部门等相关部门进行了密切的合作,并对数据进行了多次核对和校验。
2.2 利润贡献分析通过对各业务线的利润贡献进行详细分析,我能够为公司以下方面的信息:• 各业务线的盈利能力:通过对比不同业务线的销售额和成本,评估各业务线的盈利能力。
• 利润贡献结构:分析各业务线在不同产品、不同地区、不同客户群等方面的利润贡献结构,以便公司更好地调整战略和资源配置。
• 变化趋势:跟踪并分析各业务线的利润贡献随时间的变化趋势,及时发现问题并采取措施。
2.3 优化建议基于利润贡献分析的结果,我提出了一系列优化建议,以帮助公司提高盈利能力:• 资源调整:根据各业务线的盈利能力和利润贡献结构,建议公司对资源进行重新配置,将更多的资源投入到盈利能力较强的业务线和产品上。
• 成本控制:识别并分析各业务线的关键成本要素,提出成本控制措施,以降低成本并提高利润。
• 市场拓展:根据利润贡献分析的结果,建议公司在有潜力的市场和客户群进行重点拓展,以增加销售额和利润。
3. 工作成果通过我的努力,公司对各业务线的盈利能力有了更深入的了解,并基于我的分析结果进行了相应的决策和资源调整。
在过去的一年中,公司的整体盈利能力得到了显著提升,各业务线的利润贡献更加均衡,市场拓展和成本控制方面也取得了可喜的成果。
4. 工作反思在业务利润贡献分析的工作中,我认为还有进一步提升的空间:• 数据质量:虽然我已经与相关部门进行了密切合作,但数据质量仍然可能存在一定的问题。
七年级下册数学同步《新课程课堂同步练习册·数学(华东版七年级下册)》参考答案第6章一元一次方程§6.1 从实际问题到方程一、1.D 2. A 3. A二、1.x = - 6 2. 2x-15=25 3. x =3(12-x)三、1.解:设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米,可列方程为:5.8-x=3x+0.62.解:设苹果买了x千克, 则可列方程为: 4x+3(5-x)=173.解:设原来课外数学小组的人数为x,则可列方程为:§6.2 解一元一次方程(一)一、1. D 2. C 3.A二、1.x=-3,x= 2.10 3. x=5三、1. x=7 2. x=4 3. x= 4. x= 5. x=3 6. y=§6.2 解一元一次方程(二)一、1. B 2. D 3. A二、1.x=-5,y=3 2. 3. -3三、1. (1)x= (2)x=-2 (3)x= (4) x=-4 (5)x = (6)x=-22. (1)设初一(2)班乒乓球小组共有x人, 得:9x-5=8x+2. 解得:x=7 (2)48人3. (1)x=-7 (2)x=-3§6.2 解一元一次方程(三)一、1. C 2. D 3. B 4. B二、1. 1 2. 3. 10三、1. (1) x=3 (2) x=7 (3)x=–1 (4)x= (5) x=4 (6) x=2. 3( x-2) -4(x- )=4 解得x=-33. 3元§6.2 解一元一次方程(四)一、1. B 2.B 3. D二、1. 5 2. , 3. 4. 15三、1. (1)y = (2)y =6 (3)(4)x=2. 由方程3(5x-6)=3-20x 解得x= ,把x= 代入方程a- x=2a+10x,得a =-8.∴当a=-8时,方程3(5x-6)=3-20x与方程a- x=2a+10x有相同的解.3. 解得:x=9§6.2 解一元一次方程(五)一、1.A 2. B 3. C二、1.2(x +8)=40 2. 4,6,8 3.2x+10=6x+5 4. 15 5. 160元三、1. 设调往甲处x人, 根据题意,得27+x=2[19+(20-x)]. 解得:x=172. 设该用户5月份用水量为x吨,依题意,得1.2×6+2(x-6)=1.4 x.解得x=8. 于是1.4x=11.2(元) .3. 设学生人数为x人时,两家旅行社的收费一样多. 根据题意,得240+120x=144(x+1),解得x=4.§6.3 实践与探索(一)一、1. B 2. B 3. A二、1. 36 2. 3. 42,270三、1. 设原来两位数的个位上的数字为x,根据题意,得10x+11-x=10(11-x)+x+63. 解得x=9. 则原来两位数是29.2.设儿童票售出x张,则成人票售出(700-x)张.依题意,得30x+50(700-x)=29000 . 解得:x=300, 则700-x=700-300=400人. 则儿童票售出300张,成人票售出400张.§6.3 实践与探索(二)一、1. A 2. C 3. C二、1. x+ x+1+1=x 2. 23.75% 3. 2045三、1. 设乙每小时加工x个零件,依题意得,5(x+2)+4(2x+2)=200解得x=14.则甲每小时加工16个零件,乙每小时加工14个零件.2. 设王老师需从住房公积金处贷款x元,依题意得,3.6%x+4.77%(250000-x)=10170. 解得x=150000.则王老师需从住房公积金处贷款150000元,普通住房贷款100000元.3. 设乙工程队再单独做此工程需x个月能完成,依题意,得解得x = 14. 小时第7章二元一次方程组§7.1 二元一次方程组和它的解一、1. C 2. C 3. B二、1. 2. 5 3.三、1. 设甲原来有x本书、乙原来有y本书,根据题意,得2. 设每大件装x罐,每小件装y罐,依题意,得.3. 设有x辆车,y个学生,依题意§7.2二元一次方程组的解法(一)一、1. D 2. B 3. B二、1. 2.略 3. 20三、1. 2. 3. 4.§7.2二元一次方程组的解法(二)一、1. D 2. C 3. A二、1. , 2. 18,12 3.三、1. 2. 3. 4.四、设甲、乙两种蔬菜的种植面积分别为x、y亩,依题意可得:解这个方程组得§7.2二元一次方程组的解法(三)一、1. B 2.A3.B 4. C二、1. 2. 9 3. 180,20三、1. 2. 3.四、设金、银牌分别为x枚、y枚,则铜牌为(y+7)枚,依题意,得解这个方程组,, 所以y+7=21+7=28.§7.2二元一次方程组的解法(四)一、1. D 2. C 3. B二、1. 2. 3, 3. -13三、1. 1. 2. 3. 4. 5. 6.四、设小明预订了B等级、C等级门票分别为x张和y张. 依题意,得解这个方程组得§7.2二元一次方程组的解法(五)一、1. D 2. D 3. A二、1. 24 2. 6 3. 28元,20元三、1. (1)加工类型项目精加工粗加工加工的天数(天)获得的利润(元)6000x8000y(2)由(1)得:解得∴答:这批蔬菜共有70吨.2.设A种篮球每个元,B种篮球每个元,依题意,得解得3.设不打折前购买1件A商品和1件B商品需分别用x元,y元,依题意,得解这个方程组,得因此50×16+50×4-960=40(元).§7.3实践与探索(一)一、1. C 2. D3.A二、1. 72 2. 3. 