湖北省黄冈市2013年初中毕业生学业考试模考考试数学试题(3)
- 格式:doc
- 大小:551.00 KB
- 文档页数:6
2013中考数学模拟试题(满分120分 时间120分钟)命题人: 浠水县余堰中学第Ⅰ卷(选择题共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.22-等于( ). A .14-B .14C .4-D .-1 2.下列计算正确的是( ). A .23a a a += B .523)(a a = C .525±=D .283-=-3.下列几何体的正视图与众不同的是( ).4.如图,两个相同的正方形一边重合,在两个正方形的边上存在一些点,使得以这些点为中心旋转一个正方形与另一正方形重合,这样的点一共有( ). A .一个 B .二个 C .三个 D .四个5.如图,梯形ABCD 纸片,AD ∥BC ,现将纸片沿EF 折叠,使点C 与点A 重合,点D 落 在点G 处,展开后,若∠AFG =40°,则∠CEF =( ). A .60° B .65° C .70° D .75° 6.在Rt △ABC 中,∠C=90°,若AC =2BC ,则tan A 的值是( ). A .12B .2 CD7.已知二次函数2y ax bx c =++的图象如图所示,它与x 轴的两个交点分别为(-1,0),(3,0).对于下列结论:①b -2a =0;②abc <0;③a -2b +4c <0;④8a +c >0.其中正确的有( ).A .4个B .3个C .2个D .1个A B C D7题图8. 如图,大半圆O 与小半圆O 1相切于点C ,大半圆的弦AB 与小半圆相切于点F ,且AB ∥CD ,AB =6cm ,CD =12cm ,则图中阴影部分的面积(单位:cm 2)是( ).A .32π B .92π C .32πD .92π第Ⅱ卷(非选择题,共96分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中横线上). 9.2(3)-的平方根是 .10.根据世界海洋法规定,中国拥有的海洋国土面积是299.7万平方公里,包括内水、领海及专属经济区和大陆架.其中299.7万平方公里用科学记数法可表示为 平方公里(保留3位有效数字).11. 分解因式3m m -= .12. 化简2222221x y xy y xyx xy y x y y ⎛⎫-+-⋅ ⎪-+--⎝⎭= . 13. 已知实数x ,y2440y y -+=,则x y -的值等于 .14.圆锥的母线长为5cm ,底面半径为3cm ,那么它的侧面展开图的圆心角等于 度. 15.如图,D 是反比例函数)0(<=k xky 的图像上一点,过D 作DE ⊥x 轴于E ,DC ⊥y 轴于C ,一次函数y x m =-+与233+-=x y 的图象都经过点C ,与x 轴分别交于A 、B两点,四边形DCAE 的面积为4,则k 的值为 .16. 如图,AC 是菱形ABCD 的对角线,点E 、F 是AC 的三等分点,记△BMN 和菱形ABCD 的面积分别为BMN S 、ABCD S 菱形,则BMN ABCDS S 菱形的值为 .三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤).17. (本小题满分5分)xD解不等式组:03123123x x x x +<+⎧⎪⎨--⎪⎩≥() ,并把它的解集在数轴上表示出来.18.(本小题满分6分)两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序.两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车.而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题: (1)三辆车按出现的先后顺序共有哪几种不同的可能?(2)你认为甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大,为什么? 19.(本小题满分6分)如图所示,在Rt △ABC 中,∠ACB =90°,AC =BC ,D 为BC 边上的中点,CE ⊥AD 于点E ,BF ∥AC 交CE 的延长线于点F ,求证:BD=BF .20.(本小题满分6分)我市某区对参加市模拟考试的8000名学生的数学成绩进行抽样调查,抽取了部分学生的数学成绩(分数为整数)进行统计,绘制成频率分布直方图.如下图,已知从左到右五个小组的频数是之比依次是6:7:11:4:2,第五小组的频数是40. (1)本次调查共抽取了多少名学生?(2)若72分以上(含72分)为及格,96分以上(含96分)为优秀,那么抽取的学生中,及格的人数、优秀的人数各占所抽取的学生数的百分之多少?(3)根据(2)的结论,该区所有参加市模拟考试的学生,及格人数、优秀人数各约是多少人?小王在超市用24元钱买了某种品牌的牛奶若干盒.过一段时间再去该超市,发现这种牛奶进行让利销售,每盒让利0.4元,他同样用24元钱比上次多买2盒,求他第一次买了多少盒这种牛奶?22. (本小题满分8分)在Rt △ABC 中,∠ACB =90°,BD 是⊙O 的直径,弦DE 与AC 交于点E , 且BD =BF .(1)求证:AC 是O ⊙的切线;(2)若BC =6,AD =4,求⊙O 的面积.23. (本小题满分8分)如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60°,沿山坡向上走到P处再测得点C 的仰角为45°,已知OA =100米,山坡坡度(竖直高度与水平宽度的比)i =1:2,且O 、A 、B 在同一条直线上.求电视塔OC 的高度以及此人所在位置点P 的铅直高度.(测倾器高度忽略不计,结果保留根号形式)F某公司有甲、乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品,一部份存入仓库,另一部分运往外地销售.根据经验,该农产品在收获过程中两个种植基地累积总产量y (吨)与收获天数x (天)满足函数关系y =2x +3(其中1≤x ≤10且x 为整数).该农产品在收获过程中甲、乙两基地的累积产量分别占两基地累积总产量的百分比和甲、乙两基地累积存入仓库的量分别占甲、乙两基地的累积产量的百分(1)请用含y 的代数式分别表示在收获过程中甲、乙两个基地累积存入仓库的量; (2)设在收获过程中甲、乙两基地累积存入仓库的该种农产品的总量为p (吨),请求出p (吨)与收获天数x (天)的函数关系式;(3)在(2)的基础上,若仓库内原有该农产品42.6吨,为满足本地市场需求,在此收获 期开始的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售 出的该种农产品总量m (吨)与收获天数x (天)满足函数关系m =-x 2+13.2x -1.6, 其中1≤x ≤10且x 为整数.问在此收获期内连续销售几天,该农产品库存量达到最 低值?最低库存量是多少吨?25. (本小题满分14分)已知二次函数21342y x x =-+的图象如图所示. (1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移k 个单位,设平移后的抛物线与x 轴,y 轴的交点分别为A 、B 、C 三点,若∠ACB =90°,求此时抛物线的解析式; (3)设(2)中平移后的抛物线的顶点为M,以AB 为直径,D 为圆心作⊙D ,试判断直线CM 与⊙D 的位置关系,并说明理由.(4)在(2)的条件下,平行于x 轴的直线x =t (0<t <k ) 分别交AC 、BC 于E 、F 两点,试问在x 轴上是否存在点P ,使得△PEF 是等腰直角三角形?若存在,请直接写P 点的坐标;若不存在,请说明理由.模拟试题参考答案一、1~8: BDDC CABA二、9. ±3 10. 63.0010⨯ 11. (1)(1)m m m +- 12.xyy x- 13. 4- 14. 216︒ 15. 2- 16. 38三、17. 2-≤x <0.图略18. (1)6;(2)因为P (甲)=2163=<P (乙)=3162=,所以乙采用的方案使自己乘坐上等车的可能性大.19. 证△ACD ≌△CBF .20. (1)600;(2)80%,20%;(3)6400,1600.21. 10.22. (1)连接OE ;(2)16π.23. OC =米,点P 米.24. (1) 0.51,0.09y y ;(2) 1.2 1.8p x =+;(3) 在此收获期内,该农产品库存量为T 吨,则2(6)10T x =-+.所以,当x =6时,max 10.T =25. (1)(3,0);(2)2134,442k y x x ==-++; (3)根据勾股定理逆定理及切线的判定,得直线CM 与⊙D 相切; (4)存在. 1234416(,0),(,0),(,0).737P P P -。
黄冈中学2013届初三年级第二次模拟考试数学试题一、选择题(本大题共8小题,每小题3分,共24分、在每小题给出的四个选顶中,只有一项是符合题目要求的)1、-32的绝对值是()A.32B.-32C.D.2、据法新社3月20日报道,全球管理咨询公司麦肯锡预计中国网络销售额将达到4200亿美元(约合2.6万亿人民币),中国将因此成为世界最大的网络零售市场,其中数据4200亿用科学记数法表示错误的是()A.4.2×103亿B.4.2×1011C.0.42×104亿D.4.2×107万3、如图,直线AB、CD相交于点O,OE平分∠BOD,若∠COE=160°,则∠AOC等于()A.20°B.40°C.60°D.80°4、下列计算正确的是()A.(-p2q)3=-p5q3B.(12a2b3c)÷(6ab2)=2abC.(a5)2=a7D.a3a4=a75、某几何体的三视图如图,则该几何体是()A.球B.圆柱C.圆锥D.长方体6、一元二次方程x2+x=1的两根为x1,x2,则()A.x1+x2=1B.x1x2=1C.x1+x2=-1D.7、如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,,则⊙O的半径为()A.B.C.8D.128、甲、乙两人准备在一段长为1200m的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100m处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y(m)与时间t(s)的函数图象是()二、填空题(每小题3分,共21分)9、化简的结果是__________.10、分解因式4x2-8x+4=__________.11、如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连结CD,若AB=4cm,则△BCD的面积为__________cm2.12、“五一”期间,我市某街道办事处举行了“迎全运,促和谐”中青年篮球友谊赛.