转载:穿缸螺栓断裂分析
- 格式:doc
- 大小:198.50 KB
- 文档页数:5
1、解理断裂(大多数情况下为脆性断裂)2、剪切断裂1、静载断裂(拉伸断裂、扭转断裂)2、冲击断裂3、疲劳断裂1、低温冷脆断裂2、静载延滞断裂(静载断裂)3、应力腐蚀断裂4、氢脆断裂断口微观形貌(图3/4/5/6),断口呈脆性特征,表面微观形貌为冰糖状沿晶断裂,芯部为沿晶+准解理断裂,在断裂的晶面上有细小的发纹状形貌。
结论:零件为沿晶断裂的脆性断口。
断口呈脆性特征,表面微观形貌沿晶断裂,芯部为准解理断裂;终断区(图4)微观为丝状韧窝形貌,为最终撕裂区结论:断口为脆性断裂宏观断口无缩颈现象且微观组织多处存在剪切韧窝形貌,为剪切过载断裂断口。
综上分析:零件为氢脆导致的断裂,氢进入钢后常沿晶界处聚集,导致晶界催化,形成沿晶裂纹并扩展,导致断面承载能力较弱,最终超过其承载极限导致断裂典型氢脆断口的宏观形貌如右图所示:氢脆又称氢致断裂失效是由于氢渗入金属内部导致损伤,从而使金属零件在低于材料屈服极限的静应力持续作用下导致的失效。
氢脆多发生于螺纹牙底或头部与杆部过渡位置等应力集中处。
断口附近无明显塑性变形,断口平齐,结构粗糙,氢脆断裂区呈结晶颗粒状,一般可见放射棱线。
色泽亮灰,断面干净,无腐蚀产物。
应力腐蚀也属于静载延滞断裂,其断口宏观形貌与一般的脆性断口相似,断口平齐而光亮,且与正应力相垂直,断口上常有人字纹或放射花样。
裂纹源区、扩展区通常色泽暗灰,伴有腐蚀产物或点蚀坑,离裂纹源区越近,腐蚀产物越多。
应力腐蚀断面最显著宏观形貌特征是裂纹源表面存在腐蚀介质成分贝纹线是疲劳断口最突出的宏观形貌特征,是鉴别疲劳断口的重要宏观依据。
如果在宏观上观察到贝壳状条纹时,在微观上观察到疲劳辉纹,可以判别这个断口属于疲劳断口。
螺栓断裂分析报告1. 引言螺栓是一种常见的连接元件,广泛应用于工程领域。
然而,在使用过程中,螺栓的断裂可能会导致严重的安全事故和设备损坏。
因此,对螺栓的断裂原因进行分析非常重要。
本文将介绍螺栓断裂的分析步骤,以帮助读者更好地了解螺栓断裂的原因,并提供相应的解决方案。
2. 分析步骤螺栓断裂分析通常可以按照以下步骤进行:2.1 收集断裂螺栓样本首先,需要收集断裂的螺栓样本。
这些样本应来自不同的工程项目,并涵盖不同的工作条件。
收集足够数量的样本有助于得出准确的结论。
2.2 观察断口形貌通过对断裂螺栓的断口形貌进行观察可以初步判断断裂的原因。
断口形貌可以分为韧性断口、脆性断口等。
韧性断口常常表明螺栓断裂是由于受到超负荷载荷所致,而脆性断口则意味着存在其他问题。
2.3 进行金相分析金相分析是一种常用的分析方法,通过对螺栓样本进行金相薄片制备和观察,可以获得螺栓的组织结构信息。
通过金相分析,可以检测到螺栓材料中的缺陷、夹杂物、氧化层等问题。
2.4 进行力学性能测试力学性能测试是评估螺栓质量的重要手段。
通过对螺栓样本进行拉伸试验、硬度测试等,可以了解螺栓的强度、韧性等性能参数。
与标准数值进行对比,可以判断螺栓是否达到设计要求。
2.5 考虑工况因素分析断裂螺栓时,还需要考虑螺栓所处的工作条件。
例如,工作温度、湿度、振动等因素都可能对螺栓的性能产生影响。
通过分析工况因素,可以找到与断裂相关的潜在问题。
2.6 结果分析与解决方案综合以上分析结果,可以得出螺栓断裂的原因。
根据不同的原因,提出相应的解决方案。
例如,如果断裂原因是由于材料质量问题,可以优化材料制备过程;如果是由于超负荷导致断裂,则需要对工作负荷进行合理评估等。
3. 结论螺栓断裂分析是一项复杂的工作,需要综合考虑多个因素。
通过对断裂螺栓样本的观察、金相分析、力学性能测试以及考虑工况因素,可以准确判断螺栓断裂的原因,并提出相应的解决方案。
对螺栓断裂问题的分析与解决不仅可以提高工程项目的安全性,还能为相关领域的研究提供参考。
螺栓断裂分析报告(总9页)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March高强度螺栓断裂分析曾振鹏(上海交通大学高温材料及高温测试教育部重点实验室,上海200030)摘要:采用断口分析、金相检验和硬度测定等方法,对高强度螺栓断裂原因进行了分析。
断口分析结果表明,断口平坦,呈放射状花样,微观形态主要为准解理花样,表明螺栓的断裂是脆性断裂;同时发现,在断口附近还存在横向内裂纹,内裂纹的断口形态与断裂断口一样。
金相分析表明,材料棒中存在严重的中心碳偏析,而中心碳偏析是引起断裂的主要原因。
关键词:高强度螺栓;准解理;横向内裂纹;中心碳偏析某厂生产的一批规格为M30×160mm的高强度大六角头螺栓,在进行验收试验时发生断裂。
螺栓材料为35CrMoA,采用常规工艺生产,硬度要求为35~39HRC。
1 检验1.1 材料的化学成分用VD25直读光谱仪进行了材料化学成分分析,分析结果(质量分数)列于表1。
从表1可以看出,材料的化学成分符合标准要求。
1.2 硬度测定硬度测定结果列于表2。
由表可见,螺栓材料硬度虽符合技术要求,但已接近上限。
1.3 材料的显微组织(1)在抛光态下,可见材料中含有较严重的夹杂物,其形态、分布见图1。
对照标准[2],夹杂物级别为3~4级。
图1 夹杂物形态及分布状况100×图2 螺栓的显微组织280×4%硝酸酒精溶液侵蚀(2)显微组织见图2。
组织为回火马氏体+粒状贝氏体,并有少量铁素体。
