18版高考数学一轮复习第四章三角函数、解三角形4.6正弦定理、余弦定理课件理
- 格式:ppt
- 大小:16.85 MB
- 文档页数:53
第2课时 正、余弦定理的综合问题与三角形面积有关的问题(多维探究) 角度一 计算三角形的面积(1)(2019·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b=6,a =2c ,B =π3,则△ABC 的面积为.(2)(2020·某某五校第二次联考)在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知a 2+b 2-c 2=3ab ,且ac sin B =23sin C ,则△ABC 的面积为.【解析】 (1)法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sinB =12×43×23×sin π3=6 3.法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC的面积S =12×23×6=6 3.(2)因为a 2+b 2-c 2=3ab ,所以由余弦定理得cos C =a 2+b 2-c 22ab =3ab 2ab =32,又0<C <π,所以C =π6.因为ac sin B =23sin C ,所以结合正弦定理可得abc =23c ,所以ab =2 3.故S △ABC =12ab sin C =12×23sin π6=32. 【答案】 (1)6 3 (2)32求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.角度二 已知三角形的面积解三角形(2020·某某五市十校共同体联考改编)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,(3b -a )cos C =c cos A ,c 是a ,b 的等比中项,且△ABC 的面积为32,则ab=,a +b =.【解析】 因为(3b -a )cos C =c cos A ,所以利用正弦定理可得3sin B cos C =sin A cosC +sin C cos A =sin(A +C )=sinB .又因为sin B ≠0,所以cosC =13,则C为锐角,所以sin C =223.由△ABC 的面积为32,可得12ab sin C =32,所以abc 是a ,b的等比中项可得c 2=ab ,由余弦定理可得c 2=a 2+b 2-2ab cos C ,所以(a +b )2=113ab =33,所以a +b =33.【答案】 933已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. [注意] 正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.1.(2020·某某市模拟考试)在△ABC 中,AC =5,BC =10,cos A =255,则△ABC的面积为( )A.52 B .5C .10D .102解析:选A.由AC =5,BC =10,BC 2=AB 2+AC 2-2AC ·AB cos A ,得AB 2-4AB -5=0,解得AB =5,而sin A =1-cos 2A =55,故S △ABC =12×5×5×55=52.选A. 2.(2020·某某市统一模拟考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin(A +B )=c sin B +C2.(1)求A ;(2)若△ABC 的面积为3,周长为8,求a . 解:(1)由题设得a sin C =c cos A2,由正弦定理得sin A sin C =sin C cos A2,所以sin A =cos A2,所以2sin A 2cos A 2=cos A 2,所以sin A 2=12,所以A =60°.(2)由题设得12bc sin A =3,从而bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=(b +c )2-12. 又a +b +c =8,所以a 2=(8-a )2-12,解得a =134.三角形面积或周长的最值(X 围)问题(师生共研)(2019·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sinA +C2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值X 围. 【解】 (1)由题设及正弦定理得sin A sin A +C2=sin B sin A .因为sin A ≠0,所以sinA +C2=sin B .由A +B +C =180°,可得sinA +C2=cos B 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a .由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值X 围是⎝⎛⎭⎪⎫38,32.求有关三角形面积或周长的最值(X 围)问题在解决求有关三角形面积或周长的最值(X 围)问题时,一般将其转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.(一题多解)(2020·某某市质量检测)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若角A ,B ,C 成等差数列,且b =32. (1)求△ABC 外接圆的直径; (2)求a +c 的取值X 围.解:(1)因为角A ,B ,C 成等差数列,所以2B =A +C , 又因为A +B +C =π,所以B =π3.根据正弦定理得,△ABC 的外接圆直径2R =bsin B =32sinπ3=1.(2)法一:由B =π3,知A +C =2π3,可得0<A <2π3.由(1)知△ABC 的外接圆直径为1,根据正弦定理得, asin A =bsin B =csin C =1,所以a +c =sin A +sin C =sin A +sin ⎝⎛⎭⎪⎫2π3-A=3⎝⎛⎭⎪⎫32sin A +12cos A=3sin ⎝⎛⎭⎪⎫A +π6. 因为0<A <2π3,所以π6<A +π6<5π6.所以12<sin ⎝ ⎛⎭⎪⎫A +π6≤1, 从而32<3sin ⎝⎛⎭⎪⎫A +π6≤3,所以a +c 的取值X 围是⎝⎛⎦⎥⎤32,3. 法二:由(1)知,B =π3,b 2=a 2+c 2-2ac cos B =(a +c )2-3ac≥(a +c )2-3⎝ ⎛⎭⎪⎫a +c 22=14(a +c )2(当且仅当a =c 时,取等号),因为b =32,所以(a +c )2≤3,即a +c ≤3,又三角形两边之和大于第三边,所以32<a +c ≤3, 所以a +c 的取值X 围是⎝⎛⎦⎥⎤32,3.解三角形与三角函数的综合应用(师生共研)(2020·某某省五市十校联考)已知向量m =(cos x ,sin x ),n =(cos x ,3cos x ),x ∈R ,设函数f (x )=m ·n +12.(1)求函数f (x )的解析式及单调递增区间;(2)设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,若f (A )=2,b +c =22,△ABC 的面积为12,求a 的值.【解】 (1)由题意知,f (x )=cos 2x +3sin x cos x +12=sin ⎝⎛⎭⎪⎫2x +π6+1.令2x +π6∈⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ,解得x ∈⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π,k ∈Z . (2)因为f (A )=sin ⎝ ⎛⎭⎪⎫2A +π6+1=2,所以sin ⎝⎛⎭⎪⎫2A +π6=1.因为0<A <π,所以π6<2A +π6<13π6,所以2A +π6=π2,即A =π6.由△ABC 的面积S =12bc sin A =12,得bc =2,又b +c =22,所以a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ), 解得a =3-1.标注条件,合理建模解决三角函数的应用问题,无论是实际应用问题还是三角函数与解三角形相结合的问题,关键是准确找出题中的条件并在三角形中进行准确标注,然后根据条件和所求建立相应的数学模型,转化为可利用正弦定理或余弦定理解决的问题.△ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2a -2c cos B .(1)求角C 的大小;(2)求3cos A +sin ⎝⎛⎭⎪⎫B +π3的最大值,并求出取得最大值时角A ,B 的值.解:(1)法一:在△ABC 中,由正弦定理可知sin B =2sin A -2sin C cos B , 又A +B +C =π,则sin A =sin (π-(B +C ))=sin(B +C ),于是有sin B =2sin(B +C )-2sin C cos B =2sin B cos C +2cos B sin C -2sin C cos B ,整理得sin B =2sin B cos C ,又sin B ≠0, 则cos C =12,因为0<C <π,则C =π3.法二:由题可得b =2a -2c ·a 2+c 2-b 22ac,整理得a 2+b 2-c 2=ab ,即cos C =12,因为0<C <π,则C =π3.