获得13、如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则k的值为__________.14、一个圆锥的母线长为4,侧面积为8π,则这个圆锥的底面圆的半径是__________.15、在平面直角坐标系中、若四条直线:l1:直线x=1;l2:过点(0,-1)且与x轴平行的直线;l3:过点(1,3)且与x轴平行的直线;l4:直线y=kx-3所围成的凸四边形的面积等于12,则k的值为__________.三、解答下列各题(本大题共75分)16、(本小题6分)解不等式组:17、(本小题6分)如图,△ABC与△BEF都是等边三角形,D是BC上一点,且CD=BE,求证:∠EDB=∠CHD.18、(本小题7分)2013年某市初中毕业生升学体育集中测试项目包括体能(耐力)类项目和速度(跳跃、力量、技能)类项目.体能类项目从游泳和中长跑中任选一项,速度类项目从立定跳远、50米跑等6项中任选一项.某校九年级共有200名女生在速度类项目中选择了立定跳远,现从这200名女生中随机抽取10名女生进行测试,下面是她们测试结果的条形图.(另附:九年级女生立定跳远的计分标准)九年级女生立定跳远计分标准(1)求这10名女生在本次测试中,立定跳远距离的极差,立定跳远得分的众数和平均数.(2)请你估计该校选择立定跳远的200名女生得满分的人数.19、(本小题6分)某班用抽签的方式,在甲、乙、丙、丁四位同学中挑选2位同学,代表该班参加学校卫生大检查,请用列表法或树状图法,求乙被选中的概率.20、(本小题7分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠,若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,同样只需付款1936元,请问该学校九年级学生有多少人?21、(本小题8分)如图,已知等边△ABC,以边BC为直径的圆与AB、AC分别交于点D、点E.过点D作DF⊥AC,垂足为F.(1)判断DF与⊙O的位置关系,并证明你的结论;(2)过点F作FH⊥BC,垂足为H,若FH的长为4,求BC的长.22、(本小题8分)为了开发利用海洋资源,某勘测飞机欲测量一岛屿的两端A、B的距离,飞机在距海平面垂直高度为300米的C处测得端点A的俯角为60°,然后飞机沿着俯角30°的方向俯冲到D点,发现端点B的俯角为45°,而此时飞机距离海平面的垂直高度为100米,求岛屿两端A、B的距离.(结果精确到0.1米,)23、(本小题12分)某大学生创业团队新研发了一日常科技产品,决定在市场上进行试推销,已知团队试推销期间每天需固定支出各种费用(差旅费、人工费、托运费等)800元,该产品成本价为每个5元,经测算若按成本价5元/个进行推销时,每天可销售1440个,若每个每提高1元,每天就少销售120个,为便于测算,每个产品的售价x(元)只取整数,设该团队的日净收入为y元.(1)写出y与x的函数关系式,并指出x的取值范围;(2)团队若要使得日净收入最大,同时尽可能多的推销产品以扩大人气,则每个产品的售价应定为多少元?此时日净收入是多少?(3)若要求日净收入不低于3000元,则每个产品的售价应定在什么范围?24、(本小题15分)如图,点A在y轴上,点B在x轴上,以AB为边作正方形ABCD,P为正方形ABCD的对称中心,正方形ABCD的边长为,tan∠ABO=3.直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从原点O出发沿OM方向以个单位每秒速度运动,设运动时间为t秒.(1)分别写出A,C,P三点的坐标;(2)经过坐标原点O且顶点为P的抛物线是否经过C点,请说明理由?(3)当t为何值时,△ANO与△DMR相似?(4)设△HCR面积为S,求S与t的函数关系式;并求以A、B、C、R为顶点的四边形是梯形时t的值.。
黄冈市黄冈市201320132013年度初中语数英三科综合能力测评(初赛)年度初中语数英三科综合能力测评(初赛)数学试题(考试时间:120分钟,卷面满分100分) 题号 1—6 7—12 13 14 15 16 总分 得分一、选择题(本大题满分25分,每小题5分,在四个答案中,只有一个正确)1.在平面上,如果点A 和点B 到点C 的距离分别为3和4,那么A 、B 两点的距离d 应该是( ) A. d =1 B. d =5 C. 1<d <7D. 1D. 1≤≤d ≤72.已知20132013-20132011=2013x×20122012×201×201×20144,那么x 的值是(的值是( )A .2010B .2011C .2012D .20133.O 为△为△ABC ABC 内一点,内一点,AO AO AO、、BO BO、、CO 及其延长线把△及其延长线把△ABC ABC 分成六个小三角形,它们的面积如图所示,则S △ABC =( ) A. 292B. 315C. 322D. 357 4.如图,将半径为.如图,将半径为88的⊙O 沿AB 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,则折痕AB 长为(长为( ))。
A .215 B. 415 C. 8D. 105.满足方程()xy y x y x ++=+222的所有正整数解有(的所有正整数解有( )A .1组B .2组C .3组D .无穷多组.无穷多组C D O B A (第4题图)题图)二、填空题(本大题满分25分,每小题5分)6.已知 a =3535+-, b =3535-+, 则二次根式1333-+ab b a 的值是 。
7.如图平行四边形AOBC 中,对角线交于点E ,双曲线y=k/x y=k/x((k >0)经过A,E 两点,若平行四边形AOBC 的面积为18 ,则k=_______8.已知2510m m --=,则22125m m m-+=___________.9.对任意实数x ,[x][x]表示不超过表示不超过x 的最大整数,如果如果[x]=3[x]=3[x]=3,,[y]=1[y]=1,, [z]=1 [z]=1,,那么那么[x+y-z][x+y-z]的值等于的值等于 . .1010..一次棋赛,有n 个女选手和9n 个男选手,每位参赛者与其110-n 个选手各对局一次,计分方式为:胜者的2分,负者得0分,平局各自得1分。
黄冈市2013年中考模拟考试数 学 试 题(考试时间:120分钟 满分:120分) 命题人:团陂中学 鲍旭光一.选择题.(本大题共8小题, 每小题3分,共24分,在A,B,C,D 四个答案中,有且只有一个是符合题目要求的.)1.9的算术平方根是( ). A .±3 B .3 C 。
±9 D .9 2.下列运算正确的是( )A .a 4·a 2=a 8B .5a 2b -3a 2b =2C .(-2a 2)3=-8a 6D .a 8÷a 4=a 2 3. 下列图形中,中心对称图形有( ).A.1个B.2个C.3个D.4个4. 如图,一个小立方块所搭的几何体,从不同的方向看所得到的平面图形中(小正方形中的数字表示在该位置的小立方块的个数),不正确的是( ).5. 已知二次函数的图象如图所示,现有下列结论:①②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的有( ).A .2个B . 3个C . 4个D .5个6. 如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( ).7.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( ).A . 47°B . 43°C .30°D .60°8. 如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系.下列说法中正确的是( ).A .B 点表示此时快车到达乙地 B. B-C-D 段表示慢车先加速后减速最后到达甲地C .快车的速度为km/hD .慢车的速度为125km/h二.填空题.(本大题共7小题, 每小题3分,共21分.请把答案填在题中的横线上) 9. -20131的相反数是 .10. 分解因式:分解因式ab 2-2ab +a=____________ . 11.已知()2330x x m +++=,则m 的值为 .12.钓鱼诸岛自古以来就是中国的领土,它和台湾一样是中国领土不可分割的一部分。
黄冈市2013年初中毕业生学业水平考数学试题(含答案全解全析)(满分120分时间120分钟)第Ⅰ卷(选择题,共24分)一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的...1.-(-3)2=()A.-3B.3C.-9D.92.随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()3.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=()A.60°B.120°C.150°D.180°4.下列计算正确的是()A.x4·x4=x16B.(a3)2·a4=a9C.(ab2)3÷(-ab)2=-ab4D.(a6)2÷(a4)3=15.已知一个正棱柱的俯视图和左视图如图,则其主视图为()6.已知一元二次方程x2-6x+c=0有一个根为2,则另一根为()A.2B.3C.4D.87.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4πD.2π或4π8.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是()第Ⅱ卷(非选择题,共96分)二、填空题(本题共21分,每小题3分)9.计算:---=.10.分解因式:ab2-4a=.11.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连结DE,则DE=.12.已知反比例函数y=在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连结AO、AB,且AO=AB,则S△AOB=.13.如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.14.钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是.15.如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD沿直线l做无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为.三、解答题(本题共75分)16.(6分)解方程组:-----17.(6分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连结OH,求证:∠DHO=∠DCO.18.(7分)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?19.(6分)如图,有四张背面相同的纸牌A、B、C、D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求摸出的两张牌同为红色的概率.20.