从图2可明显看出,组织中存在严重偏析,出现回火马氏体和粒状贝氏体带,致使显微组织不均匀,而且在回火马氏体带中存在MnS夹杂。
对样品螺纹根部附近的组织进行了观察,未发现脱碳现象。
1.4 断口分析(1)图3a为断口的宏观形貌,断口较平坦,表面呈灰色,有明显的撕裂脊,呈放射状花样,放射线从中心向四周发射。
螺栓断裂原因分析及预防摘要:本文通过对失效螺栓及同批次的零件进行理化分析和无损检测。
对断裂件进行了宏观、微观断口观察、金相组织检查、硬度、化学成分、破坏拉力等一系列试验,经分析找出螺栓失效原因,并提出预防措施。
关键词:螺栓断裂回火脆化螺栓作为飞机上重要的紧固件,其发生断裂危害较大。
我厂修理过程中使用的螺栓主要为M4、M5、M6、M8和M10等规格,然而在某产品装配和停放过程中,某批次30CrMnSiA M8的螺栓先后发生脆性断裂。
引起工厂高度重视,因为螺栓发生脆断,不论是氢脆断裂,还是热处理造成的脆性断裂大都与“批次性”问题有关,涉及数量多,危害大,组织专业人员对螺栓在装配过程中及装配一段时间后发生断裂的原因进行了分析,并对后续的预防工作,提出了建议和方案。
1 宏观、微观检查对断裂螺栓进行宏观观察:发现断裂位置接近于第一扣螺纹处见(图1)。
断裂处螺纹表面未发现有明显的机械接触痕迹,如压坑、啃刀、划伤等表面缺陷,也未发现热处理表面烧蚀痕迹、螺纹变形等现象,没有局部麻点、剥蚀等缺陷。
断裂螺栓螺纹牙底呈线性起源,放射棱线粗大,断口附近无明显宏观塑性变形,断口齐平,呈暗灰色,断面粗糙,具有金属光泽(图2)。
图1断裂螺栓图2螺栓断口图3 螺栓整体形貌对裂纹断口进行观察,断口特征呈现以沿晶为主+韧窝的混合断裂形貌,且断口源区未见冶金和加工等产生的缺陷。
对同批次的螺栓抽样进行了磁粉检测,在螺纹的根部没有发现表面或近表面裂纹,对螺栓进行X射线检测,也没有发现内部缺陷。
同批螺栓见图3。
2 材质检验2.1成份分析抽取同批次的螺栓去掉镀层后制取化学粉末,采用碳、硫联合测定仪对碳、硫含量进行了检测,利用QSN750光谱仪对其它元素进行了检测,结果见(表1),螺栓的化学成分符合技术要求,但含碳量较高。
表1 化学成份检测结果表2.2 金相分析在靠近断口位置切取金相试样,镶嵌、磨抛、腐蚀后,显微镜对试样进行组织观察,螺栓显微组织为较粗大的回火马氏体(图4)。
螺栓断裂原因分析螺栓的抗拉强度比想象中强得多,以一只M20×80的8.8级高强螺栓为例,它的重量只有0.2公斤,而它的最小拉力载荷是20吨,高达它自身重量的十万倍,一般情况下,我们只会用它紧固几十公斤的部件,只使用它最大能力的千分之一。
即便是设备中其它力的作用,也不可能突破部件重量的千倍,因此螺栓的抗拉强度是足够的,不可能因为螺栓的强度不够而损坏。
很多螺栓断裂的最终分析认为是超过螺栓的疲劳强度而损坏,但是螺栓在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次才会损坏。
换句话说,螺栓在使用其疲劳强度的万分之一时即松动了,我们只使用了螺栓能力的万分之一,所以说螺栓的损坏也不是因为螺栓疲劳强度。
静态紧固用螺栓很少会自行松动,也很少出现断裂情况。
但是在冲击,振动,变载荷情况下使用的螺栓就会出现松动和断裂的情况。
所以我认为螺栓损坏的真正原因是松动。
螺栓松动后,螺纹和连接件之间产生微小间隙,冲击和振动会产生巨大的动能mv^2,这种巨大的动能直接作用于螺栓,受轴向力作用的螺栓可能会被拉断。
受径向力作用的螺栓可能会被剪断。
因此设计时,对于关键的运动部位的连接紧固要注意防松设计。
自锁螺母尼龙锁紧螺母以上为两种形式的锁紧螺母。
对于弹簧垫片的放松效果,一直存在争议。
弹簧垫圈的放松原理是在把弹簧垫圈压平后,弹簧垫圈会产生一个持续的弹力,使螺母和螺栓连接副持续保持一个摩擦力,产生阻力矩,从而防止螺母松动。
同时弹簧垫圈开口处的尖角分别嵌入螺栓和被连接件的表面,从而防止螺栓相对于被连接件回转。
以M16螺栓连接为例,实验显示用约10N.m的螺栓预紧力矩就可以将16弹簧垫圈完全压平。
弹簧垫圈只能提供10N.m的弹力,而10N.m的弹力对于280N.m的螺栓预紧力矩来说可以忽略,其次,这么小的力,不足以使弹簧垫圈切口处的尖角嵌入螺栓和被连接件表面。
折卸后观察,螺栓和被连接件表面都没有明显的嵌痕。
所以,弹簧垫圈对螺栓的防松作用可以忽略。
螺栓断裂分析报告一、引言螺栓是一种常见的连接元件,在机械设备和结构工程中得到广泛应用。
然而,螺栓在使用中可能会发生断裂,给机械设备和结构的安全运行带来隐患。
本报告旨在对螺栓断裂进行分析,并提供解决方案,以确保设备和结构的安全性。
二、螺栓断裂原因分析1.质量问题:螺栓断裂可能是由于螺栓本身存在质量问题所致,如材料强度不符合标准、制造工艺不良等。
为此,应关注螺栓的采购渠道和制造工艺,并严格按照相关标准进行选择和检测。
3.腐蚀问题:腐蚀是导致螺栓断裂的常见原因之一、在潮湿、酸性或碱性环境中,螺栓易受到腐蚀,使其材料的强度降低。
因此,在腐蚀环境中应选择抗腐蚀性能良好的螺栓材料,并进行定期维护保养。
4.紧固力不均匀:不正确的紧固力分布可能导致螺栓在负载过程中承受不均匀的力,从而引发断裂。
在安装过程中,应根据设备或结构的要求,采用正确的紧固力分布方案,并进行定期检查和调整。
三、螺栓断裂的解决方案1.优化选材:根据设备或结构的负荷、工作环境等要求,选择合适的螺栓材料。