(2)由(1)知C =π3,则B +π3=π-A ,于是3cos A +sin ⎝ ⎛⎭⎪⎫B +π3=3cos A +sin (π-A )=3cos A +sin A =2sin ⎝⎛⎭⎪⎫A +π3,因为A =2π3-B ,所以0<A <2π3,所以π3<A +π3<π,故当A =π6时,2sin ⎝⎛⎭⎪⎫A +π3的最大值为2,此时B =π2.[基础题组练]1.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos A =74,则△ABC 的面积等于( )A .37B.372C .9D .92解析:选B.因为cos A =74,则sin A =34,所以S △ABC =12×bc sin A =372,故选B. 2.在△ABC 中,已知C =π3,b =4,△ABC 的面积为23,则c =( )A .27 B.7 C .2 2D .2 3解析:选D.由S =12ab sin C =2a ×32=23,解得a =2,由余弦定理得c 2=a 2+b 2-2ab cos C =12,故c =2 3.3.(2020·某某三市联考)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,sin A ∶sin B =1∶3,c =2cos C =3,则△ABC 的周长为( )A .3+3 3B .2 3C .3+2 3D .3+ 3解析:选C.因为sin A ∶sin B =1∶3,所以b =3a ,由余弦定理得cos C =a 2+b 2-c 22ab =a 2+(3a )2-c 22a ×3a=32,又c =3,所以a =3,b =3,所以△ABC 的周长为3+23,故选C.4.(2020·某某师大附中4月模拟)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c =5,△ABC 的面积S =52cos A ,则a =( ) A .1 B. 5 C.13D .17解析:选A.因为b =2,c =5,S =52cos A =12bc sin A =5sin A ,所以sin A =12cos A .所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A cos A =255.所以a 2=b 2+c 2-2bc cos A =4+5-2×2×5×255=9-8=1,所以a A.5.(2020·某某市定位考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为( )A .10B .12C .8+ 3D .8+2 3解析:选B.因为△ABC 的面积为43,所以12ac sin B =4 3.因为2b cos A +a =2c ,所以由正弦定理得2sin B cos A +sin A =2sin C ,又A +B +C =π,所以2sin B cos A +sin A =2sin A cos B +2cos A sin B ,所以sin A =2cos B ·sin A ,因为sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,所以ac =16,又a +c =8,所以a =c =4,所以△ABC 为正三角形,所以△ABC B.6.在△ABC 中,A =π4,b 2sin C =42sin B ,则△ABC 的面积为.解析:因为b 2sin C =42sin B ,所以b 2c =42b ,所以bc =42,S △ABC =12bc sin A =12×42×22=2. 答案:27.(2020·某某某某五校协作体期中改编)在△ABC 中,A =π3,b =4,a =23,则B =,△ABC 的面积等于.解析:△ABC 中,由正弦定理得sin B =b sin Aa =4×sinπ323B 为三角形的内角,所以B=π2,所以c =b 2-a 2=42-(23)2=2, 所以S △ABC =12×2×23=2 3.答案:π22 38.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且B 为锐角,若sin A sin B =5c2b,sinB =74,S △ABC =574,则b 的值为. 解析:由sin A sin B =5c 2b ⇒a b =5c 2b ⇒a =52c ,①由S △ABC =12ac sin B =574且sin B =74得12ac =5,②联立①,②得a =5,且c =2. 由sin B =74且B 为锐角知cos B =34, 由余弦定理知b 2=25+4-2×5×2×34=14,b =14.答案:149.在△ABC 中,∠A =60°,c =37a .(1)求sin C 的值;(2)若a =7,求△ABC 的面积.解:(1)在△ABC 中,因为∠A =60°,c =37a ,所以由正弦定理得sin C =c sin A a =37×32=3314. (2)因为a =7,所以c =37×7=3.由余弦定理a 2=b 2+c 2-2bc cos A 得72=b 2+32-2b ×3×12,解得b =8或b =-5(舍).所以△ABC 的面积S =12bc sin A =12×8×3×32=6 3.10.(2020·某某五校第二次联考)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cos C =(2b -3c )cos A .(1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值.解:(1)由正弦定理可得,3sin A cos C =2sin B cos A -3sin C cos A , 从而3sin(A +C )=2sin B cos A , 即3sin B =2sin B cos A .又B 为三角形的内角,所以sin B ≠0,于是cos A =32, 又A 为三角形的内角,所以A =π6.(2)由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ×32≥2bc -3bc , 所以bc ≤4(2+3),所以S △ABC =12bc sin A ≤2+3,故△ABC 面积的最大值为2+ 3.[综合题组练]1.(2020·某某市诊断测试)在平面四边形ABCD 中,∠D =90°,∠BAD =120°,AD =1,AC =2,AB =3,则BC =( )A. 5B. 6C.7D .2 2解析:选C.如图,在△ACD 中,∠D =90°,AD =1,AC =2,所以∠CAD =60°.又∠BAD =120°,所以∠BAC =∠BAD -∠CAD =60°.在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =7,所以BC =7.故选C.2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a sin A +b sin B -c sin C sin B sin C =233a ,a =2 3.若b ∈[1,3],则c 的最小值为.解析:由a sin A +b sin B -c sin C sin B sin C =233a ,得a 2+b 2-c 22ab =33sin C .由余弦定理可知cos C =a 2+b 2-c 22ab ,即3cos C =3sin C ,所以tan C =3,故cos C =12,所以c 2=b 2-23b +12=(b -3)2+9,因为b ∈[1,3],所以当b =3时,c 取最小值3.答案:33.(2020·某某市学业质量调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为32ac cos B ,且sin A =3sin C . (1)求角B 的大小;(2)若c =2,AC 的中点为D ,求BD 的长. 解:(1)因为S △ABC =12ac sin B =32ac cos B , 所以tan B = 3.又0<B <π,所以B =π3. (2)sin A =3sin C ,由正弦定理得,a =3c ,所以a =6. 由余弦定理得,b 2=62+22-2×2×6×cos 60°=28,所以b =27. 所以cos A =b 2+c 2-a 22bc =(27)2+22-622×2×27=-714. 因为D 是AC 的中点,所以AD =7. 所以BD 2=AB 2+AD 2-2AB ·AD cos A =22+(7)2-2×2×7×⎝ ⎛⎭⎪⎫-714=13. 所以BD =13.4.(2020·原创题)在△ABC 中,sin A ∶cos B ∶tan A =12∶16∶15.(1)求sin C ;(2)若AB =8,点D 为△ABC 外接圆上的动点,求DA →·DC →的最大值.解:(1)由sin A ∶tan A =12∶15,得cos A =45,故sin A =35,所以由sin A ∶cos B =12∶16,得cos B =45,故sin B =35,于是sin C =sin(A +B )=sin A cos B +cos A sin B =2425. (2)在△ABC 中,由AC sin B =ABsin C,解得AC =5,由A ,B ,C ,D 四点共圆及题干条件,可知∠ADC =∠ABC 时DA →·DC →取得最大值, 设DA =m ,DC =n ,在△DAC 中,由余弦定理的推论得cos ∠ADC =m 2+n 2-522mn =45, 故85mn =m 2+n 2-25≥2mn -25, 解得mn ≤1252, 故DA →·DC →=45mn ≤45×1252=50, 当且仅当m =n =5102时,等号成立, 故DA →·DC →的最大值为50.。