(7分)如图,AB为☉O的直径,C为☉O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为☉O的切线;(2)若☉O的半径为3,AD=4,求AC的长.21.(8分)为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.22.(8分)如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB.(结果保留整数,≈1.73,≈1.41)23.(12分)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售若在国外销售,平均每件产品的利润y2(元)数量x(千件)的关系为:y1=-与国外的销售数量t(千件)的关系为:y2=-(1)用x的代数式表示t为:t=;当0<x≤4时,y2与x的函数关系为:y2=;当≤x<时,y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?24.(15分)如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(6,0),B(3,),C(1,),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P、Q运动的时间为t(秒).(1)求经过A、B、C三点的抛物线的解析式;(2)当点Q在CO边上运动时,求△OPQ的面积S与时间t的函数关系式;(3)以O、P、Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由;(4)经过A、B、C三点的抛物线的对称轴、直线OB和PQ能够交于一点吗?若能,请求出此时t的值(或范围);若不能,请说明理由.答案全解全析:1.C ∵-(-3)2=-9,故选C.2.A 根据中心对称图形的概念知只有A中的图形符合,而C、D中的图形均是轴对称图形,B 中的图形既不是中心对称图形也不是轴对称图形,故选A.3.A ∵AB∥CD∥EF,∠BAC=120°,∴∠ACD=60°.∵AC∥DF,∴∠CDF=∠ACD=60°.故选A.4.D ∵x4·x4=x4+4=x8,(a3)2·a4=a6·a4=a10,(ab2)3÷(-ab)2=(a3b6)÷(a2b2)=ab4,(a6)2÷(a4)3=a12÷a12=1,∴计算正确的只有D,故选D.评析本题主要考查同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法和单项式除以单项式法则.熟练掌握几种相关法则是解题关键,属容易题.5.D 根据三视图的概念和画法规则可想象此正棱柱的主视图是D项的图形.评析本题主要考查三视图的概念的应用和学生的空间想象能力.注意画三视图时,看不见的线画虚线,看得见的线画实线.6.C 设所求的方程另一根为x.则x+2=6,∴x=4.故选C.7.C 设圆柱底面圆的半径为r.由于圆柱侧面展开图的矩形的一边长为圆柱底面圆的周长.∴2πr=2π或2πr=4π.则r=1或r=2,∴圆柱底面圆的面积为π或4π.故选C.8.C 图象反映了快车与特快车之间的距离y与快车行驶时间t之间的函数图象.首先必须弄清楚实际问题的背景是两列火车从甲乙两地同时出发相向而行,其次要将这一过程分为三个阶段,一是从出发到两车相遇,二是从相遇后到特快车到达终点,三是特快车到达终点后到快车到达终点,这样,我们就找到三个“拐点”.第一个“拐点”:==4,∴其坐标为(4,0).第二个“拐点”:=,100×=,∴其坐标为,.第三个“拐点”:=10,∴其坐标为(10,1 000).故应选择C.评析此题考查了一次函数的图象在实际生活中的运用,函数图象与实际问题背景的相互对照,此题找准三个“拐点”是难点.属较难的题目.9.答案--或-解析∵(-)-(-)=-(-)=(-)(-)=--,∴答案为--或-.10.答案a(b-2)(b+2)解析ab2-4a=a(b2-4)=a(b-2)(b+2).11.答案解析∵△ABC是等边三角形,BD是中线,∴∠BDC=90°,∠BCD=60°,∠DBC=30°.又∵CE=CD=1,∠BCD=∠E+∠CDE,∴∠E=∠CDE=∠BCD=30°.∴∠DBC=∠E=30°.∴BD=DE,在Rt△BDC中,BD=°==.故填.12.答案 6解析如图,过A作AF⊥OB,垂足为F.∵OA=AB,∴OF=FB=OB,∴S△AOB=2S△AOF.又由题易知S△AOF=|k|=×6=3.∴S△AOB=2S△AOF=6.13.答案解析如图,连结OD.设所在圆的半径为R,则OM=8-R.∵EM⊥CD,CD=4,∴MD=CD=2,在Rt△OMD中,由勾股定理得22+(8-R)2=R2,解得R=.14.答案7:00解析由题图象可知,巡逻艇原来的速度为80海里/小时,排除故障后的速度为-=100(海里/小时),不妨设巡逻艇经过t小时后准时到达,据题意得80t=80+100(t-2), -解得t=6.由于是凌晨1:00出发,故6+1=7.∴原计划准点到达的时刻是7:00.15.答案6π解析如图所示.当矩形ABCD沿直线l做无滑动翻滚,当点A第一次翻滚到A1位置时,点A经过的路线分为三段:,,,其中==π,==2π.∵∠A B C1=90°,A B =4,B C1=3,∴A C1=5.∵∠A B C1=∠C1D1A1=90°,A B =C1D1=4,B C1=D1A1=3,∴△A B C1≌△C1D1A1,∴∠1=∠2,又∠2+∠3=90°,∴∠1+∠3=90°.又∠B C1D1=180°,∴∠A C1A1=90°.∴==π,∴点A经过的路线长为π+2π+π=6π.评析此题考查弧长公式,同时考查了勾股定理以及构造全等三角形,综合性较强,属较难题.16.解析原方程组整理得,,由 得x=5y-3,③将③代入 得25y-15-11y=-1,即14y=14,解得y=1,将y=1代入③得x=2,∴原方程组的解为, .17.证明∵四边形ABCD是菱形,∴OD=OB,∠COD=90°.∵DH⊥AB于H,∴∠DHB=90°,∴OH=BD=BO,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC.∴∠OHB=∠ODC.在Rt△COD中,∠ODC+∠OCD=90°,在Rt△DHB中,∠DHB=∠DHO+∠OHB=90°,∴∠DHO=∠DCO.18.解析(1)(2)平均数:==11.6(吨).中位数:11(吨).众数:11(吨).(3)×500=350(户).答:不超过12吨的用户约有350户.19.解析(1)树状图:列表法:(2)所求概率P==.20.解析(1)证明:连结OC,∵OC=OA,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,∴OC⊥CD.∴DC为☉O的切线.(2)连结BC,易知△ADC∽△ACB,∴=,即AC2=AD·AB,∵☉O的半径为3,∴AB=6,又∵AD=4,∴AC=2.评析本题是一道以圆为载体的几何证明、计算题,主要考查圆的有关性质,圆的切线的判定以及相似三角形的判定与性质等知识的综合运用,属中等难度题.21.解析设租甲种货车x辆,则乙种货车(6-x)辆,依题意有(-),解得4≤x≤5.(-),∵x为正整数,∴共有两种方案.方案一:租甲种货车4辆,乙种货车2辆;方案二:租甲种货车5辆,乙种货车1辆.方案一费用:4×400+2×300=2 200元;方案二费用:5×400+1×300=2 300元.∵2 200<2 300,∴选择方案一,即租用甲种货车4辆,乙种货车2辆时最省钱.22.解析依题意可知∠AEB=30°,∠ACE=15°,又∠AEB=∠ACE+∠CAE,∴∠CAE=15°,即△ACE为等腰三角形,∴AE=CE=100米.在Rt△AEF中,∠AEF=60°,∴EF=AE·cos 60°=50米,AF=AE·sin 60°=50米.在Rt△BEF中,∠BEF=30°,∴BF=EF·tan 30°=50×=米.∴AB=AF-BF=50-=≈58米.答:塔高AB大约为58米.23.解析(1)t=6-x;当0<x≤4时,y2=-5(6-x)+110=5x+80;当4≤x<6时,y2=100.(2)当0<x≤2时,w=(15x+90)x+(5x+80)(6-x)=10x2+40x+480; 当2<x≤4时,w=(-5x+130)x+(5x+80)(6-x)=-10x2+80x+480; 当4<x<6时,w=(-5x+130)x+100(6-x)=-5x2+30x+600.w=(), -(),-().(3)当0<x≤2时,w=10x2+40x+480=10(x+2)2+440,x=2时,w最大=600.当2<x≤4时,w=-10x2+80x+480=-10(x-4)2+640,x=4时,w最大=640.当4<x<6时,w=-5x2+30x+600=-5(x-3)2+645,w<640.∴x=4时,w最大=640.即国内销售4千件,国外销售2千件时,可使公司每年利润最大,最大利润为64万元(或640千元).评析本题是一道函数综合应用题,题目设置有梯度,主要考查数学的转化、建模、分类讨论思想,属较难题.24.解析(1)设所求抛物线解析式为y=ax2+bx+c,把A(6,0),B(3,),C(1,)三点坐标代入得,,,,解得a=-,b=,c=.即所求抛物线为y=-x2+x+.(2)依题意,可知OC=CB=2,∠COA=60°,∴当动点Q运动到OC边上时,OQ=4-t,∴△OPQ的边OP上的高为OQ·sin 60°=(4-t)×, 又OP=2t,∴S=×2t×(4-t)×=-(t2-4t)(2≤t≤3).(3)依题意,可知0≤t≤3.当0≤t≤2时,Q 在BC 边上运动,此时OP=2t,OQ= ( - ) ,PQ= -( - )= ( - ),∵∠POQ<∠POC=60°,∴若△OPQ 为直角三角形,只能是∠OPQ=90°或∠OQP=90°, 若∠OPQ=90°,则OP 2+PQ 2=OQ 2,即4t 2+3+(3t-3)2=3+(3-t)2,解得t=1或t=0(舍); 若∠OQP=90°,则OQ 2+PQ 2=OP 2,即6+(3-t)2+(3t-3)2=4t 2,解得t=2.当2<t≤3时,Q 在OC 边上运动,此时PO=2t>4,∠POQ=∠COP=60°,OQ<OC=2, ∴△OPQ 不可能为直角三角形.综上所述:当t=1或t=2时,△OPQ 为直角三角形. (4)由(1)可知:抛物线y=-x 2+x+ =-(x-2)2+ ,其对称轴为x=2.又直线OB 的方程为y=x, ∴抛物线对称轴与OB 交点为M ,, 又P(2t,0),设过P 、M 的直线解析式为y=kx+b, ∴, · ,解得( - ), -( - ),即直线PM:y=( - )x-( - ),即 (1-t)y=x-2t.又0≤t≤2时,Q(3-t, ),代入上式,得 (1-t)× =3-t-2t 恒成立, 即0≤t≤2时,P 、M 、Q 总在一条直线上, 即M 在直线PQ 上;2<t≤3时,OQ=4-t,∠QOP=60°,∴Q-,(-),代入上式,得(-)×(1-t)=--2t,解得t=2或t=,均不合题意,应舍去.综上所述,过A、B、C三点的抛物线的对称轴、OB和PQ能够交于一点,此时0≤t≤2.评析本题是二次函数,梯形,直角三角形有关的动态几何综合题,难度较大.其解题关键是灵活运用“动中取静”的策略,找到临界位置探究问题,尤其是第(4)小题运用解析法解题,学生不易想到.。