关注材料的强度、韧性、抗腐蚀性等指标,并遵循标准进行选材。
2.合理设计螺栓连接:根据实际负荷情况和工作要求,合理选用螺栓的规格、数量和布置方式,并确保紧固力的均匀分布。
在设计过程中,可以借助有限元分析等工具来验证螺栓连接的安全性。
3.定期检查和维护:对于暴露在恶劣环境中的螺栓,应定期进行检查和维护,特别是针对腐蚀环境。
清洁螺栓表面,涂覆抗腐蚀涂层,必要时更换受损螺栓,以延长其使用寿命。
4.强化管理和培训:通过建立规范的螺栓管理制度和培训机制,提高操作人员的专业水平,加强螺栓使用和维护的知识宣传,以减少螺栓断裂的发生。
四、结论螺栓断裂是机械设备和结构工程中常见的问题,但可以通过合理选材、优化设计、定期维护和加强管理来减少其发生。
对于已经断裂的螺栓,应及时进行更换,并对其断裂原因进行调查分析,以避免类似问题再次发生。
通过以上措施的综合应用,能够提高螺栓连接的安全性和可靠性,保证设备和结构的正常运行。
螺栓断裂原因分析本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March螺栓断裂原因的分析一般情况下,我们对于螺栓断裂从以下四个方面来分析:第一、螺栓的质量第二、螺栓的预紧力矩第三、螺栓的强度第四、螺栓的疲劳强度实际上,螺栓断裂绝大多数情况都是因为松动而断裂的,是由于松动而被打坏的。
因为螺栓松动打断的情况和疲劳断裂的情况大体相同,最后,我们总能从疲劳强度上找到原因,实际上,疲劳强度大得我们无法想象,螺栓在使用过程中根本用不到疲劳强度。
一、螺栓断裂不是由于螺栓的抗拉强度:以一只M20×80的级高强螺栓为例,它的重量只有公斤,而它的最小拉力载荷是20吨,高达它自身重量的十万倍,一般情况下,我们只会用它紧固20公斤的部件,也只使用它最大能力的千分之一。
即便是设备中其它力的作用,也不可能突破部件重量的千倍,因此螺纹紧固件的抗拉强度是足够的,不可能因为螺栓的强度不够而损坏。
二、螺栓的断裂不是由于螺栓的疲劳强度:螺纹紧固件在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次。
换句话说,螺纹紧固件在使用其疲劳强度的万分之一时即松动了,我们只使用了它大能力的万分之一,所以说螺纹紧固件的松动也不是因为螺栓疲劳强度。
三、螺纹紧固件损坏的真正原因是松动:螺纹紧固件松动后,产生巨大的动能mv2,这种巨大的动能直接作用于紧固件及设备,致使紧固件损坏,紧固件损坏后,设备无法在正常的状态下工作,进一步导致设备损坏。
受轴向力作用的紧固件,螺纹被破坏,螺栓被拉断。
受径向力作用的紧固件,螺栓被剪断,螺栓孔被打成橢圆。
四、选用防松效果优异的螺纹防松方式是解决问题的根本所在:以液压锤为例。
GT80液压锤的重量是吨,其侧板螺栓为7套级M42螺栓,每根螺栓的抗拉力为110吨,预紧力取抗拉力一半计算,预紧力高达三、四百吨。
但是螺栓一样会断,现在准备改成M48的螺栓,根本原因是螺栓防松解决不了。
螺栓断裂简介螺栓断裂是指螺栓在受力过程中发生断裂现象。
螺栓作为连接紧固件,广泛应用于机械设备、汽车、航空航天等领域。
螺栓的断裂可能给设备带来严重的损坏甚至危险。
本文将从螺栓断裂的原因、检测方法以及预防措施等方面进行介绍和讨论。
原因螺栓断裂原因众多,主要可以归纳为以下几个方面:1. 载荷过大过大的载荷是螺栓断裂的主要原因之一。
当设备在运行过程中受到超过螺栓所能承受的最大载荷时,螺栓很容易发生断裂。
此外,载荷过大还会导致螺栓的拉伸和应力集中,加剧了螺栓断裂的风险。
2. 过紧或过松的紧固力过紧或过松的紧固力都会导致螺栓断裂。
当螺栓被过紧固定时,可能会导致螺栓超载断裂。
而过松的紧固力则会导致螺栓在运行过程中受到额外的振动和冲击,增加了螺栓断裂的风险。
3. 材料质量问题螺栓的材料质量也是导致螺栓断裂的重要原因之一。
如果螺栓的材料存在缺陷或者不符合标准,就会导致螺栓在承受载荷时出现断裂。
此外,螺栓的表面处理以及生产工艺等也会影响螺栓的断裂强度。
4. 腐蚀和疲劳腐蚀和疲劳也是导致螺栓断裂的常见原因。
腐蚀会降低螺栓的强度和韧性,增加螺栓断裂的风险。
而疲劳则是由于螺栓长时间受到交替载荷作用,导致螺栓产生裂纹并最终断裂。
检测方法及早检测螺栓断裂的迹象对于设备的安全运行至关重要。
以下是一些常用的螺栓断裂检测方法:1. 目视检查目视检查是最简单直接的螺栓断裂检测方法之一。
通过观察螺栓的外观是否有明显的破裂或变形,可以初步判断螺栓是否存在断裂的风险。
2. 超声波检测超声波检测是一种非破坏性检测技术,可以用于检测螺栓内部的裂纹和缺陷。
通过将超声波传感器放置在螺栓上,可以探测到螺栓内部的声波反射情况,从而判断螺栓是否存在断裂的问题。
3. 磁粉检测磁粉检测是一种常用的金属表面检测方法,也可以用于螺栓的断裂检测。
通过在螺栓表面涂覆磁粉,并施加磁场,可以发现螺栓表面的裂纹和缺陷。
4. 强度测试通过对螺栓的强度进行测试,可以评估螺栓的是否存在断裂的风险。
汽车发动机螺栓断裂失效分析摘要:文章针对某汽车发动机螺栓的断裂失效进行了分析,通过理化检验,对螺栓断口宏观、金相、硬度、摩擦性能等方面进行了检测,并利用扫描电镜对断口进行了分析,得出汽车发动机螺栓断裂失效的原因,并对避免装配时螺栓断裂的发生提出了相关措施,可供预防螺栓断裂提供参考借鉴。
关键词:汽车发动机;螺栓;断裂0 引言随着我国社会经济的快速发展,汽车的使用量日益增加,人们对汽车的质量也提出了更高的要求。