18版高考数学一轮复习第四章三角函数与解三角形4.7正弦定理和余内部文件,版权追溯内部文件,版权追溯内部文件,版权追溯 2021版高考数学一轮复习第四章三角函数与解三角形 4.7 正弦定理和余弦定理真题演练集训理新人教A版11.[2021・新课标全国卷Ⅱ]钝角三角形ABC的面积是,AB=1 ,BC=2,则AC=( )2A.5 C.2 答案:B11解析:由题意可得AB・BC・sin B=,22又AB=1 ,BC=2,所以sin B=所以B=45°或B=135°. 当B=45°时,由余弦定理可得2, 2B.5 D.1AC=AB2+BC2-2AB・BC・cos B=1,此时AC=AB=1,BC=2,易得A=90°,与“钝角三角形”条件矛盾,舍去.所以B =135°.由余弦定理可得AC=AB2+BC2-2AB・BC・cos B=5.2.[2021・新课标全国卷Ⅰ]已知a,b,c分别为△ABC三个内角A,B,C的对边,a =2,且(2+b)(sin A-sin B)=(c-b)sin C,则△ABC面积的最大值为________.答案:3解析:∵===2R,a=2,又(2+b)(sin A-sin B)=(c-b)sin C可sin Asin Bsin C化为(a+b)(a-b)=(c-b)c,∴a-b=c-bc,∴b+c-a=bc.222222abcb2+c2-a2bc1∴===cos A,∴A=60°.2bc2bc2∵△ABC中,4=a=b+c-2bc・cos 60°=b+c-bc≥2bc-bc=bc(当且仅当b=c 时等号成立),113∴S△ABC=・bc・sin A≤×4×=3.22243.[2021・新课标全国卷Ⅱ]△ABC的内角A,B,C的对边分别为a,b,c,若cos A =,51222225cos C=,a=1,则b=________.1321答案: 1345解析:解法一:因为cos A=5,cos C=13,所以sin A=3125,sin C=13,从而sin B=sin(A+C)=sin Acos C+cos Asin C =35×513+45×1263 13=65. 由正弦定理asin A=bsin B,得b=asin Bsin A=2113.解法二:因为cos A=455,cos C=13,所以sin A=35,sin C=1213,从而cos B=-cos(A+C)=-cos Acos C+sin Asin C=-45312165×13+5×13=65.由正弦定理acasin C20sin A=sin C,得c=sin A=13.由余弦定理b2=a2+c2-2accos B,得b=2113.解法三:因为cos A=453125,cos C=13,所以sin A=5,sin C=13,由正弦定理asin A=csin C,得c=asin Csin A=2013.从而b=acos C+ccos A=2113.解法四:如图,作BD⊥AC于点D,25512由cos C=,a=BC=1,知CD=,BD=. 1313134316又cos A=,所以tan A=,从而AD=. 541321故b=AD+DC=. 134.[2021・新课标全国卷Ⅰ]△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acosB+bcos A)=c.(1)求C;33(2)若c=7,△ABC的面积为,求△ABC的周长.2解:(1)由已知及正弦定理,得2cos C(sin Acos B+sin Bcos A)=sin C, 2cos Csin(A+B)=sin C,故2sin Ccos C=sin C,C∈(0,π).1π可得cos C=,所以C=. 23133(2)由已知,absin C=. 22π又C=,所以ab=6.3由已知及余弦定理,得a+b-2abcos C =7,故a+b=13,从而(a+b)=25. 所以△ABC的周长为5+7.课外拓展阅读转化与化归思想在解三角形中的应用[典例] [2021・新课标全国卷Ⅰ]△ABC的内角A,B,C的对边分别为a,b,c,已知2cos22222C(acos B+bcos A)=c.(1)求C;33(2)若c=7,△ABC的面积为,求△ABC的周长.2[审题视角] (1)利用正弦定理进行边角互化求解;(2)利用三角形的面积公式得出ab,再结合余弦定理联立方程求出a+b,进而求得△ABC的面积.[解] (1)由已知及正弦定理得, 2cos CAcos B+sin Bcos A=sin C,①32cos Csin(A+B)=sin C.故2sin Ccos C=sin C. 1π可得cos C=,所以C=. 23133(2)由已知,得absin C=.22π又C=,所以ab=6.3由已知及余弦定理得,a+b-2abcos C=7. 故a+b=13,从而2222a+b2=25.②所以△ABC的周长为5+7. 满分心得1.(1)题中①处不能利用正弦定理将边化为角,使已知条件中的式子转化为同类. (2)题中②处不能结合余弦定理将(a+b)视为整体进行求解而走入误区.2.转化与化归思想在解三角形中的应用主要体现在边角之间利用正、余弦定理统一的转化化简上,使关系式中的量达到统一性.4感谢您的阅读,祝您生活愉快。
4.6 正、余弦定理及其应用举例考纲要求1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题..2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.1.正弦定理和余弦定理定理正弦定理余弦定理内容__________=2R.(R为△ABC外接圆半径)a2=__________;b2=__________;c2=__________变形形式①a=____,b=______,c=____;②sin A=____,sin B=__________,sin C=__________;③a∶b∶c=__________;④a+b+csin A+sin B+sin C=asin A.cos A=__________;cos B=__________;cos C=__________.解决的问题①已知两角和任一边,求另一角和其他两条边.②已知两边和其中一边的对角,求另一边和其他两个角.①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角.2.仰角和俯角在视线和水平线所成的角中,视线在水平线__________的角叫仰角,在水平线______的角叫俯角(如图①).3.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).4.方向角相对于某一方向的水平角(如图③).图③(1)北偏东α°:指北方向向东旋转α°到达目标方向.(2)东北方向:指北偏东45°或东偏北45°.(3)其他方向角类似.5.坡角和坡比坡角:坡面与水平面的夹角(如图④,角θ为坡角).图④坡比:坡面的铅直高度与水平长度之比(如图④,i为坡比).1.(广东高考)在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=( ).A.4 3 B.2 3 C. 3 D.322.在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为( ).A.等边三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形3.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是( ).A.5海里/时B.5 3 海里/时C.10海里/时D.10 3 海里/时4.如图,为了测量隧道AB的长度,给定下列四组数据,无法求出AB长度的是( ).A.α,a,b B.α,β,aC.a,b,γD.α,β,γ5.△ABC中,若a=32,cos C=13,S△ABC=43,则b=__________.一、利用正弦、余弦定理解三角形【例1-1】 (辽宁高考)在△ABC中,角A,B,C的对边分别为a,b,c.角A,B,C成等差数列.(1)求cos B的值;(2)边a,b,c成等比数列,求sin A sin C的值.【例1-2】△ABC中,A,B,C所对的边分别为a,b,c,tan C=sin A+sin Bcos A+cos B,sin(B-A)=cos C.(1)求A,C;(2)若S△ABC=3+3,求a,c.方法提炼应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷就用哪一个定理.A为锐角A为钝角或直角图形关系式a<b sin A a=b sin A b sin A<a<b a≥b a>b a≤b解的个数 无解 一解 两解 一解 一解 无解请做演练巩固提升1 二、三角形形状的判定【例2-1】 △ABC 满足sin B =cos A sin C ,则△ABC 的形状是( ). A .直角三角形 B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形【例2-2】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. 方法提炼判断三角形的形状的基本思想是:利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.结论一般为特殊的三角形.