14万,28万三、1.设甲、乙两种商品的原销售价分别为x元,y元,依题意,得解得2. 设沙包落在A区域得分,落在B区域得分,根据题意,得解得∴答:小敏的四次总分为30分.3.(1)设A型洗衣机的售价为x元,B型洗衣机的售价为y元,则据题意,可列方程组解得(2)小李实际付款:(元);小王实际付款:(元).§7.3实践与探索(二)一、1. A 2. A3.D二、1. 55米/分, 45米/分 2. 20,183.2,1三、1. 设这个种植场今年“妃子笑”荔枝收获x千克,“无核Ⅰ号”荔枝收获y千克.根据题意得解这个方程组得2.设一枚壹元硬币克,一枚伍角硬币克,依题意得:解得:3.设原计划生产小麦x吨,生产玉米y吨,根据题意,得解得10×(1+12%)=11.2(吨),8×(1+10%)=8.8(吨).4. 略5. 40吨第8章一元一次不等式§8.1 认识不等式一、1.B 2.B 3.A二、1. <;>;>; > 2. 2x+3<5 3. 4. ω≤50三、1.(1)2 -1>3;(2)a+7<0;(3)2+ 2≥0;(4)≤-2;(5)∣ -4∣≥ ;(6)-2<2 +3<4. 2.80+20n>100+16n; n=6,7,8,…§8.2 解一元一次不等式(一)一、1.C 2.A 3.C二、1.3,0,1,,- ;,,0,1 2. x≥-1 3. -2<x<2 4. x<三、1.不能,因为x<0不是不等式3-x>0的所有解的集合,例如x=1也是不等式3-x>0的一个解. 2.略§8.2 解一元一次不等式(二)一、1. B 2. C 3.A二、1.>;<;≤ 2. x≥-3 3. >三、1. x>3; 2. x≥-2 3.x< 4. x>5四、x≥-1 图略五、(1) (2) (3)§8.2 解一元一次不等式(三)一、1. C 2.A二、1. x≤-3 2. x≤- 3. k>2三、1. (1)x>-2 (2)x≤-3 (3)x≥-1 (4)x<-2 (5)x≤5 (6) x≤-1 (图略)2. x≥3.八个月§8.2 解一元一次不等式(四)一、1. B 2. B 3.A二、1. -3,-2,-1 2. 5 3. x≤1 4. 24三、1. 解不等式6(x-1)≤2(4x+3)得x≥-6,所以,能使6(x-1)的值不大于2(4x+3)的值的所有负整数x的值为-6,-5,-4,-3,-2,-1.2. 设该公司最多可印制x张广告单,依题意得80+0.3x≤1200,解得x≤3733.答:该公司最多可印制3733张广告单.3. 设购买x把餐椅时到甲商场更优惠,当x>12时,得200×12+50(x-12)<0.85(200×12+50x),解得x<32 所以12<x<32; 当0<x≤12时,得200×12<0.85(200×12+50x)解得x>,所以<x ≤12 其整数解为9,10,11,12.所以购买大于或等于9张且小于32张餐椅时到甲商场更优惠.§8.3 一元一次不等式组(一)一、1. A 2. B二、1. x>-1 2. -1<x≤2 3. x≤-1三、1. (1) x≥6 (2) 1<x<3 (3)4≤x<10 (4) x>2 (图略)2. 设幼儿园有x位小朋友,则这批玩具共有3x+59件,依题意得1≤3x+59-5(x-1)≤3,解得30.5≤x≤31.5,因x为整数,所以x=31,3x+59=3×31+59=152(件)§8.3 一元一次不等式组(二)一、1. C 2. B. 3.A二、1. m≥2 2. <x<三、1. (1)3<x<5 (2)-2≤x<3 (3)-2≤x<5 (4) x≥13(图略)2×3+2.5x<204×3+2x>202. 设苹果的单价为x元,依题意得解得4<x<5,因x恰为整数,所以x=5(元)(答略)3. -2<x≤3 正整数解是1,2,34. 设剩余经费还能为x名山区小学的学生每人购买一个书包和一件文化衫,依题意得350≤1800-(18+30)x≤400,解得29≤x≤30,因人数应为整数,所以x=30.5.(1)这批货物有66吨(2)用2辆载重为5吨的车,7辆载重为8吨的车.第九章多边形§9.1三角形(一)一、1. C 2. C二、1. 3,1,1;2. 直角内 3. 12三、1. 8个;△ABC、△FDC、△ADC是锐角三角形;△ABD、△AFC是钝角三角形;△AEF、△AEC、△BEC是直角三角形.2.(1)略(2)三条中线交于一点,交点把每条中线分成的两条线段的比均为1:2.3.不符合,因为三角形内角和应等于180°.4.∠A=95°∠B=52.5°∠C=32.5°§9.1三角形(二)一、 1.C 2.B _______________________________________________________________________________ ________________________________________3. A.二、1.(1)45°;(2)20°,40°(3)25°,35° 2. 165° 3. 20°4. 20°5.3:2:1三、1. ∠BDC应为21°+ 32°+ 90°=143°(提示:作射线AD)2. 70°3. 20°§9.1三角形(三)一、1.D 2.A二、1.12cm 2. 3个 3. 5<c<9,7三、1.其他两边长都为8cm 2. 略.§9.2多边形的内角和与外角和一、1.C 2. C. 3.C 4.C二、1.八,1080° 2. 10,1800° 3. 125° 4. 120米.三、1.15 2.十二边形 3.九边形,少加的那个内角的度数为135°.4.11§9.3用多种正多边形拼地板(一)一、1. B 2. C.二、1. 6 2. 正六边形 3. 11,(3n+2).三、1.(1)因为围绕一点拼在一起的正多边形的内角的和为360°.(2)不能,因为正八边形的每个内角都为135°,不能整除360°.(3)略.2.应选“80×80cm2”这种规格的瓷砖,因为长方形客厅的长和宽都是80cm的整数倍,需要这种瓷砖32块。