在汽车发动机安装中,螺栓的安装质量直接关系到汽车发动机的正常、安全运行,并对汽车的整体质量具有重要的影响。
而在汽车发动机安装中,螺栓的断裂现象时有发生,严重影响到了汽车发动机的正常安全运行,并对人们的生命财产安全构成了威胁。
因此,对其断裂失效进行分析,探讨其预防措施十分必要。
本文结合某发动机螺栓断裂实例,进行了相关介绍,其断裂件如下图1所示。
图1 断裂螺栓图1 理化检验1.1 宏观断口分析断口宏观形貌可见圆锥型尖角,由于螺栓在拧紧过程中受到扭转力,杯锥轴线方向与主应力方向一致,锥面与主应力夹角为45°,断口表面呈鹅毛绒状。
螺栓大头端断口附近可见明显拉伸塑性变形,螺栓尾段断口可见明显杯状韧性断裂特征,同时在螺纹根部可见裂纹,分布范围在圆周20°区域内,如图2中箭头所示。
另外对螺栓1部分断口在体式显微镜下观察,也可见在螺纹根部有裂纹出现。
从宏观断口形貌来看,大头短和尾端螺栓断口可见明显塑性变形特征,未见脆性断裂特征。
图2 断口宏观照片1.2 螺栓摩擦性能试验螺栓摩擦系数要求0.1~0.16,选取同批次3件螺栓进行摩擦系数性能试验,结果分别为0.13、0.13及0.14,结果为合格。
经过大量的试验和实践经验的积累,在实际拧紧过程中受到摩擦系数等影响,仅仅5%~10%的扭矩转化为所需要的预紧力,有90%的扭矩被拧紧过程中的摩擦消耗掉。
当支承面的摩擦系数降低20%时,支承面摩擦扭矩降为40%,螺栓轴向夹紧力将翻倍增加(有20%的拧紧扭矩转化成夹紧力)。
螺栓断裂分析报告
报告编号:manuel-0022
报告撰写:马克·雷斯
单位:卡兰技术服务公司
报告日期:2023年5月2日
报告概要
本报告旨在对一枚M24*2.5螺栓所出现的断裂进行分析,并从中了解到断裂原因。
此螺栓在XYZ机械有限公司的机器上安装,用于安装非标准机器上部件。
机器的规格如下:
机器名称:XYZ铸造机
机器类型:单机型
机器重量:20吨
工作周期:每小时6至8小时
断裂螺栓细节
此螺栓已断裂,表明已发生抗拉破坏。
断裂点位于螺栓的头部,可以看到断口处有磨损痕迹,断口处的磨损痕迹类似毛刺。
应发现此断裂情况后,应立即停止使用。
物理检查
物理检查发现,此螺栓的尺寸为:M 24*2.5,螺纹细度为 8g/.5 吋。
金属表面粗糙度约为 7 um,表明表面没有氧化或腐蚀。
汽车表面的外观
检查,没有发现任何明显的异常或破损。
金相检查
金相检查发现,断裂螺栓的材料为钢,其中含铬(Cr)和镍(Ni)各含量
为0.54%和0.2%,硅(Si)含量为0.17%,铅(Pb)含量为0.003%。
断裂分析。
螺栓断裂(螺栓头根部断裂,如果是单件估讣是应力集中的原因,断裂批量应是材料或热处理问题。
)
1.拧紧力矩过大(8.8级M8螺栓的介理拧紧力矩在18~23N.m)
2.螺栓根部设计不合理导致了应力集中
3.热处理没有达到要求,,导致硬度过髙,发生脆性断裂。
是否有回火脆性?螺纹处是否有
脱碳组织?
4.材料问题(8.8级螺栓的材质应该是40MnB或者是35CrMOA
5.电镀时如处理不当,容易导致氢的侵蚀,导致氢脆:氢脆断口的特征为:微观准解理面、微孔及韧性的
发丝。
(判断是否为氢脆有个最简单的办法:把样品表而水和油污淸洗干净,
烘干,倒一烧杯石蜡.加热到没有气泡冒出为止.然后把样品放入石蜡中,如果有气泡冒出就说明氢含址高)
6.枪未调好扭距,有冲击,岀现瞬间过载。
7.材料本身就有缺陷(螺栓头杆结合处有微裂纹。
1螺栓断裂情况汇报尊敬的领导:根据最近的工作情况,我对螺栓断裂情况进行了汇报。
在我们的生产过程中,螺栓断裂的情况时有发生,给生产和设备带来了一定的影响。
经过调查和分析,我对此情况进行了总结和汇报,希望能够得到您的指导和支持。
首先,我们对螺栓断裂的情况进行了详细的调查和分析。
在生产现场,我们发现螺栓断裂主要集中在某一台设备上,且发生频率较高。
经过检查,我们发现这些螺栓在使用过程中出现了明显的疲劳断裂现象,部分螺栓表面还出现了裂纹。
这些情况表明,螺栓的质量和使用状态存在一定的问题,需要引起我们的重视和处理。
其次,我们对螺栓的使用情况进行了分析。
经过调查发现,部分螺栓在使用过程中受到了过大的载荷,超出了其承载能力范围。
另外,由于一些操作人员对螺栓的安装和紧固力度掌握不够,导致螺栓在工作过程中出现了松动现象。
这些因素都对螺栓的使用寿命和安全性造成了一定的影响。
针对以上情况,我们已经采取了一系列的措施来解决螺栓断裂的问题。
首先,我们对设备进行了全面的检修和维护,对螺栓进行了更换和升级,以确保其质量和性能符合要求。
其次,我们加强了对操作人员的培训和管理,提高了他们对螺栓安装和使用的认识和技能,减少了因人为操作不当而导致的螺栓断裂情况。
同时,我们还对设备的工作状态进行了监测和调整,确保了螺栓在正常工作范围内运行,避免了过大的载荷对螺栓的影响。
经过以上的努力,螺栓断裂的情况得到了有效的控制和改善。
目前,螺栓的使用状态和安全性得到了有效的保障,生产过程中的故障率和安全隐患得到了有效的降低。
我们将继续密切关注螺栓的使用情况,加强对设备和操作人员的管理和监督,确保螺栓的安全使用,为生产的顺利进行提供保障。
在今后的工作中,我们将进一步加强对螺栓使用情况的监测和分析,不断改进和完善螺栓的使用管理制度,提高螺栓的使用安全性和可靠性,为企业的发展和生产的顺利进行提供更加坚实的保障。