如等边三角形、等腰三角形、直角三角形、等腰直角三角形等.另外,在变形过程中要注意A ,B ,C 的范围对三角函数值的影响.提醒:1.在△ABC 中有如下结论sin A >sin B a >b .2.当b 2+c 2-a 2>0时,角A 为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形;当b 2+c 2-a 2=0时,角A 为直角,三角形为直角三角形;3.当b 2+c 2-a 2<0时,角A 为钝角,三角形为钝角三角形. 请做演练巩固提升2三、与三角形面积有关的问题【例3】 在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积. 方法提炼1.正弦定理和余弦定理并不是孤立的,解题时要根据具体题目合理选用,有时还需要交替使用;在解决三角形问题中,面积公式S =12ab sin C =12bc sin A =12ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理联系起来.2.解三角形过程中,要注意三角恒等变换公式的应用. 请做演练巩固提升5四、应用举例、生活中的解三角形问题【例4-1】 某人在塔的正东沿着南偏西60° 的方向前进40米后,望见塔在东北方向,若沿途测得塔的最大仰角为30°,求塔高.【例4-2】 如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.方法提炼1.测量距离问题,需注意以下几点:(1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型; (2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解; (3)应用题要注意作答.2.测量高度时,需注意:(1) 要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理; (3)注意铅垂线垂直于地面构成的直角三角形.3.测量角度时,要准确理解方位角、方向角的概念,准确画出示意图是关键. 请做演练巩固提升6忽视三角形中的边角条件而致误【典例】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.错解:由1+2cos(B +C )=0,知cos A =12,∴A =π3.根据正弦定理a sin A =b sin B 得:sin B =b sin A a =22,∴B =π4或3π4.以下解答过程略.错因:忽视三角形中“大边对大角”的定理,产生了增根. 正解:∵在△ABC 中,cos(B +C )=-cos A ,又∵1+2cos(B +C )=0,∴1-2cos A =0,∴A =π3.在△ABC 中,根据正弦定理a sin A =bsin B,得sin B =b sin A a =22. ∴B =π4或3π4.∵a >b ,∴B =π4.∴C =π-(A +B )=512π.∴sin C =sin(B +A )=sin B cos A +cos B sin A =22×12+22×32=6+24. ∴BC 边上的高为b sin C =2×6+24=3+12. 答题指导:1.考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.2.解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件. 1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B =( ).A .-12B .12C .-1D .12.在△ABC 中,(a +b +c )(a +b -c )=3ab ,且a cos B =b cos A ,则△ABC 的形状为__________. 3.(福建高考)在△ABC 中,已知∠BAC =60°,∠ABC =45°,BC =3,则AC =__________.4.(陕西高考)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b =______.5.(山东高考)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知sin B(tan A+tan C)=tan A tanC.(1)求证:a,b,c成等比数列;(2)若a=1,c=2,求△ABC的面积S.6.某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.参考答案基础梳理自测知识梳理1.asin A=bsin B=csin Cb2+c2-2bc·cos A c2+a2-2ca·cos B a2+b2-2ab·cos C①2R sin A2R sin B2R sin C②a2R b2Rc2R③sin A∶sin B∶sin Cb2+c2-a22bcc2+a2-b22caa2+b2-c22ab2.上方下方基础自测1.B 解析:由正弦定理得BCsin A=ACsin B,即32sin 60°=ACsin 45°,解得AC=2 3.2.B 解析:∵cos2B2=a+c2c,∴2cos2B2-1=a+cc-1,∴cos B=ac,∴a2+c2-b22ac=ac,∴c2=a2+b2.3.C 解析:如图,A,B为灯塔,船从O航行到O′,OO′BO=tan 30°,OO′AO=tan 15°,∴BO=3OO′,AO=(2+3)OO′.∵AO-BO=AB=10,∴OO′·[(2+3)-3]=10,∴OO′=5,∴船的速度为512=10海里/时.4.D 解析:利用余弦定理,可由a,b,γ或α,a,b求出AB;利用正弦定理,可由a,α,β求出AB,当只知α,β,γ时,无法计算AB.5.2 3 解析:由cos C=13,得sin C=223,∴S△ABC=12ab sin C=12×32×b×223=43.∴b=2 3.考点探究突破【例1-1】解:(1)由已知2B=A+C,A+B+C=180°,解得B=60°,所以cos B=12.(2)方法一:由已知b2=ac,及cos B=12,根据正弦定理得sin2B=sin A sin C,所以sin A sin C=1-cos2B=34.方法二:由已知b2=ac,及cos B=12,根据余弦定理得cos B=a2+c2-ac2ac,解得a=c,所以B=A=C=60°,故sin A sin C=34.【例1-2】解:(1)因为tan C=sin A+sin Bcos A+cos B,即sin Ccos C=sin A+sin Bcos A+cos B,所以sin C cos A+sin C cos B=cos C sin A+cos C sin B,即sin C cos A-cos C sin A=cos C sin B-sin C cos B,得sin(C-A)=sin(B-C).所以C-A=B-C,或C-A=π-(B-C)(不成立),即2C=A+B,得C=π3,所以B+A=2π3.又因为sin(B-A)=cos C=12,则B-A=π6或B-A=5π6(舍去),得A=π4,B=5π12.(2)S△ABC=12ac sin B=6+28ac=3+3,又asin A=csin C,即a22=c32,得a=22,c=2 3.【例2-1】 A 解析:∵sin B=cos A·sin C,∴b=b2+c2-a22bc·c.∴b2+a2=c2.∴△ABC为直角三角形,选A.【例2-2】解:(1)由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.①由余弦定理得a2=b2+c2-2bc cos A,故cos A=-12,A=120°.(2)由①得,sin2A=sin2B+sin2C+sin B sin C.又sin B+sin C=1,故sin B=sin C=12.因为0°<B<90°,0°<C<90°,故B=C.所以△ABC是等腰钝角三角形.【例3】解:(1)由余弦定理及已知条件,得a2+b2-ab=4,又因为△ABC的面积等于3,所以12ab sin C=3,得ab=4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由题意得sin(B +A )+sin(B -A)=4sin A co s A ,即sin B cos A =2sin A cos A .当cos A =0时,A =π2,B =π6,a =433,b =233.所以△ABC 的面积 S =12ab sin C =12×433×233×32=233; 当cos A ≠0时,得sin B =2sin A , 由正弦定理得b =2a ,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a .解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12ab sin C =12×233×433×32=233.综上知,△ABC 的面积为233.【例4-1】 解:依题意画出图,某人在C 处,AB 为塔高,他沿CD 前进,CD =40米,此时∠DBF =45°,从C 到D 沿途测塔的仰角,只有B 到测试点的距离最短,即BE ⊥CD 时,仰角才最大,这是因为tan∠AEB =ABBE,AB 为定值,BE 最小时,仰角最大.在△BCD 中,CD =40,∠BCD =30°,∠DBC =135°. 由正弦定理,得CDsin∠DBC =BDsin∠BCD,∴BD =40sin 30°sin 135°=20 2.