人教版初中数学目录:七年级上册第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)3.3 解一元一次方程(二)3.4 实际问题与一元一次方程第四章图形认识初步4.1 多姿多彩的图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状. 七年级下册第五章相交线与平行线5.1 相交线5.2 平行及其判定5.3 平行线的性质5.4 平移第六章平面直角坐标系6.1 平面直角坐标系6.2 坐标方法的简单应用第七章三角形7.1 与三角形有关的线段7.2 与三角形有关的角7.3 多边形及其内角和7.4 课题学习镶嵌第八章二元一次方程组8.1 二元一次方程组8.2 消元——二元一次方程组的解.8.3 实际问题与二元一次方程组8.4 三元一次方程组的解法举例第九章实际问题与一元一次不等式9.1 不等式9.2 实际问题与一元一次不等式9.3 一元一次不等式组第十章数据的收集、整理与描述10.1 统计调查10.2 直方图10.3 课题学习从数据谈节水八年级上册第11章全等三角形11.1 全等三角形11.2 三角形全等的判定11.3 角的平分线的性质第12章轴对称12.1 轴对称12.2 作轴对称图形12.3 等腰三角形第13章实数13.1 平方根13.2 立六根13.3 实数第14章一次函数14.1 变量与函数14.2 一次函数14.3 用函数观点看方程(组)与不等.14.4 课题学习选择方案第15章整式的乘除与因式分解15.1 整式的乘法15.2 乘法公式15.3 整式的除法15.4 因式分解八年级下册第16章分式16.1 分式16.2 分式的运算16.3 分式方程第17章反比例函数17.1 反比例函数17.2 实际问题与反比例函数第18章勾股定理18.1 勾股定理18.2 勾股定理的逆定理第19章四边形19.1 平行四边形19.2 特殊的平行四边形19.3 梯形19.4 课题学习重心第20章数据的分析20.1 数据的代表20.2 数据的波动20.3 课题学习体质健康测试中的数据分析九年级上册第21章二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减第22章一元二次方程22.1 一元二次方程22.2 降次——一元二次方程的解.22.3 再探实际问题与一元二次方程第23章旋转23.1 图形的旋转23.2 中心对称23.3 课题学习图案设计第24章圆24.1 圆24.2 点、直线、圆和圆的位置关系24.3 正多边形和圆24.4 弧长和扇形面积第25章概率初步25.1 随机事件与概率25.2 用列举法求概率25.3 用频率估计概率25.4 课题学习键盘上字母的排列规律九年级下册第26章二次函数26.1 二次函数及其图像26.2 用函数观点看一元二次方程26.3实际问题与二次函数第27章相似27.1 图形的相似27.2 相似三角形27.3 位似第28章锐角三角函数28.1 锐角三角函数28.2 解直角三角形第29章投影与视图29.1 投影29.2 三视图29.3 课题学习制作立体模型北师大版初中数学目录:七年级上册第一章丰富的图形世界1.生活中的立体图形2.展开与折叠3.截一个几何体4.从不同方向看5.生活中的平面图形第二章有理数及其运算1.数怎么不够用了2.数轴3.绝对值4.有理数的加法5.有理数的减法6.有理数的加减混合运算7.水位的变化8.有理数的乘法9.有理数的除法10.有理数的乘方11.有理数的混合运算12.计算器的使用第三章字母表示数1.字母能表示什么2.代数式3.代数式求值4.合并同类项5.去括号6.探索规律第四章平面图形及其位置关系1.线段、射线、直线2.比较线段的长短3.角的度量与表示4.角的比较5.平行6.垂直7.有趣的七巧板8.图案设计第五章一元一次方程1.你今年几岁了2.解方程3.日历中的方程4.我变胖了5.打折销售6.“希望工程”义演7.能追上小明吗8.教育储蓄第六章生活中的数据1.认识100万2.科学记数法3.扇形统计图4.月球上有水吗5.统计图的选择第七章可能性1.一定摸到红球吗2.转盘游戏3.谁转出的四位数大七年级下册第一章整式的运算1.整式2.整式的加减3.同底数幂的乘法4.幂的乘方与积的乘方5.同底数幂的除法6.整式的乘法7.平方差公式8.完全平方公式9.整式的除法第二章平行线与相交线1.台球桌面上的角2.探索直线平行的条件3.平行线的特征4.用尺规作线段和角第三章生活中的数据1.认识百万分之一2.近似数和有效数字3.世界新生儿图第四章概率1.游戏公平吗2.摸到红球的概率3.停留在黑砖上的概率第五章三角形1.认识三角形2.图形的全等3.图案设计4.全等三角形5.探索三角形全等的条件6.作三角形7.利用三角形全等测距离8.探索直角三角形全等的条件第六章变量之间的关系1.小车下滑的时间2.变化中的三角形3.温度的变化4.速度的变化第七章生活中的轴对称1.轴对称现象2.简单的轴对称图形3.探索轴对称的性质4.利用轴对称设计图案5.镜子改变了什么6.镶边与剪纸八年级上册第一章勾股定理1.探索勾股定理2.能得到直角三角形吗3.蚂蚁怎样走最近第二章实数1.数怎么又不够用了2.平方根3.立方根4.公园有多宽5.用计算器开方6.实数第三章图形的平移与旋转1.生活中的平移2.简单的平移作图3.生活中的旋转4.简单的旋转作图5.它们是怎样变过来的6.简单的图案设计第四章四边形性质探索1.平行四边形的性质2.平行四边形的判别3.菱形4.矩形、正方形5.梯形6.探索多边形的内角和与外角和7.平面图形的密铺8.中心对称图形第五章位置的确定1.确定位置2.平面直角坐标系3.变化的鱼第六章一次函数1.函数2.一次函数3.一次函数的图象4.确定一次函数表达式5.一次函数图象的应用第七章二元一次方程组1.谁的包裹多2.解二元一次方程组3.鸡兔同笼4.增收节支5.里程碑上的数6.二元一次方程与一次函数第八章数据的代表1.平均数2.中位数与众数3.利用计算器求平均数八年级上册第一章一元一次不等式和一元一次不等式组1.不等关系2.不等式的基本性质3.不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组第二章分解因式1.分解因式2.提公因式法3.运用公式法第三章分式1.分式2.分式的乘除法3.分式的加减法4.分式方程第四章相似图形1.线段的比2.黄金分割3.形状相同的图形4.相似多边形5.相似三角形6.探索三角形相似的条件7.测量旗杆的高度8.相似多边形的性质9.图形的放大与缩小第五章数据的收集与处理1.每周干家务活的时间2.数据的收集3.频数与频率4.数据的波动第六章证明(一)1.你能肯定吗2.定义与命题3.为什么它们平行4.如果两条直线平行5.三角形内角和定理的证明6.关注三角形的外角九年级上册第一章证明(二)1.你能证明它们吗2.直角三角形3.线段的垂直平分线4.角平分线第二章一元二次方程1.花边有多宽2.配方法3.公式法4.分解因式法5.为什么是0.618第三章证明(三)1.平行四边形2.特殊平行四边形第四章视图与投影1.视图2.太阳光与影子3.灯光与影子第五章反比例函数1.反比例函数2.反比例函数的图象与性质3.反比例函数的应用第六章频率与概率1.频率与概率2.投针实验3.生日相同的概率4.池塘里有多少条鱼九年级下册第一章直角三角形的边角关系1.从梯子的倾斜程度谈起2.30º,45º,60º角的三角函数值3.三角函数的有关计算4.船有触礁的危险吗第二章二次函数1.二次函数所描述的关系2.结识抛物线3.刹车距离与二次函数4.二次函数y=ax2+bx+c 的图象5.用三种方式表示二次函数6.何时获得最大利润7.最大面积是多少8.二次函数与一元二次方程第三章圆1.车轮为什么做成圆形2.圆的对称性3.圆周角和圆心角的关系4.确定圆的条件5.直线和圆的位置关系6.圆和圆的位置关系7.弧长及扇形的面积8.圆锥的侧面积第四章统计与概率1.50年的变化2.