此致。
敬礼。
螺栓断裂分析报告摘要:本报告针对螺栓断裂现象进行了详细的分析和研究。
通过对螺栓断裂的原因、影响以及防止措施的探讨,为相关行业的螺栓使用提供了重要的参考。
本报告基于理论分析与实际案例,对螺栓断裂的破坏机理进行了深入剖析,为预防螺栓断裂提供了有益的建议。
1. 引言螺栓断裂是制造行业普遍存在的问题,对设备和生产过程的正常运行产生了严重的影响。
因此,了解螺栓断裂的原因和预防方法对确保设备和工业机械的长期运行至关重要。
2. 螺栓断裂的原因螺栓断裂的主要原因可以归结为以下几点:2.1 载荷过大:超过螺栓设计承载能力的载荷会加剧螺栓的应力,导致螺栓断裂。
2.2 腐蚀和疲劳:螺栓在潮湿或酸碱环境中易受到腐蚀,长期使用和重复加载会引起螺栓疲劳,最终导致断裂。
2.3 不合适的材料选择:选择低强度或不符合工作环境需求的材料使用螺栓,容易导致断裂。
2.4 不当的安装和紧固:螺栓的安装和紧固过程如果不正确,会影响其承载能力,增加螺栓断裂的风险。
3. 螺栓断裂的影响3.1 安全问题:螺栓断裂可能导致设备或机械的故障,对人员和生产环境造成潜在的安全隐患。
3.2 生产中断:螺栓断裂会导致设备停机和生产中断,给企业带来经济损失和生产延误。
3.3 维修和更换成本:螺栓断裂需要进行维修和更换,企业需要承担额外的成本。
4. 螺栓断裂的预防措施4.1 正确的设计和选择:根据工作环境和载荷要求,合理设计和选择螺栓材料和规格。
4.2 适当的安装和紧固:严格按照安装规范进行螺栓的安装和紧固,确保螺栓能够承受设计载荷。
4.3 定期检测和维护:定期检查螺栓的状态,及时发现问题并采取措施修复或更换。
4.4 使用防腐措施:在潮湿或有腐蚀环境的场所使用螺栓时,应采取防腐措施,延长螺栓的使用寿命。
5. 结论通过对螺栓断裂现象进行分析和探讨,我们可以得出以下结论:5.1 正确的设计和选择对于防止螺栓断裂至关重要。
5.2 安装和紧固过程必须按照规范进行,以确保螺栓可以承受设计载荷。
螺栓受力检测及断裂分析目录一、现场螺栓断裂问题描述二、螺栓断裂可能原因分析及测试依据三、测试系统介绍及标定四、现场机组螺栓测试五、数据分析六、现场螺栓测试时发现的问题及注意事项七、螺栓断裂分析注意事项及案例分享二、螺栓断裂可能原因分析及测试依据1、螺栓断裂可能原因1.1螺栓质量问题现场更换过多批次螺栓,且将部分螺栓送检过,未发现螺栓质量存在问题,故此种可能情况基本可以排除。
1.2螺栓脆性断裂1)氢脆断裂的典型特征是纤维性断口,且断口比较平整,见图1。
根据现场查看螺栓断口特征,机组断裂螺栓亦不符合氢脆断裂。
2)螺栓疲劳断裂的典型特征是存在贝纹状疲劳线,沿着疲劳弧线发展的逆向,可以找到裂纹源,见图2,现场机组断裂螺栓符合这一特征。
图1 纤维性断口图2 贝纹性断口2、螺栓测试依据螺栓疲劳断裂主要与螺栓连接受载时的应力幅值有关,所以此次螺栓测试主要测试螺栓的应力幅值的变化。
应力幅:Fmax:机组工作时螺栓受到的最大拉力;Fmin:机组工作时螺栓受到的最小拉力;As :螺纹公称应力截面积。
此次螺栓测试所携带设备,可将机组在工作时螺栓所受轴向拉力时时进行记录,从而得到机组工作时偏航轴承与底座联接螺栓的应力幅值。
通过螺栓频繁断裂机组螺栓应力幅值与未断裂机组螺栓应力幅值相比较,为后续仿真建模提供测试依据,找出螺栓断裂的真正原因。
1、测试系统组成(见图3)图3三、测试系统介绍及标定用户K值计算:用户K值计算的目的主要是确定力与应变间的对应关系。
HBM‐KMR拉力传感器灵敏度为1.7MV/V~2.3MV/V,取中间值为2mV/V,由于系统激励电压为2V,故该系统满量程为4mV。
1)满量程与电压对应关系:Ain=400KN/4mV=100KN/mV=0.1KN/μν。
2)无线应变节点的灵敏度F=1μν/με。
(注:无线应变节点可测量毫伏信号,但是显示的最小刻度值为με,而且系统给出了灵敏度F=1μν/με,所以需要转化为μν)3)此时传感器最小分辨电压能力为K0,K0=0.17481。
螺栓断裂原因分析及预防摘要:随着社会经济的快速发展,各个领域的制造工艺和相关技术水平都有了很大的提高。
在提高技术的同时,企业对产品的可靠性也提出了更高的要求。
作为一项方便人们出行的工程,其结构的稳定性和安全性对整个工程的质量和社会效益具有重要意义。
然而,在项目的实际施工和维护中,不难发现工作人员主要关注较大的部件,而不关注较小的部件,尤其是螺栓部件,导致螺栓疲劳断裂失效。
因此,重视小零件的检测与维护,分析螺栓的疲劳断裂失效,对社会的发展具有重要意义。
基于疲劳断裂失效和断裂分析的重要性,分析了气缸盖螺栓断裂失效的原因,并提出了相应的优化措施。
关键词:螺栓;疲劳断裂;无效的简介:自工业革命和改革开放以来,中国的工业有了很大的发展,特别是在金属开采、铁路建设、建筑等领域。
在施工方面,由于技术和工艺的创新,整体施工水平呈上升趋势,但在发展的同时,仍有许多问题需要特别关注。
如疲劳断裂破坏行为。
疲劳断裂的原因是多方面的,其中最容易被忽视的是螺栓的疲劳断裂失效。
细节决定成败。
即使对大型零件进行彻底检查和维护,忽视小型零件也会造成难以想象的后果。
一旦发生坍塌,不仅会造成巨大的经济损失,而且会严重威胁人们的生命安全。
因此,为了保证整体安全稳定,实现更高的运行质量,必须重视螺栓疲劳断裂,做好相应的检查和维护,并采取合理的预防措施,从而有效减少事故的发生。