在Rt△BED 中,∠BDE =180°-135°-30°=15°,BE =BD sin 15°=202×6-24=10(3-1).在Rt△ABE 中,∠AEB =30°,∴AB =BE tan 30°=103(3-3)(米).∴所求的塔高为103(3-3)米.【例4-2】 解:作DM ∥AC 交BE 于N ,交CF 于M .DF =MF 2+DM 2=302+1702=10298, DE =DN 2+EN 2=502+1202=130,EF =(BE -FC )2+BC 2=902+1202=150. 在△DEF 中,由余弦定理,cos∠DEF =DE 2+EF 2-DF 22DE ×EF=1302+1502-102×2982×130×150=1665.演练巩固提升1.D 解析:根据正弦定理a sin A =bsin B=2R 得,a =2R sin A ,b =2R sin B ,∴a cos A =b sin B 可化为sin A cos A =sin 2B .∴sin A cos A +cos 2B =sin 2B +cos 2B =1.2.等边三角形 解析:∵(a +b +c )(a +b -c )=3ab ,∴(a +b )2-c 2=3ab . ∴a 2+b 2-c 2=ab .∴cos C =a 2+b 2-c 22ab =12.∴C =π3.∵a cos B =b cos A ,∴sin A cos B =sin B cos A . ∴sin(A -B )=0. ∴A =B .故△ABC 为等边三角形. 3. 2 解析:如图:由正弦定理得ACsin B =BCsin A ,即ACsin 45°=3sin 60°,即AC 22=332,故AC = 2.4.2 解析:∵b 2=a 2+c 2-2ac cos B =4+12-2×2×23×32=4, ∴b =2.5.(1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C ,所以sinB ⎝⎛⎭⎪⎫sin A cos A +sin C cos C =sin A cos A ·sin C cos C,因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin(A +C )=sin A sin C , 又A +B +C =π,所以sin(A +C )=sin B ,因此sin 2B =sin A sinC .由正弦定理得b 2=ac , 即a ,b ,c 成等比数列. (2)解:因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-(2)22×1×2=34,因为0<B <π,所以sin B =1-cos 2B =74,故△ABC 的面积S =12ac sin B =12×1×2×74=74.6.解:(1)解法一:设相遇时小艇的航行距离为s 海里,则s =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400=900⎝ ⎛⎭⎪⎫t -132+300.故当t =13时,s min =103,v =10313=30 3.即小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.解法二:若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向,如图,设小艇与轮船在C 处相遇.在Rt△OAC 中,OC =20cos 30°=103,AC =20sin 30°=10. 又AC =30t ,OC =vt ,此时,轮船航行时间t =1030=13,v =10313=30 3.即小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)如图,设小艇与轮船在B 处相遇,由题意,可得(vt )2=202+(30t )2-2·20·30t ·cos(90°-30°).化简,得v 2=400t 2-600t +900=400⎝ ⎛⎭⎪⎫1t -342+675. 由于0<t ≤12,即1t ≥2,所以当1t=2时,v 取得最小值1013,即小艇航行速度的最小值为1013海里/时.。
第6讲 正弦定理和余弦定理1.考查正、余弦定理的推导过程.2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法. 【复习指导】1.掌握正弦定理和余弦定理的推导方法.2.通过正、余定理变形技巧实现三角形中的边角转换,解题过程中做到正余弦定理的优化选择.基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R 等形式,以解决不同的三角形问题. 2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin Aa =b sin Ab sin A <a <ba ≥ba >ba ≤b解的 个数无解 一解 两解 一解 一解 无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角. 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ). A .5 2 B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°, 由正弦定理得:a sin A =csin C , 即1032=c 22.∴c =1063. 答案 C2.在△ABC 中,若sin A a =cos Bb ,则B 的值为( ). A .30° B .45° C .60° D .90° 解析 由正弦定理知:sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.答案 B3.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ). A .30° B .45° C .60° D .75° 解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°. 答案 C4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ). A .3 3 B .2 3 C .4 3 D. 3 解析 ∵cos C =13,0<C <π, ∴sin C =223, ∴S △ABC =12ab sin C=12×32×23×223=4 3. 答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab , ∴cos C =a 2+b 2-c 22ab =-32, 故C =150°为三角形的最大内角. 答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°, ∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°, c =b sin Csin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin Csin B =6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin Acos A =2,sin 2A +cos 2A =1, 联立解得sin A =255, 再由正弦定理得a sin A =bsin B , 代入数据解得a =210.答案255 210考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.[审题视点] 由cos B cos C =-b2a +c ,利用余弦定理转化为边的关系求解.解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac , cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12. ∵B 为三角形的内角,∴B =23π. (2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ac =3.∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.解(1)由2cos2A2+cos A=0,得1+cos A+cos A=0,即cos A=-1 2,∵0<A<π,∴A=2π3.(2)由余弦定理得,a2=b2+c2-2bc cos A,A=2π3,则a2=(b+c)2-bc,又a=23,b+c=4,有12=42-bc,则bc=4,故S△ABC =12bc sin A= 3.考向三利用正、余弦定理判断三角形形状【例3】►在△ABC中,若(a2+b2)sin(A-B)=(a2-b2)sin C,试判断△ABC的形状.[审题视点] 首先边化角或角化边,再整理化简即可判断.解由已知(a2+b2)sin(A-B)=(a2-b2)sin C,得b2[sin(A-B)+sin C]=a2[sin C-sin(A-B)],即b2sin A cos B=a2cos A sin B,即sin2B sin A cos B=sin2A cos B sin B,所以sin 2B=sin 2A,由于A,B是三角形的内角.故0<2A<2π,0<2B<2π.故只可能2A=2B或2A=π-2B,即A=B或A+B=π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.