哪种方式更合算3.游戏公平吗浙教版初中数学目录:七年级上册第1章从自然数到有理数1.1 从自然数到分数1.2 有理数1.3 数轴1.4 绝对值1.5 有理数大小比较第2章有理数的运算2.1 有理数的加法2.2 有理数的减法2.3 有理数的乘法2.4 有理数的除法2.5 有理数的乘方2.6 有理数的混合运算2.7 准确数和近似数2.8 计算器的使用第3章实数3.1 平方根3.2 实数3.3 立方根3.4 用计算器进行数的开方3.5 实数的运算第4章代数式4.1 用字母表示数4.2 代数式4.3 代数式的值4.4 整式4.5 合并同类项4.6 整式的加减第5章一元一次方程5.1 一元一次方程5.2 解一元一次方程的方法和步骤5.3 一元一次方程的应用5.4 问题解决的基本步骤第6章数据和图表6.1 数据的收集和整理6.2 统计表6.3 条形统计图和折线形统计图6.4 扇形统计图第7章图形的初步知识7.1 几何图形7.2 线段射线和直线7.3 线段的长短比较7.4 角和角的度量7.5 角的大小比较7.6 余角和补角7.7 相交线7.8 平行线七年级下册第1章三角形的初步认识1.1 认识三角形1.2 三角形的角平分线和中线1.3 三角形的高线1.4 全等三角形1.5 三角全等的条件1.6 作三角形第2章图形和变换2.1 轴对称图形2.2 轴对称变换2.3 平移变换2.4 旋转变换2.5 相似变换2.6 图形变换的简单应用第3章事件的可能性3.1 认识事件的可能性3.2 可能性的大小3.3 可能性和概率第4章二元一次方程4.1 二元一次方程4.2 二元一次方程组4.3 解二元一次方程组4.4 二元一次方程组的应用第5章整式的乘除5.1 同底数幂的乘法5.2 单项式的乘法5.3 多项式的乘法5.4 乘法公式5.5 整式的化简5.6 同底数幂的除法5.7 整式的除法第6章因式分解6.1 因式分解6.2 提取公因式6.3 用乘法公式分解因式6.4 因式分解的简单应用第7章分式7.1 分式7.2 分式的乘除7.3 分式的加减7.4 分式方程八年级上册第1章平行线1.1 同位角内错角同旁内角1.2 平行线的判定1.3 平行线的性质1.4 平行线之间的距离第2章特殊三角形2.1 等腰三角形2.2 等腰三角形的性质2.3 等腰三角形的判定2.4 等边三角形2.5 直角三角形2.6 探索勾股定理2.7直角三角形的全等判定第3章直棱柱3.1 认识直棱柱3.2 直棱柱的表面展开图3.3 三视图3.4 由三视图描述几何体第4章样本与数据的分析初步4.1 抽样4.2 平均数4.3中位数和众数4.4 方差和标准差4.5 统计量的选择和应用第5章一元一次不等式5.1 认识一元一次不等式5.2 不等式的基本性质5.3 一元一次不等式5.4 一元一次不等式组第6章图形与坐标6.1 探索确定位置的方法6.2 平面直角坐标系6.3 坐标平面内的图形变换第7章一次函数7.1 常量和变量7.2 认识函数7.3 一次函数7.4 一次函数的图象7.5 一次函数的简单应用八年级下册第1章二次根式1.1 二次根式1.2 二次根式的性质1.3 二次根式的运算第2章一元二次方程2.1 一元二次方程2.2 一元二次方程的解法2.3 一元二次方程的应用第3章频数及其分布3.1 频数与频率3.2 频数分布直方图3.3 频数分布折线图第4章命题与证明4.1 定义与命题4.2 证明4.3 反例与证明4.4 反证法第5章平行四边形5.1 多边形5.2 平行四边形5.3 平行四边形的性质5.4 中心对称5.5 平行四边形的判定5.6 三角形的中位线5.7 逆命题和逆定理第6章特殊平行四边形与梯形6.1 矩形6.2 菱形6.3 正方形6.4 梯形九年级上册第一章反比例函数1.1反比例函数1.2反比例函数的图象和性质1.3反比例函数的应用第二章二次函数2.1 二次函数2.2 二次函数的图象2.3 二次函数的性质2.4 二次函数的应用第三章圆的基本性质3.1 圆3.2 圆的轴对称3.3 圆心角3.4 圆周角3.5 弧长及扇形的面积3.6 圆锥的侧面积和全面积第四章相似三角形4.1 比例线段4.2 相似三角形4.3 两个三角形相似的判定4.4 相似三角形的性质及应用4.5 相似多边形4.6 图形的位似九年级下册第一章解直角三角形1.1 锐角三角函数1.2 有关三角函数的计算1.3 解直角三角形第二章简单事件的概率2.1 简单事件的概率2.2 估计概率2.3 概率的简单应用第三章直线与圆、圆与圆的基本性质3.1 直线与圆的位置关系3.2 三角形的内切圆3.3 圆与圆的位置关系第四章投影与三视图4.1 视角与盲区4.2 投影4.3 简单物体的三视图湘教版初中数学目录:七年级上册第一章有理数1.1具有相反意义的量1.2 数轴,相反数与绝对值1.3有理数大小的比较1.4有理数的加法1.5 有理数的减法1.6有理数的乘法1.7有理数的除法1.8有理数的乘方1.9有理数的混合运算1.10用计算器计算第二章代数式2.1用字母表示数2.2列代数式2.3代数式的值2.4一类代数式的加法第三章图形欣赏人与操作3.1图形欣赏3.2平面图形与空间图形3.3观察物体3.4图形操作3.5视图第四章一元一次方程模型与算法4.1 一元一次方程模型4.2 解一元一次方程的算法4.3 一元一次方程的应用第五章一元一次不等式5.1 不等式的基本性质5.2 一元一次不等式的解法5.3 一元一次不等式的应用第六章数据的收集与描述6.1 数据的收集6.2 统计图6.3 平均数、中位数和众数七年级下册第一章一元一次不等式组1.1 一元一次不等式组1.2 一元一次不等式组的解法1.3 一元一次不等式组的应用第二章二元一次方程组2.1 二元一次方程组2.2 二元一次方程组的解法2.3 二元一次方程组的应用第三章平面上直线的位置关系和度量3.1 线段、直线、射线3.2 角3.3 平面直线的位置关系3.4 图形的平移3.5 平行线的性质与判定3.6 垂线的性质与判定第四章多项式4.1 多项式4.2 多项式的加减4.3 多项式的乘法4.4 乘法公式第五章轴对称图形5.1 轴反射与轴对称图形5.2 线段的垂直平分线5.3 三角形5.4 三角形的内角和5.5 角平分线的性质5.6 等腰三角形5.7 等边三角形第六章数据的分析与比较6.1 加权平均数6.2 极差、方差6.3 两组数据的比较八年级上册第一章实数1.1 平方根1.2 立方根1.3 实数1.4 平面直角坐标系第二章一次函数2.1 函数和它的表示法2.2 一次函数和它的图象3.3 建立一次函数模型第三章全等三角形3.1 旋转3.2 图案设计3.3 全等三角形及其性质3.4 全等三角形的判定定理3.5 直角三角形3.6 勾股定理3.7 作三角形第四章频数与频率4.1 频数与频率4.2 数据的分布八年级下册第一章因式分解1.1 多项式的因式分解1.2 提公因式法1.3 公式法第二章分式2.1 分式和它的基本性质2.2 分式的乘除法2.3 整数指数幂2.4 分式的加减法2.5 分式方程第三章四边形3.1 