随着对产品可靠性要求的不断提高,疲劳断裂失效逐渐成为企业关注的焦点。
1、疲劳断裂失效及断裂分析的重要性疲劳断裂主要是指应力集中在某一位置,或在强度较低的位置出现裂纹,然后裂纹扩大和扩展而引起的断裂。
简而言之,疲劳断裂超出了材料的疲劳极限。
一般来说,断裂可分为两种类型:韧性断裂和脆性断裂。
疲劳断裂属于脆性断裂。
由于疲劳断裂和静载荷延迟断裂不同于一般断裂,故将其与脆性断裂分开。
因此,断裂失效可分为四种类型,即延性断裂失效、脆性断裂失效、疲劳断裂失效和静载荷延迟断裂失效。
转载:螺栓断裂分析的方法及程序论文 2010-06-08 15:01:20 阅读77 评论0 字号:大中小订阅在紧固件的失效分析中,螺栓的失效最多、也最为常见,而螺栓的断裂失效则占螺栓失效的80%左右,严重威胁着整个构件的安全。
因此,我们有必要、也必须对断裂螺栓进行分析。
由于螺栓的结构、形状和受力形式比较复杂,且在材料、工艺和使用状况等因素的影响下,经常发生各种形式的断裂失效。
由于螺栓种类多、用量大,普遍采用冷变形制造工艺,并依据各种不同性能要求而采用不同钢材和热处理工艺,同时进行严格的材料和工艺检查。
尽管如此,往往由于工艺管理和控制不善,构成了批量或频次较高的断裂失效,经常影响着正常生产和使用。
下面我们就谈谈紧固件断裂失效分析的方法。
紧固件断裂失效分析的方法一、系统方法系统方法,又称相关性方法,就是把失效分析类型、失效方式、断口特征形貌、工作条件、材质情况、制造工艺水平和过程、使用和维护情况等放在一个研究系统中,从总体上予以考虑的方法。
寻找失效原因应从设计、材质、制造、使用、维护等相关方面去考虑,并据此进行测试和分析,找出失效原因。
本方法的特点是:从一般到个别,从普遍到特殊,从单项分析到综合联系上找原因。
这就是尽可能地收集与全局有关的资料和测试信息,从而确定分析系统的范围。
该方法主要针对失效原因复杂的断裂螺栓。
二、抓主要矛盾方法在紧固件失效分析时要抓住失效中起主要作用的因素。
如在断裂失效中就一定要对断裂源、断裂形状及导致断裂的因素重点分析和研究。
这也是我们螺栓断裂失效分析中最常用的方法。
举例来说,当一个螺栓断裂件送到我们手上,我们发现该螺栓的支撑面的装配痕迹不对称(就是说一边有明显的装配痕迹而一边没有或者两边装配痕迹相差很大)。
我们都知道:力是造成痕迹的唯一原因,接下来我们就应对这一应力进行重点分析。
三、比较方法选择一个同批次,同服役状态而没有失效的螺栓与断裂螺栓一一对比,然后进行分析比较,从中找出差异,寻找出引起失效的原因。
测试与分析螺栓断裂失效原因分析华南理工大学机电系(广州 510641) 高 岩 李 林 许麟康【摘要】 合金结构钢(相当于我国35CrMo钢)制螺栓用于空调压缩机内连接气缸体与气缸盖,在生产线上用气动搬手装配时相当部分发生断裂。
失效分析结果表明,机加工时螺纹根部及表面形成微裂纹,以及回火不足,硬度偏高,共同造成了螺栓失效。
关键词:低合金钢 螺栓 微裂纹F ailure Analysis on the Fracture of BoltsG ao Yan,Li Lin,Xu Linkang(Department of Mechano2Electronic Engineering,S outh China University of Technology,Guangzhou510641)【Abstract】 A batch of bolts with size of M4×1135used to connect cylinder body and cover of air conditioner com pressor were made of imported low alloy steel close to35CrMo in com position1However,a great proportion of the bolts fractured when being assembled us2 ing pneumatic spanner1After failure analysis,it was found that the main reason for the ru pture of bolts was the micro2cracks induced by machining.At the same time,non2enough tempering which resulted in the brittleness of the material also accounted for the fracture1 K ey w ords:low alloy steel,bolt,micro2crack 某标准件公司一批螺栓,规格为M4×1135,材料为合金结构钢,相当于我国的35CrMo钢,冷墩头部,搓制螺纹,热处理工艺为淬火+回火,并进行发兰处理,规定σb>1000MPa, (32~38)HRC。
1、螺栓断裂的原因:1.由于螺栓的材料导致的,假如我们选用的材料比较好了之后,那么我们的螺栓质量也就会比较好。
假如我们选用的材料比较差,那么我们的螺栓在一定程度上断裂的程度就会比较多。
2.螺栓的强度不够高导致的,由于螺栓在承受的压力如果大于螺栓的强度,那么螺栓就会很容易出现断裂的现象。