【训练3】 在△ABC 中,若a cos A =b cos B =ccos C ;则△ABC 是( ). A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径).∴sin A cos A =sin B cos B =sin C cos C .即tan A =tan B =tan C ,∴A =B =C . 答案 B考向三 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题. 解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎨⎧ a 2+b 2-ab =4,ab =4,解得⎩⎨⎧a =2,b =2. (2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A .当cos A =0,即A =π2时,B =π6, a =433,b =233;当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎨⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题.【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2. (1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解 (1)因为cos B =45,所以sin B =35. 由正弦定理a sin A =b sin B ,可得a sin 30°=103, 所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35, 所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a+c)2-2ac=20,(a+c)2=40.所以a+c=210.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件., 【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a =3,b=2,1+2cos(B+C)=0,求边BC上的高.错因忽视三角形中“大边对大角”的定理,产生了增根.实录由1+2cos(B+C)=0,知cos A=12,∴A=π3,根据正弦定理asin A=bsin B得:sin B=b sin Aa=22,∴B=π4或3π4.以下解答过程略.正解∵在△ABC中,cos(B+C)=-cos A,∴1+2cos(B+C)=1-2cos A=0,∴A=π3.在△ABC中,根据正弦定理asin A=bsin B,∴sin B=b sin Aa=22.∵a>b,∴B=π4,∴C=π-(A+B)=5 12π.∴sin C=sin(B+A)=sin B cos A+cos B sin A=22×12+22×32=6+24.∴BC边上的高为b sin C=2×6+24=3+12.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a;(2)若c2=b2+3a2,求B.[尝试解答](1)由正弦定理得,sin2A sin B+sin B cos2A=2sin A,即sin B(sin2A+cos2A)=2sin A.故sin B=2sin A,所以ba= 2.(2)由余弦定理和c2=b2+3a2,得cos B=(1+3)a2c.由(1)知b2=2a2,故c2=(2+3)a2.可得cos2B=12,又cos B>0,故cos B=22,所以B=45°.。
4.6正弦定理、余弦定理及其应用1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式①a=2R sin A,b=____________,c=____________;②sin A=a2R,sin B=,sin C=;③a∶b∶c=______________________.2.余弦定理(1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=,b2=,c2=.若令C=90°,则c2=,即为勾股定理.(2)余弦定理的推论:cos A=,cos B=,cos C=.若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=_____________________;sin2C=________________.注意式中隐含条件A+B+C=π.3.解三角形的类型(1)已知三角形的任意两个角与一边,用____________定理,只有一解.(2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有________________________.如在△ABC中,已知a,b和A时,解的情况如表:(3)已知三边,用____________定理有解时,只有一解.(4)已知两边及夹角,用____________定理,必有一解.4.三角形中的常用公式及变式(1)三角形面积公式S△=______________=______________=______________=______________=______________.其中R,r分别为三角形外接圆、内切圆半径.(2)A+B+C=π,则A=__________,A2=__________,从而sin A=____________,cos A=____________,tan A=____________;sinA2=__________,cosA2=__________,tanA2=__________.tan A+tan B+tan C=____________.(3)若三角形三边a,b,c成等差数列,则2b=____________⇔2sin B=____________⇔2sinB2=cosA-C2⇔2cosA+C2=cosA-C2⇔tanA2tanC2=13.(4)在△ABC中,a=b cos C+ccos B,b=____________,c=____________.(此定理称作“射影定理”,亦称第一余弦定理)自查自纠:1.(1)asin A=bsin B=csin C=2R(2)①2R sin B2R sin C②b2Rc2R③sin A∶sin B∶sin C2.(1)b 2+c 2-2b ccos A c 2+a 2-2c a cos B a 2+b 2-2ab cos C a 2+b 2(2)b 2+c 2-a 22b c c 2+a 2-b 22c a a 2+b 2-c 22ab > <(3)互化 sin 2C +sin 2A -2sin C sin A cos B sin 2A +sin 2B -2sin A sin B cos C3.(1)正弦(2)正弦 一解、两解或无解 ①一解②两解 ③一解 ④一解 (3)余弦 (4)余弦 4.(1)12ab sin C 12b csin A 12a csin B ab c 4R12(a +b +c)r (2)π-(B +C ) π2-B +C2 sin(B +C )-cos(B +C ) -tan(B +C ) cos B +C 2 sin B +C21tanB +C 2tan A tan B tan C (3)a +c sin A +sin C (4)a cos C +ccos A a cos B +b cos A(2018·全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB = ( ) A .4 2 B.30 C.29 D .2 5解:因为cos C =2cos 2C 2-1=2×⎝⎛⎭⎫552-1=-35,所以AB 2=BC 2+AC 2-2BC ·AC ·cos C =1+25-2×1×5×⎝⎛⎭⎫-35=32,所以AB =4 2.故选A . (2017·山东)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是 ( ) A .a =2b B .b =2aC .A =2BD .B =2A 解:sin(A +C )+2sin B cos C =2sin A cos C +cos A sin C ,所以2sin B cos C =sin A cos C ⇒2sin B = sin A ⇒2b =a .故选A.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C = ( )A.π12B.π6C.π4D.π3 解:由题意sin(A +C )+sin A (sin C -cos C )=0, 得sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,即sin C (sin A +cos A )=2sin C sin ⎝⎛⎭⎫A +π4=0, 所以A =3π4.由正弦定理a sin A =c sin C ,得2sin 3π4=2sin C,即sin C =12,得C =π6.故选B.(2018·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若a =7,b =2,A =60°,则sin B =________,c =________.解:由正弦定理得a b =sin A sin B ,所以sin B =27×sin π3=217, 由余弦定理得a 2=b 2+c 2-2b ccos A ,所以7= 4+c 2-2c ,所以c =3(负值舍去).