平行四边形与中心对称图形3.2 菱形3.3 矩形3.4 正方形3.5 梯形3.6 多边形的内角和与外角和第四章二次根式4.1 二次根式和它的化简4.2 二次根式的乘除法4.3 二次根式的加、减法第五章概率的概念5.1 概率的概念5.2 概率的含义九年级上册第一章一元二次方程1.1 建立一元二次方程模型1.2 一元二次方程的算法1.3 一元二次方程的应用第二章定义命题公理与证明2.1 定义2.2 命题2.3 公理与定理2.4 证明第三章相似形3.1 相似的图形3.2 比与比例3.3 相似三角形的性质和判定3.4 相似多边形及性质3.5 图形的放大与缩小、位似变换第四章解直角三角形4.1 正弦和余弦4.2 正切4.3 直角三角形及其应用第五章概率的计算5.1 用频率估计概率5.2 用列举法计算概率九年级下册第一章反比例函数1.1 建立反比例函数模型1.2 反比例函数的图像与性质1.3 实际生活中的反比例函数第二章二次函数2.1 建立二次函数模型2.2 二次函数的图像与性质2.3 二次函数的应用第三章圆3.1 圆3.2 点、直线与圆的位置关系,圆3.3 圆与圆的位置关系3.4 弧长和扇形的面积,圆锥的侧面积3.5 平行投影和中心投影第四章统计估计4.1 总体与样本4.2 用样本估计总体华师大版初中数学目录:七年级上册第一章走进数学世界1.1 与数学交朋友1.2 让我们来做数学第二章有理数2.1 正数和负数2.2 数轴2.3 相反数2.4 绝对值2.5 有理数的大小比较2.6 有理数的加法2.7 有理数的减法2.8 有理数加减混合运算2.9 有理数的乘法2.10 有理数的除法2.11 有理数的乘方2.12 科学记数法2.13 有理数的混合运算2.14 近似数和有效数字2.15 用计算器进行数的简单运算第三章整式的加减3.1 列代数式3.2 代数式的值3.3 整式3.4 整式的加减第四章图形的初步认识4.1 生活中的立体图形4.2 画立体图形4.3 立体图形的展开图4.4 平面图形4.5 最基本的图形——点和线4.6 角4.7 相交线4.8 平行线第五章数据的收集与表示5.1 数据的收集5.2 数据的表示七年级下册第六章一元一次方程6.1 从实际问题到方程6.2 解一元一次方程6.3 实践与探索第七章二元一次方程组7.1 二元一次方程组和它的解7.2 二元一次方程组的解法7.3 实践与探索第八章一元一次不等式8.1 认识不等式8.2 解一元一次不等式8.3 一元一次不等式组第九章多边形9.1 三角形9.2 多边形的内角和与外角和9.3 用正多边形拼地板第十章轴对称10.1 生活中的轴对称10.2 轴对称的认识10.3 等腰三角形第十一章体验不确定现象11.1 可能还是确定11.2 机会的均等与不等11.3 在反复实验中观察不确定现象八年级上册第12章数的开方12.1 平方根与立方根12.2 实数与数轴第13章整式的乘除13.1 幂的运算13.2 整式的乘法13.3 乘法公式13.4 整式的除法13.5 因式分解第14章勾股定理14.1 勾股定理14.2 勾股定理的应用第15章平移与旋转15.1 平移15.2 旋转15.3 中心对称15.4 图形的全等第16章平行四边形的认识16.1 平行四边形的性质16.2 矩形、菱形与正方形的性质16.3 梯形的性质八年级下册第17章分式17.1 分式及其基本性质17.2 分式的运算17.3 可化为一元一次方程的分式方程17.4 零指数幂与负整指数幂第18章函数及其图像18.1 变量与函数18.2 函数的图象18.3 一次函数18.4 反比例函数18.5 实践与探索第19章全等三角形19.1 命题与定理19.2 三角形全等的判定19.3 尺规作图19.4 逆命题与逆定理课题学习图形中的趣题第20章平行四边形的判定20.1 平行四边形的判定20.2 矩形的判定20.3 菱形的判定20.4 正方形的判定20.5 等腰梯形的判定第21章数据的整理与初步处理21.1 算术平均数与加权平均数21.2 平均数、中位数和众数的选用21.3 极差、方差和标准差课题学习心率与年龄九年级上册第22章二次根式22.1 二次根式22.2 二次根式的乘除法22.3 二次根式的加减法第23章一元二次方程23.1 一元二次方程23.2 一元二次方程的解法23.3 实践与探索第24章图形的相似24.1 相似的图形24.2 相似图形的性质24.3 相似三角形24.4 中位线24.5 画相似图形24.6 图形与坐标第25章解直角三角形25.1 测量25.2 锐角三角函数25.3 解直角三角形课题学习高度的测量第26章随机事件的概率26.1 概率的预测26.2 模拟实验课题学习通讯录的设计九年级下册第27章二次函数27.1 二次函数27.2 二次函数的图象与性质27.3 实践与探索第28章圆28.1 圆的认识28.2 与圆有关的位置关系28.3 圆中的计算问题第29章几何的回顾29.1 几何问题的处理方法29.2 反证法阅读材料《几何原本》第30章样本与总体30.1 抽样调查的意义30.2 用样本估计总体30.3 借助调查作决策苏科版初中数学目录:七年级上册第一章我们与数学同行1.1 生活数学1.2 活动思考第二章有理数2.1 比0小的数2.2 数轴2.3 绝对值与相反数2.4 有理数的加法与减法2.5 有理数的乘法与除法2.6 有理数的乘方2.7 有理数的混合运算第三章用字母表示数3.1 字母表示数3.2 代数式3.3 代数式的值3.4 合并同类项3.5 去括号第四章一元一次方程4.1 从问题到方程4.2 解一元一次方程4.3 用方程解决问题第五章走进图形世界5.1 丰富的图形世界5.2 图形的变化5.3 展开与折叠5.4 从三个方向看第六章平面图形的认识(一)6.1 线段射线直线6.2 角6.3 余角补角对顶角6.4 平行6.5 垂直七年级下册第七章平面图形的认识(二)7.1 探索直线平行的条件7.2 探索平行线的性质7.3 图形的平移7.4 认识三角形7.5 三角形的内角和第八章幂的运算8.1 同底数幂的乘法8.2 幂的乘方与积的乘方8.3 同底数幂的除法第九章从面积到乘法公式9.1 单项式乘单项式9.2 单项式乘多项式9.3 多项式乘多项式9.4 乘法公式9.5 单项式乘多项式法则的再认识——因式分解(一)9.6 乘法公式的再认识——因式分解(二)第十章二元一次方程10.1 二元一次方程10.2 二元一次方程组10.3 解二元一次方程组10.4 用方程组解决问题第十一章图形的全等11.1 全等图形11.2 全等三角形11.3 探索三角形全等的条件第十二章数据在我们周围12.1 普查与抽样调查12.2 统计图的选用12.3 频数分布表和频数分布直方图第十三章感受概率13.1 确定与不确定13.2 可能性八年级上册第一章轴对称图形1.1 轴对称与轴对称图形1.2 轴对称的性质1.3 设计轴对称图案1.4 线段、角的轴对称性1.5 等腰三角形的轴对称性1.6 等腰梯形的轴对称性数学活动剪纸第二章勾股定理与平方根2.1 勾股定理2.2 