2011年湖北省黄石市中考数学试卷锦元数学工作室 编辑一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每个小题给出的四个选项中,只有一个是正确的,请把正确的选项所对应的字母在答题卷中相应的格子涂黑,注意可用多种不同的方法来选取正确答案。
1. (湖北黄石3分)4的值为A.2B. -2C. 2±D. 不存在【答案】A 。
【考点】算术平方根。
【分析】直接根据算术平方根的定义求解:因为4的算术平方根是2,所以 4=2。
故选A 。
2. (湖北黄石3分)黄石市2011年6月份某日一天的温差为11℃,最高气温为t ℃,则最低气温可表示为A. (11+t)℃B. (11-t)℃C. (t -11)℃D. (-t -11)℃【答案】C 。
【考点】列代数式。
【分析】由已知可知,最高气温-最低气温=温差,从而最低气温=最高气温-温差= t -11。
故选C 。
3. (湖北黄石3分)双曲线21k y x-=的图像经过第二、四象限,则k 的取值范围是 A.12k > B. 12k < C. 12k = D. 不存在 【答案】B 。
【考点】反比例函数的性质。
【分析】据反比例函数的图象经过第二、四象限得到关于k 的不等式:210k <-,解之即求出k 的取值范 围12k <。
故选B 。
4. (湖北黄石3分)有如下图形:①函数1y x =+的图形;②函数1y x =的图像;③一段弧;④平行四边形,其中一定是轴对称图形的有A.1个B.2个C.3个D.4个 【答案】B 。
【考点】轴对称图形,一次函数的图象,反比例函数的图象,圆的认识,平行四边形的性质。
【分析】根据轴对称图形的概念,分析各图形的特征求解:①函数1y x =+的图象是一条直线,是轴对称图形;②函数1y x =的图象是双曲线,是轴对称图形;③圆弧是轴对称图形;④平行四边形不是轴对称图形,是中心对称图形。
故选B 。
5. (湖北黄石3分)如右下图所示的几何体的俯视图是【答案】C 。
黄冈市2013年初中毕业生学业及升学考试数学模拟试题(满分:120 分考试时间:120 分钟)一、选择题:(共8小题,每小题3分,共24分.)1.下列图形中,是中心对称图形,但不是轴对称图形的是( )2.下列计算正确的是( )A .12=12⋅B .43=1-C .63=2÷D .4=2± 3.如图,将三角尺与直尺贴在一起,使三角尺的直角顶点C(∠ACB =90°)在直尺的一边上,若∠1=60°,则∠2的度数等于( )A .75°B .60°C .45°D .30°4.在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为( ) A .24米 B .20米 C .16米 D .12米5.已知抛物线y =ax 2﹣2x +1与x 轴没有交点,那么该抛物线的顶点所在的象限是( )A .第四象限B .第三象限C .第二象限D .第一象限 6.将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的( ) A 、面CDHE B 、面BCEF C 、面ABFG D 、面ADHG 7.若不等式组有解,则a 的取值范围是( )A .a ≤3B .a <3C .a <2D .a ≤28.如果关于x 的一元二次方程kx 2﹣x+1=0有两个不相等的实数根,那么k 的取值范围是( ) A .k <B .k <且k ≠0C .﹣≤k <D ﹣≤k <且k ≠0二、填空题(共7小题,每小题3分,共21分)9.当x=________时,函数21232--=x x y 的值为零。
-210.商店某天销售了ll 件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm) 38 39 40 41 42件数 1 4 3 1 2则这ll 件衬衫领口尺寸的众数是________cm ,中位数是________cm .11.如图,在平面直角坐标系中,已知一圆弧过小正方形网格的格点A B C ,,,已知A 点的坐标是(35)-,,则该圆弧所在圆的圆心坐标是___________.12.如右图在反比例函数)0(4>-=x xy 的图象上有三点P 1、P 2、P 3, 它们的横坐标依次为1、2、3, 分别过这3个点作x 轴、y 轴的垂线, 设图中阴影部分面积依次为S 1、S 2、S 3, 则123S S S ++=_____________. 13. 如右图, 扇形纸扇完全打开后, 阴影部分为贴纸, 外侧两竹条AB 、AC 夹角为120°, 弧BC 的长为20πcm ,AD 的长为10cm , 则贴纸的面积是_________________cm 2.14.已知点A (1,5),B (3,-1),点M 在x 轴上,当AM -BM 最大时,点M 的坐标为 . 15.已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3在x 轴上.若正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3,则点A 3到x 轴的距离是 .三、解答题(共8小题,共75分 16.先化简,再求值:,其中a=,b=.17.如图,在梯形ABCD 中,AD ∥BC ,E 为BC 的中点,BC=2AD ,EA=ED=2,AC 与ED 相交于点F .(1)求证:梯形ABCD 是等腰梯形;(2)当AB 与AC 具有什么位置关系时,四边形AECD 是菱形?请说明理由,并求出此时菱形AECD 的面积.A B C D 第6题第4题第3题B C E D Ay xO AB C18.某同学进行社会调查,随机抽查了某个地区的20个家庭的收入情况,并绘制了统计图.请你根据统计图给出的信息回答:(1)填写完成下表:年收入(万元) 0.6 0.9 1.0 1.1 1.2 1.3 1.4 9.7 家庭户数这20个家庭的年平均收入为 万元;(2)样本中的中位数是_____ _万元,众数是____ __万元;(3)在平均数、中位数两数中,哪个量更能反映这个地区家庭的年收入水平?说明理由.19.大众服装店今年4月用4000元购进了一款衬衣若干件,上市后很快售完,服装店于5月初又购进同样数量的该款衬衣,由于第二批衬衣进货时价格比第一批衬衣进货时价格提高了20元,结果第二批衬衣进货用了5000元. (1)第一批衬衣进货时的价格是多少?(2)第一批衬衣售价为120元/件,为保证第二批衬衣的利润率不低于第一批衬衣的利润率,那么第二批衬衣每件售价至少是多少元?(提示:利润=售价﹣成本,利润率=错误!未找到引用源。
数学试卷 第1页(共8页) 数学试卷 第2页(共8页)P 黄冈市2013年初中毕业生学业考试数学全真模拟试卷(三)说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页,考试时间90分钟,满分100分.2.本卷试题,考生必须在答题卡上按规定作答;凡在试卷,草稿纸上作答的,其答案一律无效,答题卡必须保持清洁,不能折叠.3.本卷选择题1-12,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13-23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内。
第一部分 选择题(本部分共12小题,每小题3分,共36分.每小题给出的4个选项,其中只有一个是正确的.) 1.-2的倒数是( ) A .2B .-2C .12D .12-2.近年来,随着交通网络的不断完善,我市近郊游持续升温。
据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为 ( ) A .4103.20⨯ B .51003.2⨯ C .41003.2⨯ D .31003.2⨯ 3.下列计算正确的是( )A .32x x x =⋅B .2x x x =+C .532)(xx =D .236x x x =÷ 4.下列美丽图案,既是轴对称图形又是中心对称图形的个数是( )A .1个B .2个C .3个D .4个5.不等式组21318x x --⎧⎨-≥>的解集在数轴上可表示为 ( )A .B .C .D .6.“五一”黄金周期间,“天堂寨”风景区在7天假期中对每天上山旅游的人数统计如下表: 这7天中上山旅游人数的数据的众数和中位数分别是( )A .1.2,1.8B .1.8,1.2C .1.2,1.2D .1.8,1.87.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( )A .100元B .105元C .108元D .118 8.(2011·山东威海)在□A BCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则AF :CF =( )A .1:2B .1:3C .2:3D .2:59梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A .14B .12C .34D .110.如图,⊙O 是正方形ABCD 的外接圆,点P 在⊙O 上,则∠APB 等于( )A .30°B .45°C .55°D .60°11.小明从如图所示的二次函数2y ax bx c=++的图象中,观察得出了下面五条信息:①0c <;②0abc>;③0a b c-+>;④230a b -=;⑤40c b ->,你认为其中正确信息 的个数有( )第11题图D CBA FE第8题图数学试卷 第3页(共8页) 数学试卷 第4页(共8页)密 封 线 内 请 勿 答 题 ………密………………………………………………..…封………………………………………………...线………第15题图AE CBDO第16题图FAO A .2个 B .3个C .4个D .5个12.如图,R t ABC △中,90A CB ∠=,30C A B ∠=,2BC =,O H,分别为边AB AC ,的中点,将A B C △绕点B 顺时针旋转120 到11A B C △的位置,则整个旋转过程中线段O H 所扫过部分的面积(即阴影部分面积)为( )A.7π3-B.4π3+C .πD.4π3+第二部分 非选择题填空题(本题共4小题,每小题3分,共12分.) 13.分解因式:22x xy xy -+=_________________. 14.函数2yx =-x 的取值范围是____________________.15.如图,在梯形ABCD 中,AB ∥DC ,∠ADC 的平分线与∠BCD 的平分线的交点E 恰在 AB 上.若AD =7cm ,BC =8cm ,则AB 的长度是___________cm .16.