故填217;3. (2018·全国卷Ⅰ) △ABC 的内角A ,B ,C的对边分别为a ,b ,c ,已知b sin C +csin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为________. 解:根据题意,结合正弦定理可得sin B sin C +sin C sin B =4sin A sin B sin C ,即sin A =12,结合余弦定理可得b 2+c 2-a 2=2b ccos A =8, 所以A 为锐角,且cos A =32,从而求得b c =833,所以△ABC 的面积为S =12b csin A =12×833×12=233.故填233.类型一 正弦定理的应用(2018·北京)在△ABC 中,a =7,b =8,cos B =-17. (1)求A ;(2)求AC 边上的高.解:(1)在△ABC 中,因为cos B =-17,所以B ∈⎝⎛⎭⎫π2,π,所以sin B =1-cos 2B =437.由正弦定理a sin A =b sin B 得,7sin A =8437,所以sin A =32.因为B ∈⎝⎛⎭⎫π2,π,所以A ∈⎝⎛⎭⎫0,π2,所以A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +sin B cos A =32×⎝⎛⎭⎫-17+12×437=3314. 如图所示,在△ABC 中,h =BC ·sin C =7×3314=332,所以AC 边上的高为332.点 拨:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.由正弦定理求角,注意利用条件判断角的范围,即确定是一解还是两解.(1)(2016·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.解:在△ABC 中由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A sin C =6365,由正弦定理得b =a sin B sin A =2113.故填2113.(2)(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若2b cos B =a cos C +ccos A ,则B =________.解:由正弦定理可得2sin B cos B =sin A cos C +sin C cos A =sin(A +C )=sin B ⇒cos B =12⇒B =π3.故填π3. 类型二 余弦定理的应用(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C = ( ) A.π2 B.π3 C.π4 D.π6 解:由题可知S △ABC =12ab sin C =a 2+b 2-c 24,所以a 2+b 2-c 2=2ab sin C ,由余弦定理a 2+b 2-c 2=2ab cos C ,所以sin C =cos C ,因为C ∈(0,π),所以C =π4.故选C .点 拨:正、余弦定理是应用极为广泛的两个定理,根据三角形内角A +B +C =π的隐含条件,结合诱导公式及正、余弦定理,将三角形的边和角有机地联系起来,从而使三角函数与几何产生联系,为求与三角形有关的量(如面积、外接圆与内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法、化边法、面积法、运用初等几何法等.注意体会其中蕴涵的函数与方程思想、化归与转化思想及分类与整合思想.(2017·山东)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知b =3,AB →·AC →=-6,S △ABC=3,求A 和a .解:因为AB →·AC →=-6,所以b ccos A =-6. 又S △ABC =3,所以b csin A =6,因此tan A =-1. 又0<A <π,所以A =3π4.又b =3,所以c =2 2.由余弦定理a 2=b 2+c 2-2b ccos A , 得a 2=9+8-2×3×22×⎝⎛⎭⎫-22=29,所以a=29.类型三 正、余弦定理的综合应用(2018·北京)若△ABC 的面积为34(a 2+c 2-b 2),且C 为钝角,则B =________;c a 的取值范围是________.解:因为S △ABC =34(a 2+c 2-b 2)=12a csin B , 所以a 2+c 2-b 22ac =sin B 3,即cos B =sin B 3,所以sin B cos B =3,即tan B =3,所以B =π3,则c a =sin Csin A =sin ⎝⎛⎭⎫2π3-A sin A =32cos A -⎝⎛⎭⎫-12sin A sin A =32·1tan A +12, 因为C 为钝角,B =π3,所以0<A <π6,所以tan A ∈⎝⎛⎭⎫0,33,1tan A ∈(3,+∞). 故c a ∈(2,+∞).故填π3;(2,+∞).点 拨:①化边的关系为角的关系,和角或差角公式的正向或反向运用,以及多次联用是解决三角形问题的常用技巧;②将边的问题转化为三角函数的问题,或由边的关系结合基本不等式是解决最值(范围)问题的基本方法.(2016·山东)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )= tan A cos B +tan Bcos A . (1)证明:a +b =2c ; (2)求cos C 的最小值.解:(1)证明:由题意知2⎝⎛⎭⎫sin A cos A +sin B cos B =sin Acos A cos B +sin Bcos A cos B,化简得2(sin A cos B +sin B cos A )=sin A +sin B ,即2sin(A +B )=sin A +sin B ,因为A +B +C =π,所以sin(A +B )=sin(π-C )=sin C ,从而sin A +sin B =2sin C ,由正弦定理得a +b =2c.(2)由(1)知c =a +b 2,所以cos C =a 2+b 2-c 22ab=a 2+b 2-⎝⎛⎭⎫a +b 222ab =38⎝⎛⎭⎫a b +b a -14≥12,当且仅当a =b 时等号成立,故cos C的最小值为12.类型四 判断三角形的形状(2018·长春调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b cos C -2ccos B =a ,且B =2C ,则△ABC 的形状是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等边三角形 解:因为2b cos C -2ccos B =a ,所以2sin B cos C-2sin C cos B =sin A =sin(B +C ),即sin B cos C =3cos B sin C ,所以tan B =3tan C ,又B =2C ,所以2tan C 1-tan 2C=3tan C ,得tan C =33,C =π6,B =2C =π3,A =π2,故△ABC 为直角三角形.故选B.点 拨:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式,一般用到正弦定理;出现边的二次式,一般用到余弦定理.用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意适时缩小角的范围,如本例中由B =2C 知C 是锐角.(2016·济南一中检测)在△ABC 中,内角A ,B ,C 对边的边长分别为a ,b ,c ,A 为锐角,lg b +lg 1c=lgsin A =-lg 2,则△ABC 为( )A .锐角三角形B .等边三角形C .钝角三角形D .等腰直角三角形解:由lg b +lg 1c =lg b c =-lg 2=lg 22,得b c =22,即c =2b .由lgsin A =-lg 2,得sin A =22, 又A 为锐角,所以cos A =22. 由余弦定理:a 2=b 2+c 2-2b ccos A 得a =b , 故B =A =45°,因此C =90°.故选D .类型五 解三角形应用举例如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m .解:设此山高h(m ),则BC =3h ,在△ABC 中,∠BAC =30°,∠CBA =105°,∠BCA =45°,AB =600(m ). 在△ABC 中,根据正弦定理得BC sin A =ABsin C ,即3h sin30°=600sin45°,解得h =1006(m ).故填100 6. 点 拨: ①解三角形的方法在实际问题中,有广泛的应用.在物理学中,有关向量的计算也常用到解三角形的方法.②不管是什么类型的三角应用问题,解决的关键都是充分理解题意,将问题中的语言叙述弄明白,画出帮助分析问题的草图,再将其归结为可解的三角形.(2017·郑州二模)如图,一栋建筑物AB 的高为(30-103)米,在该建筑物的正东方向有一个通信塔CD ,在它们之间的点M (B ,M ,D 三点共线)处测得楼顶A ,塔顶C 的仰角分别是15°和 60°,在楼顶A 处测得塔顶C 的仰角是30°,则通信塔CD的高为________米.解:在Rt △ABM 中,AM =ABsin15°=30-103sin15°=30-1036-24=20 6.如右图过点A 作AN ⊥CD 于点N ,在Rt △ACN 中,因为∠CAN =30°,所以∠ACN =60°.