神秘的数组2.3 平方根2.4 立方根2.5 实数2.6 近似数与有效数字2.7 勾股定理的应用数学活动关于勾股定理的研究第三章中心对称图形(一)3.1 图形的旋转3.2 中心对称与中心对称图形3.3 设计中心对称图案3.4 平行四边形3.5 矩形、菱形、正方形3.6 三角形、梯形的中位线数学活动镶嵌小结与思考第四章数量、位置的变化4.1 数量的变化4.2 位置的变化4.3 平面直角坐标系数学活动:确定藏宝地第五章一次函数5.1 函数5.2 一次函数5.3 一次函数的图象5.4 一次函数的应用5.5 二元一次方程组的图象解法数学活动温度计上的一次函数第六章数据的集中程度6.1 平均数6.2 中位数与众数6.3 用计算器求平均数全章复习与测试数学活动你是“普通”学生吗八年级下册第七章一元一次不等式7.1 生活中的不等式7.2 不等式的解集7.3 不等式的性质7.4 解一元一次不等式7.5 用一元一次不等式解决问题7.6 一元一次不等式组7.7 一元一次不等式与一元一次方方程、一次函数第八章分式8.1 分式8.2 分式的基本性质8.3 分式的加减8.4 分式的乘除8.5 分式方程第九章反比例函数9.1 反比例函数9.2 反比例函数的图象与性质9.3 反比例函数的应用第十章图形的相似10.1 图上距离与实际距离10.2 黄金分割10.3 相似图形10.4 探索三角形相似的条件10.5 相似三角形的性质10.6 图形的位似10.7 相似三角形的应用第十一章图形的证明(一)11.1 你的判断对吗11.2 说理11.3 证明11.4 互逆命题第十二章认识概率12.1 等可能性12.2 等可能条件下的概率(一)12.3 等可能条件下的概率(二)课题学习:游戏公平吗?九年级上册第一章图形与证明(二)1.1 等腰三角形的性质与判定1.2 直角三角形全等的判定1.3 平行四边形、矩形、菱形、正方形的性质和判定1.4 等腰梯形的性质和判定1.5 中位线第二章数据的离散程度2.1 极差2.2 方差与标准差2.3 用计算器求标准差的方差第三章二次根式3.1 二次根式3.2 二次根式的乘除3.3 二次根式的加减。
6.3 实践与探索A卷:基础题一、选择题1.为解决老百姓看病难的问题,•卫生部门决定大幅度降低药价,•某种药品降价40%后的价格为a元,则降价前此药品的价格为()A.52a元 B.53a元 C.40%a元 D.60%a元2.某个体商贩在一次买卖中同时卖出两件上衣,每件都以135元的价格出售,•若按成本计算其中的一件赢利25%,另一件亏本25%,则在这次买卖中,商贩()A.赚了9元 B.赔了18元 C.赚了18元 D.不赚不赔3.随着新农村建设的进一步加快,湖州市农村居民人均纯收入迅速增长,据统计,2005年该市农村居民人均纯收入比上一年增长14.2%,若2004•年湖州市农村居民人均纯收入为a元,则2005年该市农村居民人均纯收入可表示为()A.14.2a元 B.1.42a元 C.1.142a元 D.0.142a元二、填空题4.小丁家的墙上钉着一个用彩绳围成的三角形(如图6-3-1中实线所示),小丁通过移动钉子,把它变成一个等边三角形(如图中的虚线所示),•则等边三角形的边长为________.5.某工厂为增加效益,需裁员,该工厂有A,B,C三个车间,分别有工人84人,56人,60人.如果每个车间按相同比例裁员,使这个工厂留下150人,则C车间留下____人.6.爸爸为小月存了一个3年期的教育储蓄(3年期的年利率为2.7%),•3•年后能取5405元,他开始存了________元.三、解答题7.将一个长、宽、高分别为15cm,12cm,8cm的长方体钢坯锻造成一个底面边长为12cm的正方形的长方体钢坯,试问是锻造前长方体钢坯表面积大,还是锻造后的长方体钢坯表面积大?请计算比较.8.某种纯平彩电先按进价提高40%标出销售价,然后广告宣传将以80%•的优惠价出售,结果每台彩电赚了300元,那么经营这种彩电的利润率为多少?9.泰安市最近新建甲,乙,丙三个水厂,这三个水厂的月供水量共计11.8•万立方米,其中乙水厂的月供水量是甲水厂月供水量的3倍,•丙水厂的月供水量比甲水厂月供水量的一半多1万立方米.求这三个水厂的月供水量各是多少立方米?10.一项工程,甲独做7.5小时完成,乙独做5小时完成,若两人合作1小时,剩下的由乙独做,问:(1)乙还需几小时完成?(2)若此项工程共得报酬600元,那么按工作量怎样分配?四、思考题11.用两根等长的铁丝,分别绕成一个正方形和一个圆.•已知正方形的边长比圆的半径长2( -2)米,通过计算说明谁的面积大,并求这两根等长的铁丝的长度.B卷:提高题一、七彩题1.(一题多解题)如图是两个圆柱形的容器,它们的直径分别为4cm和8cm,•高分别为42cm和10cm,先在第二个容器中倒满水,然后将其倒入第一个容器中,问:倒完后,第一个容器中的水面离瓶口有多远?2.(一题多变题)某商品按标价的九折出售,为促销,在此基础上再让利100元,仍能获利7.5%,若该商品的进价为2000元,则该商品的标价是多少元?(1)一变:某商品按标价的九折出售,为促销,在此基础上再让利100元,仍能获利7.5%,若该商品的标价为2500元,那么该商品的进价是多少元?(2)二变:某商品在打折的基础上再让利100元出售,仍获利7.5%,•若该商品的标价为2500元,进价为2000元,问该商品打了几折?(3)三变:某商品的进价是2000元,标价为2500元,商店要求以利润不低于5%且不高于20%的售价打折出售,该商品可在什么范围内打折出售?二、知识交叉题3.(科内交叉题)小英和小倩站在正方形的对角A,C两点处,小英以2米/秒的速度走向点D处,途中位置记为P,小倩以3米/秒的速度走向点B处,途中位置记为Q,假设两人同时出发,已知正方形的边长为8米,E在AB上,AE=6米,记三角形AEP的面积为S1平方米,三角形BEQ的面积为S2平方米,如图所示.(1)她们出发后几秒时S1=S2;(2)当S1+S2=15时,小倩距离点B处还有多远?三、实际应用题4.芜湖供电公司分时电价执行时段分为平,谷两个时段,平段为8:00•~22:•00,14小时,谷段为22:00~次日8:00,10小时,•平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段用电价在原销售电价基础上每千瓦时下浮0.25元.小明家5•月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明家该月支付的平段,谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?四、经典中考题5.(2008,新疆,5分)古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm(如图6-3-4所示),现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,•根据题意,可列方程()A.22(6010)(6010)68x ππ++=+B.228(60)606xππ=+A.2π(60+10)·6=2π(60+x)·8D.2π(60-)·8=2π(60+x)·66.