因此我们在使用螺栓的时候最好能够了解一下该螺栓所能够承受的强度是多大,这样我们就能够选择高于这个强度的螺栓,螺栓断裂的可能性也会减少很多。
3.制造不合格导致的,很多的螺栓会因为生产不合格,这样就没有办法发挥出标准螺栓的质量,在一定程度上就会导致了螺栓的断裂。
我们在生产螺栓之后一定要经过检测,这样才能够保证螺栓是合格的才进行销售,这个也是对于消费者的一种最基本的保证。
4.由于螺栓的疲劳强度导致的。
螺栓会断裂最多的因素就是由于螺栓的疲劳强度所致。
我们在使用螺栓一开始是没有什么问题的,但是在经过物件的作业之后就有可能会产生一定的松动,在松动的时候继续作业是会让螺栓的疲劳强度增大,在到达了螺栓所能够承受的范围极限,那么螺栓也就随之断裂了。
2、预防螺栓断裂的措施:1.塞加垫铁2.改进螺栓加工工艺3.改进标准节加工工艺3、螺栓的质量有螺栓的长度、规格、类别、连接形式等条件决定。
4、螺栓的预紧力矩使得螺栓受到拉应力、剪应力两种力,而预紧力的控制是为了保证法兰连接系统紧密不漏、安全可靠地长周期运行,垫片表面必须有足够的密封比压,特别在高温工况下垫片会产生老化、蠕变松弛,法兰和螺栓产生热变形,因此高温连接系统的密封比常温困难得多,此时螺栓预紧力的施加与控制就显得十分重要,过大或过小的预紧力都会对密封产生不利影响。
螺栓预紧力过大,密封垫片会被压死而失去弹性,甚至会将螺栓拧断;过小的螺栓预紧力又使受压后垫片表面的残余压紧应力达不到工作密封比压,从而导致连接系统泄漏。
因此如何控制螺栓预紧力是生产实际中必须重视的问题。
5、螺栓的抗拉强度和屈服强度决定了螺栓的强度,强度越大,通常寿命越大。
柴油机气缸盖螺栓断裂分析摘要针对柴油机气缸盖螺栓装配时发生断裂,从螺栓本身和装配过程进行分析,并对原设计进行校核,找到造成螺栓断裂的4个因素,分别是机械性能、加工精度、应力集中和安装扭矩超差,同时对螺栓作了改进设计,进一步提高其安全系数。
关键词螺栓;断裂;预紧力0引言我公司在08年12月生产JD500柴油机的过程中,在线上装配时每天发生10%-20%的断裂,为此,进行了相关检查和分析,以便进行质量改进和提升。
气缸盖上每缸周围有6根螺栓沿圆周均匀布置,共用2根,总共有10根螺栓;气缸盖螺栓断裂前产生变形如图1,断裂后的情况如图2。
1螺栓的分析1.1性能分析将失效的螺栓取样,做性能试验,结果是:失效螺栓的抗拉强度、硬度都符合要求,但其屈服强度已稍微超下限,它可能会引起螺栓拉长或断裂。
1.2金相分析螺栓材料合金钢经高温淬火加回火后的金相要求是回火索氏体1-3级,实际通过显微镜观察失效螺栓1为回火索氏体3级,失效螺栓2也为回火索氏体3级,可以看出螺栓经热处理金相符合要求,但都处于下限。
1.3金加工分析已断裂的螺栓因装配过或已破坏,不好检查,所以只能在未装配过的螺栓抽查,M8-6h通止规检查合格,φ16、φ8、φ6.5合格,垂直度检查时发现有超差的,有的达到0.35,有的达到0.54。
它的超差会使拧紧力矩中用于克服螺纹支承面的摩擦力矩减少,从而对螺栓产生的预紧力和有效力矩增大,会引起螺栓断裂失效。
2生产过程分析气缸盖螺栓的装配拧紧力矩要求是45-50Nm,它是用缸盖螺栓拧紧机(有4个拧紧头可同时转动),将扭矩设定为48N.m。
在发生螺栓断裂后,首先对拧紧机的扭矩进行了重新校定,情况一样;再对已装好的柴油机进行复查,结果如表1,可以看出整体水平在范围之内,但有个别超出上下限,超上限有可能引起螺栓失效。
3设计校核柴油机最高爆发压力:p=7Mpa,气缸盖底平面所受之力:Fz=πD2p/4=3.14×672×7/4=24680N,气缸盖底平面所受之力Fz由六只气缸盖螺栓分担,则每只气缸盖螺栓所受之拉力为Fc=Fz/6 =24680/6=4113N计算螺栓预紧力Fp,气缸盖螺栓的拧紧力矩M由两部份组成,分别是克服螺纹摩擦所需扭矩Mt和克服螺纹支承面的摩擦所需扭矩MmM8螺纹的平均直径dcp=7.2mm螺纹导角ξ=arctg(s/πdcp)=arctg(1.25/3.14*7.2)=3.16°螺纹副摩擦系数μ=0.18,牙形角β=60°三角形螺纹的转化摩擦角ψ=arctg(μ/cosβ/2)=arctg(0.18/cos30°)=11.74°Mt=Fp×tg(ξ+ψ)×dcp/2=Fp×tg(3.16°+11.74°)×7.2/2=0.9579Fp(N.mm)螺栓支承面直径d1=16mm,气缸头孔直径d2=9mmMm=Fp×μ×(d13-d23)/3(d12-d22)=Fp×0.18×(163-93)/3(162-92)=1.1544Fp(N.m m)M=Mt+Mm=0.9579Fp+1.1544Fp=2.1123Fp现根据气缸盖螺栓的装配扭紧力矩要求,如按最大M=50Nm计算Fp=M/2.1123=50×1000/2.1123=23671N,如按最大M=45Nm计算Fp=M/2.1123=45×1000/2.1123=21304N,从柴油机角度讲,为保证气缸盖的密封性,一般要求螺栓预紧力最少Fpmin=nFc=5×4113=20565N,从螺栓的屈服极限计算,考虑螺栓受拉扭复合应力,Fpmax=0.85×900×6.52×3.14/4=25372N,可以看出按45-50Nm的力矩拧紧产生的预紧力在设计的20565-25372范围之内,所以规定气缸盖螺栓的装配扭紧力矩要求是45-50Nm是合理的。
转载:穿缸螺栓断裂分析