如图,矩形纸片ABCD ,点E 是AB 上一点,且BE ∶EA =5∶3,EC=△BCE沿折痕EC 向上翻折,若点B 恰好落在AD 边上,设这个点为F ,若⊙O 内切于以F 、E 、B 、C 为顶点的四边形,则⊙O 的面积=______.解答题(本题共7小题,其中第17小题6分,第18小题6分,第19小题6分,第20小题 8分,第21小题8分,第22小题8分,第23小题10分,共52分.) 17.(本题6分)计算:1221)21()14.3(60tan 22+----︒--π18.(本题6分)先化简代数式:1)1111(2-÷+--x x x x ,再从你喜欢的数中选择一个恰当的作为x 的值,代入求出代数式的值.19.(本题6分)黄冈中学为了解全校1600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).(1)在这次调查中,一共抽取了多少名学生? (2)补全频数分布直方图;(3)估计全校所有学生中有多少人乘坐公交车第12题图AHBO C1O1H1A1C第19题图数学试卷 第5页 (共8页) 数学试卷 第 6页 (共8页)密 封 线 内 请 勿 答 题………密………………………………………………..…封………………………………………………...线………ABD OCE PQ第20题图20.(本题8分)如图,等边△ABC 中,AO 是∠BAC 的角平分线,D 为AO 上一点,以CD为一边且在CD 下方作等边△CDE ,连结BE . (1)求证:△ACD ≌△BCE ;(2)延长BE 至Q ,P 为BQ 上一点,连结CP 、CQ 使CP =CQ =5,若BC =8时,求PQ 的长.21.(本题8分)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:(1)2011年,王大爷养殖甲鱼20亩,桂鱼10亩.求王大爷这一年共收益多少万元?(收益=销售额-成本)(2)2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3)已知甲鱼每亩需要饲料500kg ,桂鱼每亩需要饲料700kg .根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求王大爷原定的运输车辆每次可装载饲料多少kg?数学试卷 第3页(共8页) 数学试卷 第4页(共8页)密 封 线 内 请 勿 答 题 ………密………………………………………………..…封………………………………………………...线………ECFD第22题图第23题图22.2B 的左侧),直与y 轴交于点Q ,DMNQ 的周长 最小,若存在,求出这个最小值及点M ,N 的坐标;若不存在,请说明理由. (4)点H 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、H 四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F 点坐标;如果 不存在,请说明理由.模拟试卷(三)第一部分 选择题1.D .提示:由倒数的定义,乘积为1的两个数互为倒数,故满足条件的只有12.2.B .提示:科学记数法写成a ×10n 的形式,且1≤a <10,故选B . 3.A .提示:B 应为2x ;C 应为x 6;D 应为x 3.故选A .数学试卷 第5页 (共8页) 数学试卷 第 6页 (共8页)密 封 线 内 请 勿 答 题………密………………………………………………..…封………………………………………………...线………4.C .提示:由轴对称和中心对称的定义可知,只有第二个图不是中心对称,故选C .5.B .提示:先解不等式组,表示解集时注意空心与实心,同大取大,同小取小,大小小大取中间,大大小小无解.6.C .提示:众数是出现最多的数1.2,中位数是从小到大排列中间一个是1.2.故选C . 7.A .提示:设进价为x 元,得;200×60%=x (1+20%),解得:x =100. 故选A .8.A .提示:∵△AEF ∽△CBF ∴AF :CF=AE :BC =1:29.B .提示:圆、矩形、等边三角形、等腰梯形四个图案中,中心对称图形有两个,∴概率为12.故选B.10.B .提示:连接OA ,O B .因∠APB =90°则∠APB 等于∠AOB 的一半,即∠APB =45°. 11.C .提示:由二次函数2y ax bx c =++的图象知,,0,0<<>c b a ∴①0c <;②0abc >;正确,由x =-1,0>+-=c b a y ③正确,由对称轴312=-ab ,得到032=+b a ∴④2a -3b =0是错误.的;x =2,把得⑤40c b->是正确的,故选C .12.C .提示:连接BH ,BH 1.在Rt △BHC 中,CH =12AC= 根据勾股定理得:BH∴S 扫=11360BHH BOO S S -=扇扇21202360ππ⨯⨯-=.第二部分 非选择题13.2)1(y x - 提示:x -2xy +xy 2=+-=+-)21(222y y x xyxy x 2)1(y x -14.x ≥1且x ≠2提示:2y x =-义,01≥-x 02≠-x∴x ≥1且x ≠215.15提示:∵AB ∥DC ,DE 是∠ADC 的平分线,∴AE=AD =7cm ,同理BE =BC =8cm .则AB=15cm . 16.π100提示:连接OB ,由于⊙O 内切于以F 、E 、B 、C 为顶点的四边形,则BE =EF ,BC =CF ;由BE :EA =5:3,设BE =5x ,EA =3x ,则F A =4x ,CD =8x ,又CF =AD ,∴CF 2=CD 2+DF 2,即CF 2=(8x )2+(CF -4x )2,可得CF =10x , DF =6x ,则BC =10x ;在Rt △EBC 中, EB 2+BC 2=EC 2,即(5x )2+(10x )2=(515)2,解得:x =3,则BE =15,BC =30.再由S △EBC =S △OEB +S △OBC , 得:r =10;则⊙O 的面积为πr 2=100π.17.解:0212tan 60( 3.14)()2π--︒----+21433=--=-18.解:1)1111(2-÷+--xxx x =xx x x x )1)(1()1)(1(2-+⋅+-=x2(注:若x 取1±或0,以下步骤不给分)当x =2时 原式=119.解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人).(2)被抽到的学生中,步行的人数为80×20%=16人,直方图略.(3)被抽到的学生中,乘公交车的人数为80-(24+16+10+4)=26, ∴全校所有学生中乘坐公交车上学的人数约为26160052060⨯=人.20.解:(1)证明ABC 和△CDE 均为等边三角形,∴AC =BC ,CD =CE 且∠ACB =∠DCE =60° ∵∠ACD +∠DCB =∠DCB +∠BCE =60°∴∠ACD =∠BCE ∴△ACD ≌△BCE(2)解:作CH ⊥BQ 交BQ 于H则PQ =2HQ 在Rt △BHC 和(1)得∠CBH =∠CAO =∴CH =4在Rt △CHQ 中, HQ =3452222=-=-CHCQ∴PQ =2HQ =621.解:(1)2011年王大爷的收益为:20×(3-2.4)+10×(2.5-2)=17(万元)(2)设养殖甲鱼x 亩,则养殖桂鱼(30-x )亩.由题意得2.42(30)70,x x +-≤解得25x ≤,又设王大爷可获得收益为y 万元,则(3 2.4)(2.52)(30)y x x =-+--,即11510y x =+.∵函数值y 随x 的增大而增大,∴当x =25,可获得最大收益. 答:要获得最大收益,应养殖甲鱼25亩,养殖桂鱼5亩.(3)设王大爷原定的运输车辆每次可装载饲料a kg ,由(2)得,共需饲料为50025+700516000⨯⨯=(kg ),根题据意,得160001600022aa-=,经检验4000=a 是原方程的解.数学试卷 第3页(共8页) 数学试卷 第4页(共8页)密 封 线 内 请 勿 答 题 ………密………………………………………………..…封………………………………………………...线………答:王大爷原定的运输车辆每次可装载饲料4000kg. 22.解:(1)证明:连接OC .∵CD 是⊙O 的切线,∴∠OCD =90°. ∴∠OCA+∠ACD =90°. ∵OA =OC ,∴∠OCA =∠OAC .∵∠DAC =∠ACD ,∴∠OAC +∠CA D=90°. ∴∠OAD =90°. ∴AD 是⊙O 的切线. (2)连接BG ; ∵OC =6cm ,EC =8cm , ∴在Rt △CEO 中,OE =OC 2+EC 2=10cm . ∴AE =OE +O A =OE +OC =10+6=16(cm).∵AF ⊥ED ,∴∠AFE =∠OCE =90°,∠E =∠E .∴Rt △AEF ∽Rt △OEC . ∴AF OC =AE OE .即:AF 6=1610.∴AF =9.6.∵AB 是⊙O 的直径, ∴∠AGB =90°. ∴∠AGB =∠AFE . ∵∠BAG =∠EAF , ∴Rt △ABG ∽Rt △AEF∴AG AF =AB AE .即:9.6A G ∴AG =7.2.∴GF =AF -AG =9.6-7.2=2.4(cm) . 23.解:(1)令y =0,解得x 1=-1或x 2=3,∴A (-1,0),B (3,0);将C 点的横坐标x =2代入y =x 2-2x -3得y =-3,∴C (2,-3) ∴直线AC 的函数解析式是y =-x -1 (2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x -1),E (x ,x 2-2x -3) ∵P 点在E 点的上方,PE =(-x -1)-(x 2-2x -3) =-x 2+x +2, ∴当x =21时,PE 的最大值=49△ACE 的面积最大值=[]82723)1(221==--PE PE(3)D 点关于PE 的对称点为点C (2,-3),点Q (0,-1)点关 于x 轴的对称点为M (0,1),连接CQ 交直线PE 与MD 点, 交x 轴于N 点,可求直线CQ 的解析式为12+-=x y , M (1,-1), N (21,0)(4)存在F 1(-3,0),F 2(1,0),F 3)3,74(-,F 4)0,74(+.ECFD。
黄冈市2013年初中毕业生学业考试数学模拟试卷4说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页,考试时间90分钟,满分100分.2.本卷试题,考生必须在答题卡上按规定作答;凡在试卷,草稿纸上作答的,其答案一律无效,答题卡必须保持清洁,不能折叠.3.本卷选择题1-12,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13-23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内。