(2008,南宁,10分)小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进(如图6-3-5所示),已知两人在上午8时同时出发,到上午10时,•两人还相距36千米,到中午12时,两人又相距36千米,求A,B两地间的路程.C卷:课标新型题一、开放题1.(条件结论全开放题)甲,乙两人做一广告牌,甲单独完成需4元,乙单元完成需6天,根据以上背景,编写一道应用题.(要求:至少提出三个问题,并给予解答)二、图表信息题2.(表格信息题)下表为装运甲,乙,丙三种蔬菜的质量,某汽车公司计划装运甲,乙,丙三种蔬菜到外地销售(每辆汽车按规定满载,并且每辆汽车只能装一种蔬菜).若用8辆汽车装运乙,丙两种蔬菜11吨到A地销售,问装运乙,丙两种蔬菜的汽车各需多少辆?甲乙丙每辆汽车能装载的质量(吨) 2 1 1.5参考答案A卷一、1.B 点拨:降价前此药品的价格为x元,则(1-40%)x=a,解得x=53a,故选B.2.B 点拨:135÷(1+25%)=108,135÷(1-25%)=180.3.C 点拨:设2005年人均纯收入为x元,则x aa×100%=14.2%,解得x=1.142a,故选C.二、4.6 点拨:设等边三角形的边长为x,则3x=5+6+7,解得x=6.5.45 点拨:设C车间留下x人,则15060845660x=++解得x=45.6.5000 点拨:设他开始存了x元,x(1+2.7%×3)=5405,解得x=5000.三、7.解:设锻造后长方体的高度为xcm,根据题意,得15×12×8=12×12·x,•解得x=10.S锻造前表面积=2×(15×12+15×8+12×8)=792(cm2).S锻造后表面积=2×(12×12+12×10+12×10)=768(cm2),所以792>768,即锻造前长方体表面积比锻造后长方体的表面积大.点拨:先利用体积不变求出锻造后的长方体的高,再分别计算锻造前后各自的表面积并进行比较.8.解:设彩电进价为每台x元,根据题意,得x(1+40%)×80%-x=300,解得x=2500,•所以,商品的利润率为3002500×100%=12%.答:经营这种彩电的利润率是12%.点拨:此题属于利润问题,易用的等量关系为:利润=售价-进价,利润率=(利润÷进价)×100%.9.解:设甲水厂的月供水量为x万立方米,则乙水厂的月供水量为3x万立方米,丙水厂的月供水量为(12x+1)万立方米,根据题意,得x+3x+12x+1=11.8,解得x=2.4,则3x=7.2,12x+1=2.2.答:甲水厂的月供水量为2.4万立方米,乙水厂的月供水量为7.2万立方米,丙水厂的月供水量为2.2万立方米.点拨:若一个问题有多个未知量时,一般设一个未知数为x,则用含x•的代数式分别表示出其他的未知量,再根据等量关系列方程.注意本题中的单位为“万立方米”而不是“立方米”.10.解:(1)设乙还需x小时完成,根据题意,得(17.5+15)×1=1-15x,解得x=313.答:乙还需313小时完成.(2)此时甲的工作量是1×17.5=215,乙的工作量1-215=1315,即甲、乙工作量之比是2:13,•故甲获得报酬是2213+×600=80(元),乙获得报酬是600-80=520(元).答:按工作量甲获得报酬为80元,乙获得报酬为520元.点拨:工程问题的解决应注意几个问题:一是在总工作量未知的前提下往往把它看成是1;二是可画出工程分析图帮助理解题意;三是最好先求出工作效率,然后根据关系式:工作量=工作效率×工作时间去解.四、11.解:设圆的半径为r米,则正方形的边长为[r+2(π-2)]米,根据题意,得2πr=4(r+2π-4).解得r=4.所以,铁丝的长度为2πr=8π.所以圆的面积是16π平方米,•正方形的面积为4π2平方米.因为16π>4π·π=4π2,所以圆的面积大.答:圆的面积大,铁丝的长度为8π米.点拨:本题的相等关系:圆的周长=正方形的周长.B卷一、1.解法一:设第一个容器内水的高度为xcm,根据题意得,π·22×x=π·42·10,解得x=40,所以42-40=2(cm).答:水面离瓶口2cm.解法二:设第一个容器内水面离瓶口ycm.根据题意得π·(42-y)·22=π·42·10,解得y=2.答:水面离瓶口2cm.点拨:解法一是间接设未知数法,解法二是直接设未知数法,•同学们要认真体会这两种设未知数的方法.拓展:解决此类型题目,(1)要记住一些常见的物体的面积,周长,•体积的计算公式.抓住不变量建立方程(一是等积变形,抓住体积不变列方程;二是等长变形,•抓住周长(或物体的总长度)不变列方程).(2)常见的另外几种同类关系:①不同浓度的液体混合,抓住混合前后的溶质不变建立方程;②图形的拼接、割补、平移、旋转等类型的应用题,应抓住图形变化前后的面积不变列方程.(3)应掌握“变中找不变”,“不变中找变”的数学思想方法.2.分析:依据售价-进价=利润这一等量关系列方程求解.解:设该商品的标价为x元,根据题意,得90%·x-100-2000=2000×7.5%,•解得x=2500.答:该商品的标价是2500元.(1)设该商品的进价为x元,根据题意,得2500×90%-100-x=7.5%·x,解得x=2000.答:该商品的进价为2000元.(2)设该商品打了x 折,根据题意,得2500×10x-100-2000=2000×7.5%,解得x=9. 答:该商品打九折出售.(2) 设该商品打x 折出售能获利5%,根据题意,得2500×10x-2000=2000×5%, 解得x=8.4.设该商品打y 折出售能获利20%,根据题意,得2500×10x-2000=2000×20%, 解得y=9.6.答:可在8.4~9.6折范围内打折出售.点拨:本题通过不断改变题目中的已知量和未知数,加深了同学们对打折销售问题中的基本量及它们之间关系式的理解.二、3.分析:将她们行走的路程转化为图形中三角形的边长,求得三角形的面积,再利用S 1=S 2,S 1+S 2=15分别列方程求解.解:(1)设她们出发x 秒时S 1=S 2,则小英x 秒走的路程为2x 米,即AP=2x ,小倩x 秒走的路程为3x 米,即CQ=3x ,则BQ=BC-CQ=8-3x .根据题意,得12×2x ×6=12(8-6)×(8-3x ),解得x=89. 答:她们出发89秒时S 1=S 2.(2)设她们出发y 秒时S 1+S 2=15,则S 1=12×2y×6=6y ,S 2=12×2(8-3y )=8-3y .所以S 1+S 2=6y+8-3y=15,解得y=73.即她们出发73秒时,S 1+S 2=15,因此小倩距离点B 处还有8-3×73=1(米).答:小倩距离点B 处还有1米.