论文 2010-06-08 14:50:42 阅读46 评论0 字号:大中小订阅
穿缸螺栓断裂分析
曾振鹏,曹力军,张惠娟,戴嘉维
(上海交通大学高温材料及高温测试教育部重点实验室,上海200030)
糜恺
(上海电力修造厂有限公司,上海200011)
摘要:一根用来紧固节段式水泵的穿缸螺栓仅服役3个月便产生断裂。
采用断口分析、金相检验和硬度测定等方法,对断裂螺栓进行了分析。
分析结果表明,断口宏观上有明显的贝纹线花样,微观形态主要为疲劳辉纹,因此螺栓的断裂是疲劳断裂。
材料棒中存在严重的中心碳偏析致使材料强度不均匀,造成材料强度偏低。
碳偏析及材料强度不足是引起断裂的主要原因。
关键词:穿缸螺栓;碳偏析;疲劳断裂;失效分析
1情况简介
一根用于紧固节段式水泵的穿缸螺栓服役仅3个月便产生断裂。
螺栓规格为M68×4mm,长1830mm,两端各有150mm的螺纹,用于装配紧固螺母。
穿缸螺栓材料为<80mm的
42CrMoA圆钢。
其加工工艺:原材料检验—粗加工—超声波探伤—热处理(调质处理)—精加工—检验。
调质工艺:850℃淬油+560℃回火油冷。
断裂位于紧固螺母与设备结合处的螺纹上,断口与轴向基本垂直。
该螺栓工作温度为160℃,服役过程中还承受水平、垂直和轴向方向的振动。
穿缸螺栓的形状、尺寸和断裂位置见图1所示。
图1穿缸螺栓的形状、尺寸和断裂位置示意图(mm)
2检验与分析
2.1断口宏观分析
断口的宏观形貌见图2。
可见断口表面有两种形态,断口中央部位较粗糙,颜色呈暗灰色,这显然是最后断裂区;而四周断口表面平滑,有明显的贝纹线,且贝纹线分成四个区,每个区的贝纹线均呈扇形,但方向不同,其中有两个扇形区的裂纹源是在螺纹跟部。
断口宏观分析表明,该断口为疲劳断口。
图2断口的宏观形态图3中央粗糙区的断口微观形态
2.2断口微观分析
用扫描电镜对断口的粗糙区和贝纹线区进行观察。
图3为中央粗糙区的微观形态,为韧窝花样,局部区域可见到河流花样,表明最后断裂是以韧性断裂方式进行的。
图4为断口四周贝纹线区的微观形态,可见到明显的疲劳辉纹,表明此区裂纹是以疲劳方式扩展的。
从断口的宏、微观分析可知,穿缸螺栓的断裂为疲劳断裂。
2.3金相检验
在螺栓的1/4直径处截取金相试样,光学显微镜下观察,材料内部存在少量的MnS夹杂,同时材料存在严重的成分偏析,有明显的流线,见图5。
图5深色区的组织为马氏体+极少量铁素体,浅色区的组织为马氏体+粒状贝氏体+铁素体。
金相分析表明,该螺栓材料存在严重的碳成分偏析。
对深色区和浅色区进行显微硬度测定,前者为
31HRC,后者为21HRC。
图4四周贝纹线区的断口微观形态图5呈现明显成分偏析的流线100×
4%硝酸酒精溶液侵蚀
2.4化学成分分析
螺栓化学成分分析结果列于表1。
由表可知,失效螺栓的成分符合42CrMoA钢的标准要求。
2.5力学性能测定
在螺栓1/4直径处截取拉伸试样(纵向)进行测试,结果列于表2。
表中同时列出42CrMoA 钢调质处理后的数据。
从表中可见,螺栓材料强度偏低,而塑性、韧性偏高。
2.6酸蚀试验
将失效螺栓的另一头螺纹段从中心处纵向剖开,精磨后,用1∶1的盐酸水溶液进行热蚀(65~80℃)。
图6为经热蚀后的形貌,有明显的流线,原材料存在严重的碳偏析,这与金相观察到的结果是一致的。
同时在一螺纹处还存在一条与前述裂纹相似的环向裂纹,该裂纹几乎已经扩展到整个断面。
图6螺栓中心纵向剖面热蚀后形貌
3分析与讨论
3.1穿缸螺栓的断裂性质
从断口的宏、微观分析结果可以判定,穿缸螺栓的断裂为疲劳断裂。
穿缸螺栓在服役时是固定不动仅起到拉紧作用,即它不应承受疲劳载荷作用的,但为什么螺栓会产生疲劳断裂?这种交变载荷来自何处?笔者认为螺栓承受的交变载荷主要来自两个方面:①服役现场观察,穿缸螺栓在服役时有微小的振动,因此服役时会出现疲劳载荷;②穿缸螺栓的工作温度约为160℃,由于材料强度不足,在温度作用下,穿缸螺栓装配时的弹性变形会转变成塑性变形,从而使穿缸螺栓产生伸长而引起螺栓的松动,因而在服役时会产生轴向交变应力———疲劳载荷。
3.2材质问题
虽然穿缸螺栓材料的名义成分符合42CrMoA钢的标准要求,但是材料质量欠佳。
从金相分析可知,螺栓材料存在严重的成分偏析,致使材料不能充分发挥其应有的强韧性。
从测试结果可知,穿缸螺栓材料的抗拉强度和屈服强度均比一般调质态的42CrMoA钢低100MPa 左右(约低13%),表明穿缸螺栓材料的强度不足。
因材料的疲劳强度与抗拉强度成正比,故螺栓材料的疲劳强度也是不足的。
碳偏析即化学成分偏析,是由于在结晶过程中,先结晶的枝干比较纯,碳浓度较低,而迟结晶的枝晶间碳浓度较高所造成的,所以又叫树枝状偏析。
在压力加工时,树枝状偏析区域被拉长形成了流线。
树枝晶偏析尤以中碳铬钼、铬镍钼钢大锻件最为普遍,它可用高温扩散退火加以改善[1]。
原材料中的严重碳偏析会造成紧固件经热处理后各部位力学性能的显著差异。
如本例中,碳浓度高的地方其硬度值为31HRC,在碳浓度低的地方其硬度值仅为21HRC,两者硬度相
差10HRC。
文献[2,3]就曾报道过有一批中碳钢螺栓由于原材料存在严重的碳偏析而引起螺栓断裂的案例。
根据以上分析,认为穿缸螺栓断裂与材质不良有关。
4结论与建议
(1)穿缸螺栓的断裂属疲劳断裂。
(2)穿缸螺栓所用材料的材质不良①存在严重碳偏析;②材料强度不足,是造成穿缸螺栓疲劳断裂的主要原因。
(3)加强对原材料的检验,保证材料质量。