第一部分 选择题(本部分共12小题,每小题3分,共36分.每小题给出的4个选项,其中只有一个是正确的.) 1.3-的相反数是 ( )A .31B .31-C .3-D .2.我国以2011年11月1日零时为标准时点进行了第六次全国人口普查,普查得到全国总 人口为1 370 536 875人,该数用科学记数法表示为( )(保留3个有效数字) A .13.7亿 B .813.710⨯C .91.3710⨯D .91.410⨯ 3.下列各式计算正确的是( ) A .x +x 3=x 4 B .x 2·x 5=x 10C .(x 4)2=x 8D .x 2+x 2=x 4(x ≠0)4.下列图形中,既是轴对称图形,又是中心对称图形的是( )5.去年黄冈市有15.6万学生参加中考,为了解这5.6万名学生的数学成绩,从中抽取1000 名考生的数学成绩进行统计分析,以下说法正确的是( )A .这1000名考生是总体的一个样本B .15.6万名考生是总体C .每位考生的数学成绩是个体D .1000名学生是样本容量6.点M (-sin60°,cos60°)关于x 轴对称的点的坐标是( )A12) B.(,12-) C.(12) D .(12-,)7.一个几何体的三视图如下:其中主视图与左视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为 ( )A .2πB .12πC .4πD .8πA .B .C .D .8.把一块直尺与一块三角板如图放置,若0451=∠,则2∠的度数为()A.0115B.0120C.D9.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A.13B.19CD.23102)11.如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为()A.25°B.50°C.40°D.60°12.如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x 的值为()A.5B.6 C.7 D.12第二部分非选择题填空题(本题共4小题,每小题3分,共12分.)13.14.如图:AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在点C′处,连结B C′,那么BC′的长为_____________.A B C D第7题图2 2主视图左视图俯视图12第8题图APOC B第11题CA B第12题图x43第15题图215.如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB 、AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交于点O 2,同样以AB 、AO 2为两邻边作平行四边形ABC 2O 2,……,依次类推,则平行四边形ABC n O n 的面积为_________.16.如图,Rt △ABC 的直角边BC 在x 轴正半轴上,斜边AC 边上的中线BD 反向延长线交y 轴负半轴于E ,双曲线()0>=x xky 的图象经过点A , 若S △BEC =8,则k 等于___________.解答题(本题共7小题,其中第17小题6分,第18小题6分,第19小题6分,第20小题 8分,第21小题8分,第22小题9分,第23小题9分,共52分.) 17.(本题6分)计算:()()0201330sin 2193---+-π18.(本题6成绩,现从中随机抽取部分学生的体育成绩进行分段(50分;B :49-45分;C :44-40分;D :39-30分;E :分)统计如下:分数段学业考试体育成绩(分数段)统计表F DBA EC第20题图根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为 ,b 的值为 ,并将统计图补充完整(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内? (填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?19.(本题6分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE 的高度,他们在这棵树正前方一座楼亭前的台阶上A 点处测得树顶端D 的仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60°.已知A 点的高度AB 为2米,台阶AC 的坡度为1AB : BC =1:3),且B 、C 、E 三点在同一条直线上.请根据以上条件求出树DE 的高度(测倾器的高度忽略不计).20.(本题8分)如图,直角梯形ABCD 中,AD ∥BC ,∠A=90°,6AB AD ==,DE DC⊥交AB 于E ,DF 平分∠EDC 交BC 于F ,连结EF . (1)证明:EF =CF ; (2)当tan ADE ∠=31时,求EF 的长.DEC BA30°60°第19题图21.(本题8分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y(件)与销售单价x(元)之间的函数关系式;(2)写出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少元?22.(本题9分)如图,AB是⊙O的直径,AM和BN是它的两条切线,DE切⊙O于点E,交AM于点D,交BN于点C,F是CD的中点,连接OF.(1)求证:OD∥BE;(2)猜想:OF与CD有何数量关系?并说明理由.B第22题图23.(本题9分)在直角坐标系xoy 中,已知点P 是反比例函数)>0(32x xy =图象上一个动点,以P 为圆心的圆始终与y 轴相切,设切点为A .(1)如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKPA 的形状,并说明理由;(2)如图2,⊙P 运动到与x 轴相交,设交点为B ,C .当四边形ABCP 是菱形时:①求出点A ,B ,C 的坐标.②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面 积的1.若存在,试求出所有满足条件的M 点的坐标,若不存在,试说明理由.模拟试卷(四)第一部分 选择题1.D .提示:由相反数的定义解此题.2.C .提示:此题是科学记数法、近似数、有效数字三点知识相结合.先求近似数保留3个有效数字写成1.37,小数点向左移动了9位使得原数缩小了109 倍,所有1.37×109元.故选C . 3.C .提示:A 不是同类项不能合并;B 应为x 7;D 应为2x 2.故选C .4.B .提示:由轴对称和中心对称的定义可知,A 不是轴对称,C 与D 是中心对称图形,故选B . 5.C .提示:本题考查的每一个对象都是考生的数学成绩.故选C .6.B .提示:由特殊角的三角函数求的M (,12),再由关于x 轴对称的性质得所求点的坐标为(,12-),故选B . 7.C .提示:由几何体的三视图得几何体为底面半径为1,母线长为4的圆锥,侧面展开图的面积为ππ4=rl ,故选C . 8.D .提示:由直角三角形两锐角互余,可求∠2的补角为45°,∴∠2=135°.9.A .提示:用列表或树状法,求得小王与小菲同车的概率为31, KOAPy =图2第23题图故选A .10.A .提示:在同一坐标系中一次函数y ax b =+和二次函数2y ax bx =+B ,D 图象可能为,再由对称轴排除C ,故选A .11.B .提示:由PA 、PB 是⊙O 的切线,∠P =50°,可求∠AOB =130°,则∠BOC =50°,B 故选.12.C .提示:由三角形相似得4343-=-x x ,解得7=x , 故选C .第二部分 非选择题13.)2)(2(a b a b a -+提示:14.3 提示:∵AD 是△ABC 的中线,∴BD =DC =3,由折叠性质得C ′D =3,∠ADC ′=∴∠BDC ′=︒60 △DB C′是等边三角形 ∴BC ′=3 15.n25 提示:∵矩形ABCD 的面积为5,它的两条对角线交于点O 1,∴平行四边形ABC 1O 1的面积为25,平行四边形ABC 2O 2的面积为225……,依次类推,则平行四边形ABC n O n的面积为25.16.16.提示:连接AO ,AE .可证明S △CBE =8,又S △AOB =S △ABE = S △CBE =8.则k 等于16.17=1+318.解:(1) 60 , 0.15 (图略) (2) C(3)0.8×10440=8352(名)答:该市九年级考生中体育成绩为优秀的学生人数约有8352名.19.解:如图,过点A 作AF ⊥DE 于F ,则四边形ABEF 为矩形,∴AF =BE ,EF =AB =2,设DE =x ,在Rt △CDE 中,x DE DCE DE CE 3360tan tan =︒=∠=.在Rt △ABC 中,∵31=BC AB ,AB =2, ∴BC =32.在Rt △AFD 中,DF =DE -EF =x -2, ∴()2330tan 2tan -=︒-=∠=x x DAF DF AF .因为AF =BE =BC +CE ,所以()x x 333223+=-,解得x =6. 答:树DE 的高度为6米.20.解:(1)过D 作DG ⊥BC 于G .由已知可得,四边形ABGD为正方形.B C∵DE ⊥DC ,∴∠ADE +∠EDG =90°=∠GDC +∠EDG , ∴∠ADE =∠GDC . 又∵∠A=∠DGC ,且AD =GD , ∴△ADE ≌△GDC .∴DE =DC ,且AE =GC .在△EDF 和△CDF 中, ∠EDF =∠CDF ,DE =DC , DF 为公共边, ∴△EDF ≌△CDF . ∴EF =CF . (2)∵tan ∠ADE =13AE AD =,∴AE =GC =2.设EF =x ,则BF =8-CF =8-x ,BE =6-2=4.由勾股定理,得x 2=(8-x )2+42.解之,得x =5,即EF =5. 21.解:(1)由题意,得:y =200+(80-x )×20=-20x +1800;答:y 与x 之间的函数关系式是y =-20x +1800.(2)由题意,得:w =(x -60)(-20x +1800)=-20x 2+3000x -108000. 答:w 与x 之间的函数关系式是w =-20x 2+3000x -108000.(3)由题意,得:20180024076x x -+⎧⎨⎩≥≥,解得7678x ≤≤. w =-20x 2+3000x -108000 对称轴为x =3000752(20)-=⨯-,又a =120<0∴在对称轴右侧是递减的 ∴在x 取76时,利润最大. ∴w 最大=(76-60)(-20×76+1800)=4480. 答:这段时间商场最多获利4480元. 22.(1)证明:连接OE ,∵AM 、DE 是⊙O 的切线,OA 、OE 是⊙O 的半径, ∴∠ADO=∠EDO ,∠DAO=∠DEO =90°,∴∠AOD=∠EOD=12∠AOE ,∵∠AOE ,∴∠AOD=∠ABE ,∴OD ∥BE (2)OF =12CD ,理由:连接OC ,∵BC 、CE 是⊙O 的切线, ∴∠OCB=∠OCE ∵AM ∥BN , ∴∠ADO+∠EDO+ ∠OCB+∠OCE=180° 由(1)得∠ADO=∠∴2∠EDO+2∠OCE=即∠EDO+∠OCE=90°在Rt △DOC 中,∵F 是DC 的中点,∴OF =12CD .23.