又在Rt△CMD 中,∠CMD =60°,所以∠MCD =30°,所以∠ACM =30°,在△AMC 中,∠AMC =105°,所以AC sin105°=AM sin ∠ACM =206sin30°,所以AC =60+203,所以CN =30+103,所以CD =DN +CN =AB +CN =30-103+30+103=60.故填60.1.已知两边及其中一边的对角解三角形时,要谨防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角的关系(注意应用A +B +C =π这个结论)或边的关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解,注意等式两边的公因式一般不要约掉,而要移项提取公因式,否则有可能漏掉一种形状. 3.要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与诱导公式结合产生的结论:sin A =sin(B +C ),cos A =-cos(B +C ),sin A2=cos B +C 2,sin2A =-sin2(B +C ),cos2A =cos2(B +C )等. 4.应用正、余弦定理解斜三角形应用题的一般步骤第一步,分析:理解题意,分清已知与未知,画出示意图;第二步,建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;第三步,求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;第四步,检验:检验上述所求得的解是否符合实际,从而得出实际问题的解.1.(2016·郑州一测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 3cos B =asin A ,则 cos B = ( )A .-12 B.12 C .-32 D.32解:因为b 3cos B =asin A ,所以由正弦定理得sin B 3cos B =sin A sin A ,所以tan B =3,又0<B <π,所以 B =π3,所以cos B =12.故选B.2.(2016·天津)在△ABC 中,若AB =13, BC =3,∠C =120°,则AC = ( )A .1B .2C .3D .4 解:由余弦定理得13=9+AC 2+3AC ⇒AC =1.故选A .3.(北京通州2017届期末)在△ABC 中,a =2,B =π3,△ABC 的面积等于32,则b 等于 ( )A.32B .1 C. 3 D .2 解:由△ABC 面积公式可得S =12a csin B =32,12×2c ×32=32,c =1,由余弦定理得b 2=a 2+c 2-2a ccos B =22+12-2×2×1×cos π3=3,b = 3.故选C.4.(2018·东北三校联考)若两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°方向上,灯塔B 在观察站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( ) A .a km B.2a km C .2a km D.3a km解:依题意知∠ACB =180°-20°-40°= 120°,在△ABC 中,由余弦定理知AB =a 2+a 2-2a 2cos120°=3a (km),即灯塔A 与灯塔B 的距离为3a km.故选D.5.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知△ABC 的面积为315,b -c =2, cos A =-14,则a 的值为 ( )A .2B .4C .6D .8解:由cos A =-14得sin A =154,所以△ABC 的面积为12b csin A =12b c ×154=315,解得b c =24,又b -c =2,所以a 2=b 2+c 2-2b ccos A =(b -c)2+2b c -2b ccos A =22+2×24-2×24×⎝⎛⎭⎫-14=64,得a =8.故选D . 6.(2017·黑龙江、吉林八校期末)已知△ABC三边a ,b ,c 上的高分别为12,22,1,则cos A 等于( ) A.32 B .-22 C .-24 D .-34 解:设△ABC 的面积为S ⇒a =4S ,b =22S ,c =2S ⇒cos A =(22)2+22-422×22×2=-24.故选C .7.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知b cos C +ccos B =2b ,则ab =________.解法一:由正弦定理sin B cos C +sin C cos B =2sin B ,即sin(B +C )=sin A =2sin B ,有a b =sin Asin B =2.解法二:由余弦定理得b ·a 2+b 2-c 22ab+c·a 2+c 2-b 22a c =2b ,化简得a =2b ,因此,a b =2. 解法三:由三角形射影定理,知b cos C +ccos B=a ,所以a =2b ,所以ab=2.故填2.8.(2017·浙江节选)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________.解:取BC 中点E ,由题意,AE ⊥BC . △ABE 中,cos ∠ABC =BE AB =14,所以cos ∠DBC =-14,sin ∠DBC =1-116=154, 所以S △BCD =12×BD ×BC ×sin ∠DBC =152.故填152. 9.(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c.已知sin(A +C )=8sin 2B2.(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b . 解:(1)由题设A +B +C =π,得sin B =8sin 2B2,故sin B =4(1-cos B ). ①将①两边平方,整理得17cos 2B -32cos B +15=0,解得cos B =1(舍去),cos B =1517. (2)由cos B =1517,得sin B =817,故S △ABC =12a csin B =417a c. 又S △ABC =2,则a c =172.由余弦定理及a +c =6得b 2=a 2+c 2-2a ccos B =(a +c)2-2a c(1+cos B ) =36-2×172×⎝⎛⎭⎫1+1517=4. 所以b =2.10.(2016·浙江)在△ABC 中,内角A ,B ,C所对的边分别为a ,b ,c.已知b +c =2a cos B . (1)证明:A =2B ; (2)若△ABC 的面积S =a 24,求角A 的大小.解:(1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以A =2B .(2)由S =a 24得12ab sin C =a 24,故有sin B sin C =12sin2B =sin B cos B ,因为sin B ≠0,所以sin C =cos B . 又B ,C ∈(0,π),所以C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.11.(2018·安徽合肥模拟)如图,在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足sin 2A +sin 2C -sin 2B =3sin A ·sin C .(1)求角B ;(2)若点D 在线段BC 上,满足DA =DC ,且a =11,cos(∠BAC -∠C )=55,求CD 的长. 解:(1)在△ABC 中,由已知及正弦定理可得,a 2+c 2-b 2=3a c , 所以由余弦定理得cos B =32. 因为B ∈(0,π),所以B =π6.(2)由题易知∠BAD =∠BAC -∠C ,又cos(∠BAC -∠C )=55,所以sin(∠BAC -∠C )=sin∠BAD =255,设AD =x ,则CD =x ,BD =11-x , 在△ABD 中,由正弦定理得BD sin ∠BAD =ADsin B,即11-x 255=x12,解得x =45-5,所以CD =45-5.(2018·河南六市联考)如图,在一条海防警戒线上的点A ,B ,C 处各有一个水声检测点,B ,C 到A 的距离分别为20千米和50千米,某时刻B 收到来自静止目标P 的一个声波信号,8秒后A,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B ,C 到P 的距离,并求出x 的值;(2)求P 到海防警戒线AC 的距离. 解:(1)依题意,有P A =PC =x , PB =x -1.5×8=x -12. 在△P AB 中,AB =20,cos ∠P AB =P A 2+AB 2-PB 22P A ·AB=x 2+202-(x -12)22x ·20=3x +325x. 同理,在△P AC 中,AC =50,cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x .因为cos ∠P AB =cos ∠P AC ,所以3x +325x =25x ,解得x =31.(2)作PD ⊥AC 于D ,在△ADP 中,PD =312-252=421.故静止目标P 到海防警戒线AC 的距离为421千米.。