点拨:这是行程问题与图形问题相结合的一道题,设她们出发的时间为x 秒,将她们行走的路程分别用含x 的代数式表示出来,将计算S △AEP ,S △BEQ 时用到的未知线段也表示出来,然后列方程求解,解(2)时设她们出发的时间为y 秒列式较方便. 三、4.分析:要求平段、谷段电价,需求原销售电价.解:(1)设原销售电价为每千瓦时x 元,根据题意,得 40(x+0.03)+60(x-0.25)=42.73,解得x=0.5653,所以x+0.03=0.5943,x-0.25=0.3153.答:小明家该月支付平段电价为每千瓦时0.5953元,谷段电价为每千瓦时0.3153元.(2)(40+60)×0.5653-42.73=13.8(元).答:5月份小明家将多支付13.8元.点拨:对(1)中采用间接设未知数法较简便,等量关系为:平段电费+谷段电费=42.73.四、5.A 点拨:原来相邻两人间距离为2(6010)6π+,加入两个客人后相邻两人距离为2(6010)8xπ++,’此题考查圆弧的计算与一次主程相结合解应用题.6.解:设A,B两地间的路程为x千米,依题意,得363624x x-+=,解方程,得x=108.答:A,B两地间的路程为108千米.点拨:本题主要注意两人的速度保持不变,所以等量关系为,两人相遇前的速度和=两人相遇后的速度和.C卷一、1.分析:此题属于工程问题,已知量是甲,乙分别独做需要的天数,总工程量看作1,因此提出的问题(即未知量)从完成任务的角度考虑.思路一:两人合作几天可以完成?解:设两人合作x天完成,根据题意,得(14+16)x=1,解得x=2.4.答:两人合作需2.4天完成.思路二:乙先做一天,两人再合作几天可以完成?解:设两人再合作y天可以完成,根据题意,得16+(14+16)y=1,解得y=2,经检验,符合题意.答:两人再合作2天可以完成.思路三:乙先做一天,再两人合作,完成后得报酬450元,按工作量分配,甲,•乙两人各得多少?解:乙完成的工作量为:16+16×2=16+13=12,甲完成的工作量为:14×2=12,所以甲,乙各得225元.点拨:(1)将工程总量看作1;(2)工作效率=工作总量独立完成工作的时间. 新课标第一网不用注册,免费下载!新课标第一网系列资料 二、2.分析:根据表格,设其中一个量为x ,则另一个量可用含x•的代数式表示出来.解:设装乙种蔬菜的汽车有x 辆,则装丙种蔬菜的汽车有(8-x )辆.根据题意,得x+1.5(8-x )=11,解得x=2,则8-x=6.答:装乙种蔬菜的汽车有2辆,装丙种蔬菜的汽车有6辆.点拨:本题的等量关系为:汽车装乙种蔬菜的质量+汽车装丙种蔬菜的质量=11.拓展:若问题中有两个未知量,则一定有两个等量关系,利用其中的一个等量关系,用含x 的代数式表示出另一未知量,用另一个等量关系建立方程.。
利润问题:基本关系:①商品利润=商品售价-商品进价;②商品利润率=商品利润/商品进价×100%;③商品销售额=商品销售价×商品销售量;④商品的销售利润=(销售价-成本价)×销售量。
⑤商品售价=商品标价×折扣率例.例:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?数字问题:一般可设个位数字为a,十位数字为b,百位数字为c,十位数可表示为10b+a,百位数可表示为100c+10b+a,然后抓住数字间或新数、原数之间的关系找等量关系列方程。
数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。
例:有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。
盈亏问题:“盈”表示分配中的多余情况;“亏”表示不足或缺少部分。
储蓄问题:其数量关系是:利息=本金×利率×存期;:(注意:利息税)。
本息=本金+利息,利息税=利息×利息税率。
利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。
溶液配制问题:其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质质量=溶液中所含溶质的质量分数。
这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。
比例分配问题:这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
二元一次方程组应用中常见的相等关系:1.行程问题(匀速运动)基本关系:s=vt①相遇问题(同时出发):确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题(直线)甲的路程+乙的路程=总路程相遇问题(环形)甲的路程 +乙的路程=环形周长②追及问题(同时出发):追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题(直线)距离差=追者路程-被追者路程=速度差X追及时间追及问题(环形)快的路程-慢的路程=曲线的周长③水中航行顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速:(顺水速度-逆水速度)÷22.配料问题:溶质=溶液×浓度溶液=溶质+溶剂3.增长率问题4.工程问题基本关系:工作量=工作效率×工作时间(常把工作量看成单位“1”)。
暑假辅导二:方程的几种题型归纳⑹姓名:二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题:一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.二、利润问题:一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?三、配套问题:某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?四、行程问题:在某条高速公路上依次排列着A、B、C三个加油站,A到B的距离为120千米,B 到C的距离也是120千米.分别在A、C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?五、货运问题:某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?六、工程问题:某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?七【典题精析】1:某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?2:两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.3:购买甲种图书10本和乙种图书16本共付款410元,甲种图书比乙种图书每本贵15元,问甲、乙两种图书每本各买多少元?。