解:(1)∵⊙P 分别与两坐标轴相切,∴PA ⊥OA ,PK ⊥OK . ∴∠PAO =∠OKP =90°.F DB AECG又∵∠AOK =90°,∴∠PAO =∠OKP =∠AOK =90°. ∴四边形OKPA 是矩形.又∵OA =OK ,∴四边形OKPA 是正方形.(2)①连接PB ,设点P 的横坐标为x过点P 作PG ⊥BC 于G .∵四边形ABCP 为菱形,∴BC =PA =PB =PC . ∴△PBC 为等边三角形.在Rt △PBG 中, ∠PBG =60°,PB =PA =x , PG =x32. sin ∠PBG=PBPGx x x.解之得:x =±2(负值舍去).∴PG ,PA =B C=2.易知四边形OGPA 是矩形,PA =OG =2, BG =CG =1, ∴OB =OG -BG =1,OC =OG +GC =3.∴A (0B (1,0),C (3,0). 设二次函数解析式为:y =ax 2+bx +c .据题意得:0930a b c a b c c ++=++==⎧⎪⎨⎪⎩解之得:a ,b =,c =∴二次函数关系式为:2y =②解法一:设直线BP 的解析式为:y=ux +v ,据题意得:02u v u v +=+=⎧⎨⎩u,v =∴直线BP的解析式为:y =过点A 作直线AM∥PB ,则可得直线AM 的解析式为:y=解方程组:2y y ⎧⎪⎨⎪⎩得:110x y =⎧⎪⎨=⎪⎩ 227x y =⎧⎪⎨=⎪⎩ 过点C 作直线CM∥PB ,则可设直线CM 的解析式为:y t =+∴0=t .∴t =-. ∴直线CM 的解析式为:y =-解方程组:2y y ⎧-⎪⎨⎪⎩1130x y =⎧⎨=⎩;224x y =⎧⎪⎨=⎪⎩ 综上可知,满足条件的M 的坐标有四个,分别为:(0), (7,3,0),(4解法二:∵12PAB PBC PABCS S S ∆∆==,∴A (0),C (3,0)显然满足条件.延长AP 交抛物线于点M ,由抛物线与圆的轴对称性可知, PM =PA .又∵AM ∥BC ,∴12PBM PBA PABCS S S ∆∆==.∴点M的纵坐标为.又点M 的横坐标为AM =PA +PM =2+2=4. ∴点M (4)符合要求. 点(7, 综上可知,满足条件的M 的坐标有四个,分别为:(0),(7,3,0),(4).。
黄冈市2013年初中毕业生学业考试数学模拟试卷9说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页,考试时间90分钟,满分100分.2.本卷试题,考生必须在答题卡上按规定作答;凡在试卷,草稿纸上作答的,其答案一律无效,答题卡必须保持清洁,不能折叠.3.本卷选择题1-12,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13-23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内.第一部分 选择题(本部分共12分题,每小题3分,共36分.每小题给出的4个选项,其中只有一个是正确的.) 1.13--的倒数是( )A .3-B .3C .31-D .31 2.我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图,从图的左面看这个几何体的左视图是( )B .C .D .3.下列等式正确的是( )A .532)(x x -=-B .236x x x =÷C .523x x x =+D .96332)(y x y x -=- 4.长城总长约为6700010米,用科学记数法表示是(保留两个有效数字)( ) A .6.7×105米 B .6.7×106米C .6.7×107米D .6.7×108米5.某班5位同学的身高分别是155,160,160,161,169(单位:厘米),这组数据中,下列说法错误..的是 ( ) A .众数是160B .中位数是160C .平均数是161D .标准差是52第2题图MOC BNA第10题图第11题图第12题图6.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是()A.106元B.105元C.118元D.108元7.如果2)2(2-=-xx,那么x的取值范围是()A.x≤2 B.x<2 C.x≥2 D.x>28.将抛物线y=2x2如何平移可得到抛物线y = 2(x-4)2-1 ()A.向左平移4个单位,再向上平移1个单位B.向左平移4个单位,再向下平移1个单位C.向右平移4个单位,再向上平移1个单位D.向右平移4个单位,再向下平移1个单位9.已知△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别是a、b、c且c=3b,则cos∠A 的值是()A.32B.322C.31D10.如图,⊙O中弦AB、CD相交于点F,CD=10.若AF∶BF=1∶4,则CF的长等于()A.2B.2 C.3 D.2211.如图,⊙O的弦AB垂直于直径MN,C为垂足.若OA=5 cm,下面四个结论中可能成立的是()A.AB=12 cm B.OC=6 cm C.MN=8 cm D.AC=2.5 cm 12.如图,△P1O A1.△P2A1A2是等腰直角三角形,点P1.P2在函数4yx=(x>0)的图象上边OA1.A1A2都在x轴上,则点A2的坐标是()A.(4,0)B.(24,0)C,0)第二部分非选择题填空題(本题共4,每题3分,共12分.)13.已知251,251+=-=ba:则2++baab的值是_______________________.14.因式分解:=+-aaa4423_____________________.15.观察下面一列数的规律并填空:0,3,8,15,24,…,则它的第2012个数是______________________.图1图20.5小时2小时 1.5小时 24%1小时 40% 第19题图ADM NB C第16题图16.如图,正方形ABCD 中,过点D 作DP 交AC 于点M 、交AB于点N 、交CB 的延长线于点P .若MN =1,PN =3,则DM 的长为______________________.解答题(本题共7小题,其中第17小题5分,第18小题6分,第19小题6分,第20小题8分,第21小题8分,第22小题9分,第23小题10分,共52分.) 17.(本题518.(本题6分)解方程:19.(本题6分)为提高初中生的身体素质,教育行政部门规定:初中生每天参加户外活动的平均时间不少于1小时.为了了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成图1、图2两幅不完整的统计图,请你根据图中提供的信息解答下列问题: (1)这次调查共调查了_________名学生;(2)平均时间为1小时的人数为___________,并补全图1;(用阴影表示) (3)在图2中表示户外活动时间0.5小时的扇形圆心角的度数是__________度; (4)本次调查中学生参加户外活动的平均时间是否符合要求?(写出过程)第20题图20.(本题8分)如图,AB 是O ⊙的直径,10AB DC =,切O ⊙于点C AD DC ⊥,,垂足为D ,AD 交O ⊙于点E .(1)求证:AC 平分BAD ∠; (2求DC 的长.21.(本题8分)某工厂第一次购买甲种原料60盒和乙种原料120盒共用21 600元,第二次购买甲种原料20盒和乙种原料100盒共用16 800元. (1)求甲、乙两种原料每盒价钱各为多少元;(2)该工厂第三次购买时,要求甲种原料比乙种原料的2倍少200盒,且购买两种原料的总量不少于1 010盒,总金额不超过89 200元,请你通过计算写出本次购买甲、乙两种原料的所有方案.BNGFM ED CA第22题图22.(本题9分)如图,已知⊙O 中,弦BC =8,A 是BAC 的中点,弦AD 与BC 交于点E ,AE =53,ED =33,M 为弧BDC 上的动点,(不与B 、C 重合),AM 交B C 于N. (1)求证:AB 2=AE·AD ;(2)当M 在弧BDC 上运动时,问AN ·AM 、AN ·NM 中有没有值保持不变的?有的话,试求出此定值;若不是定值,请求出其最大值;(3)若F 是CB 延长线上一点,FA 交⊙O 于G ,当AG =8时,求sin ∠AFB 的值.23.(本题10分)如图,已知抛物线p nx mx y ++=2与562++=x x y 关于y 轴对称,与y 轴交于点M ,与x 轴交于点A 和B .(1)求出p nx mx y ++=2的解析式,试猜想出与一般形式抛物线c bx ax y ++=2关于y轴对称的二次函数解析式(不要求证明). (2)若A ,B 的中点是点C ,求sin ∠CMB .(3)如果过点M 的一条直线与p nx mx y ++=2图象相交于另一点N (a ,b ),a ≠b 且满足a 2-a +q =0,b 2-b +q =0(q 为常数),求点N 的坐标.第23题图模拟试卷(九)第一部分 选择题1.A .(∵3131-=--,而31-的倒数是-3,∴选A )2.B .(∵左视图是从左至右所看到的几何体的平面图形,∴选B )3.D .(∵236()x x -=-,A 错;633x x x ÷=,B 错;不是同类项不能直接相加减,C 错;∴选D ) 4.B .(∵6700010=6.70001×106米≈6.7×106米,∴选B )5.D .(∵众数是160,A 正确;中位数是160,B 正确;平均数是161,C 正确,标准差是3053,D 错误,∴选D )6.D .(设衣服的进价为x 元,依题意:132×0.9-x =10%x 解得x =108,∴选D ) 7.C .(依题意:x -2≥0,解得x ≥2,∴选C )8.D .(二次函数图象的平移在水平方向上遵循左加右减,在铅直方向上遵循上加下减,∴选D ) 9.C .(∵cos b A c ∠=,∴cos 133b A b ∠==,∴选C ) 10.B .(∵41==DF CF BF AF ,CD =10∴CF =2,∴选B ) 11.D .(若AB =12cm ,则AC =6cm ,OA <AC ,A 错;若OC =6cm ,而ON =5cm ,B 错;若MN =8cm ,则ON =5cm ,C 错,故选D )12.B .(过P 1.P 2作P 1B ⊥x 轴,P 2C ⊥x 轴,连接OP 2,∵△P 1O A 1.△P 2 A 1 A 2是等腰直角三角形,∴△OBP 1和△A 1CP 2是等腰直角三角形,∵xy 4= ∴OB 1=2,OA 1=4,设CP 2=x 则2)4(21=+⨯⨯x x 解的:12x =, 2222--=x 舍去,∴OA 2=24,∴选B )第二部分 非选择题13.20(2++b a a b =222++ab b a ,把,251-=a 251+=b 代入得20) 14.2(2)a a -(原式22(44)(2)a a a a a =-+=-)15.20122-1(0+1=12,3+1=22,8+1=32…第N 个数就为N 2-1,∴2012个数为20122-1)16.2(∵AB ∥CD ,∴AM ∶MC =MN ∶MD ,∵AD ∥BC ,∴AM ∶MC =DM ∶MP ,∴MN ∶MD =DM ∶MP ,∴MD ²=MN ·MP =1·4=4, ∴MD =2)17.解:原式=531531-=--+18.解:原式=31132-+=--x x x ∴132+-=-x x∴2=x 经检验2=x 是原分式方程的解.19.(1)50(根据图示知:参加1.5小时的人数占总人数的24%,实际参加人数为12,∴本次调查学生人数为12÷24%=50)(2)20.(50×40%=20);如图阴影 (3)103607250⨯=(4)平均时间为:18.15082125.1201105.0=⨯+⨯+⨯+⨯所以符合要求20.解:(1)证明:连结OC ,由DC 是切线得OC DC ⊥又AD DC ⊥, ∴AD ∥OC ,∴∠DAC =∠ACO . 又由O A O C = 得∠BAC =∠ACO , ∴∠DAC =∠BAC. 即AC 平分∠(2)解:AB 为直径,∴90ACB ∠=°又∵∠BAC =∠BEC ,∴BC =AB ·sin ∠BAC =AB ·sin ∠BEC =6. ∴AC =822=-BC AB .又∵∠DAC =∠BAC =∠BEC ,且AD DC ⊥,∴CD =AC ·sin ∠DAC = AC ·sin ∠BEC =524.21.(1)解:设甲原料每盒x 元,乙原料每盒y 元.由题可得⎩⎨⎧=+=+16800100202160012060y x y x 解得:⎩⎨⎧==16040y x故甲原料每盒40元,乙原料每盒160元. (2)解:设乙原料a 盒,则甲原料(2a -200)盒 由题可得40(2200)1608920022001010a a a a ⨯-+⎧⎨-+⎩≤≥解得:12104053a ≤≤ ∵a 为正整数 ∴a=404或a=405 故购买方案有1.甲原料608盒,乙原料404盒. 2.甲原料610盒,乙原料405盒. 22.如图(1),证明:(1)连BD∵AC AB 弧弧= ∴∠ABC =∠ADB又∵∠BAE =∠DAB ∴△ABE ∽△ADB ∴AB ADAEAB =∴2AB AE AD =⨯(2)连结BM ,图(2)同(1)可证△ABM ∽△ANB ,则AB AN AMAB=∴2AN AM AB ⨯=∴AD AE AM AN ⨯=⨯=80)3533(35=+ 即AM AN ⨯为定值. 设BN =x ,则CN =(8-x ) ∵(8)AN NM BN CN x x ⨯=⨯=-2(4)16x =--+ 故当BN =x =4时, N M AN ⨯有最大值为16.(3)作直径AH 交BC 于K ,连结GH ,如图(3), ∵A 是弧BAC 的中点 ∴AH ⊥BC ,且4,BK KC == ∴222801664AK AB BK =-=-=∴AK =8又由K C BK K H AK ⨯=⨯得:4428KH ⨯==∴AH =10 又∵∠AGH =∠BKF =90°, 且∠GAH =∠KAF ,∴∠F =∠H ∴sin F ∠=sin 84105AG H AH ∠===23.解:(1)265y x x =++的顶点为(-3,-4),即2y mx nx p =++的顶点的为(3,-4), 即22(3)4y mx nx p a x =++=--,265y x x =++与y 轴的交点M (0,5), 即p nx mx y ++=2与y 轴的交点M (0,5).即a =1,所求二次函数为265y x x =-+ 猜想:与一般形式抛物线2y ax bx x =++关于y 轴对称的二次函数解析式是2y ax bx c =-+(2)过点C 作CD ⊥BM 于D .抛物线265y x x =-+与x 轴的交点A (1,0), B (5,0),与y 轴交点M (0,5),AB 中点C (3,0);故△MOB ,△BCD 是等腰直角三角形, CD BC =2. 在Rt △MOC 中,MC =34.图1图3 图2则sin ∠CMB =CD MC(3)设过点M (0,5)的直线为y =kx +5⎪⎩⎪⎨⎧+-=+=,56,52x x y kx y 解得⎩⎨⎧==,5,011y x ⎪⎩⎪⎨⎧++=+=.56,6222k k y k x则a =k +6,b =k 2+6x +5.由已知a ,b 是方程x 2-x +9=0的两个根, 故a +b =1.(k +6)+(k 2+6k +5)=1, 化k 2+7k +10=0,则k 1=-2,k 2=-5. 点N 的坐标是(4,-3)或(1,0).。
初中数学毕业模拟试题(二)一.选择题1.下列实数中是无理数的有( )个9,3,327,︒30sin ,12-A .1B .2C .3D .42.如图所示,将含有30º角的直角三角尺放在量角上,D 点的度数为150º,则图中∠APC 的读数是 ( )A .50º B .45º C .40º D .35º 3.下列运算正确的是( )A .a 6÷a 2=a 3B .(ab )2= ab 2C .(a +b )(a -b )=a 2-b 2D .a 2+a 2=a 44.曲线⎪⎩⎪⎨⎧≤≤-≤≤+--=)42(,)4(5.0)20(,2)2(5.022x x x x y 与x 轴围成的面积(即图中阴影部分的面积)是多少?下面是课堂教学上同学们的看法,其中最佳答案是( ) A .曲线不是圆弧,我们没有学过相关的方法,求不出来 B .既然老师出了这道题,肯定是我们能求出来的,哪个神仙来做 C .我们可以试一试,也许用面积分割的方法能求出来,我猜是4 D .我想出来了,是4;连接OA 、OB ,作AC ︿OB 于C ,2===AC BC OC ,OAB ∆是等腰直角三角形,又因为分段的两部分对应的二次项系数的绝对值相等,所以这两段抛物线的形状相同,它们自变量的取值长度也相等,都是2,所以分割的部经过剪切,旋转,平移可以填补,就象图中这样,原来的阴影部分面积等于等腰OAB Rt ∆,也等于那个正方形的面积,是4.5.关于3、4、350的大小关系,下面四个表示方法中,最准确的是( )6.不透明的黑袋子里放有3个黑球和若干个白球(黑白两球仅有颜色不同),老师将全班学生分成10个小组,进行摸球试验,在经过大量重复摸球试验中,统计显示,一次从中摸出2个白球的频率稳定在0.4附近,则袋子里放了( )个黑球. A .5; B .4; C .3; D .2.7.下图是两把按不同比例尺进行刻度的尺子,每把尺子的刻度都是均匀的,已知两把尺子在刻度10处是对齐的,且上面尺子在刻度15处与下面的尺子在刻度18处也刚好对齐,则上面尺子的刻度16在下面尺子对应的刻度是( ). A .19.4 B .19.5 C .19.6 D .19.78.下面说法正确的个数是( )个. ①若α、β均为锐角,且α+β=90º,sin α=31,则cos β=322; ②半径相等的圆内接正三角形、正方形、正六边形的边长之比为1:2:3; ③对角线互相平分且相等的四边形是矩形;④关于x 的一元二次方程0112=+++x k kx 有两个不相等的实数根,则k 的取值范围是31<k 且k≠0. A .1; B .2; C .3; D .4.二.填空题9.如图,是2x y =、x y =、xy 1=在同一直角坐标系中图象,请根据图象写出x 1<x <2x时x 的取值范围是 .10.矩形ABCD 的两个顶点A 、B 分别在两个反比例函数的图象上,则图中阴影部分的面积是 .11.如图,在等腰Rt △ABC 中,且∠C=90º,CD=2,BD=3,D 、E 分别是BC 、AC 边上的点,将DE 绕D 点顺时针旋转90º,E 点刚好落在AB 边上的F 点处,则CE= . 12.一组数据如下:1、2、4、6、x ,其中极差是6,这组数据的中位数是 . 13.一个扇形的周长是4,则这个扇形的面积最大值是 .14.如图,一根粗细均匀、长为2米的钢管AB ,靠在一面与水平地面垂直的墙上,此时钢管与水平面所成的锐角为75º;当A 点向下滑动到A'点时,测得钢管与水平面所成的锐角为45º.在此过程中,钢管的中点M 所走的路径长是 米(结果用无理数表示). 15.一个物体的三视图如图所示,这个几何体是 .16.如图,等边ABC ∆内接于⊙O ,P 是劣弧 AB ︵上一点(不与A 、B 重合),将PBC ∆绕C 点顺时针旋转60º,得DAC ∆,AB 交PC 于E .则下列结论正确的序号是 . ①PA +PB =PC ;②CE PC BC ⋅=2;③四边形ABCD 有可能成为平行四边形;④PCD ∆的面积有最大值.三.解答题(共8小题,共72分) 17.解方程:xx x -=+--22123 18.第一步,在一张矩形的纸片的一端,设MN =2,利用图1的方法折出一个正方形,然后把纸片展平.第二步,如图2,把这个正方形折成两个相等的矩形,然后把纸片展平. 第三步,如图3,折出内侧矩形的对角线AB ,并把它折到图3中所示的AD 处.则AD= ,CD= . 第四步,展平纸片,按照所得的D 点折出DE ,矩形BCDE 就是艺术大师们所说的黄金矩形.则黄金矩形的宽与长之比=BCCD(结果可用根号表示). 第五步,如图5,作NP ︿BD 于P ,交BC 于F ,则CF= .19.有两块锌铜合金的质量分别为10千克、15千克,这两块合金的含铜的质量分数不同,现分别从这两块合金中各切下一块质量相同的合金,交换后分别与另一块合在一起熔化,冷却后测得这两块合金含铜的质量分数相同,求切下的一块合金的质量.20.不透明袋子中有5个球,分别标有1、2、3、4、5,它们只有标号的不同.(1)一次性从中随机摸出2个球,用列表或树形图,求这2个球恰好连号(规定:如12,21都算连号)的概率;(2)请设计一种方案,使一次摸出....2.个球..是单号或双号的概率相等(写出一种方案即可). (3)若袋子中有连续30个不同正整数号码的球,先从中摸出一个球,不放回,再摸出另一个球,按先后摸出的球的顺序组成一个号码,这两个号码恰好顺号(规定:如12、23顺号,13、21不算顺号)的概率是 .21.甲、乙两台白糖封装机封装白糖,从中各抽出10袋,测得它们的实际质量如下: 甲500501 504 503 503 501 502 502 502 502 乙 504 502500 502502 502503 501502 502(1)填空平均数众数 中位数 方差 甲5025025021.2乙(2)请写出乙组数据的方差计算过程,将所得结果填入上表,并说明哪种封装机封装的白糖的质量更稳定?22.按如下程序运算:规定:程序运行到“结果是否大于p ”为一次运算,且运算4次才停止,可输入的正整数x 刚好共6个,求正整数p 的取值范围.23.在△ABC 中,∠A 、∠B 、∠C 的对边分别用a 、b 、c 表示. (1)如图,在△ABC 中,∠A =2∠B ,∠A =60º,求证:a 2=b (b+c );(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.(1)中的三角形是一个特殊的倍角三角形,那么对于任意一个倍角△ABC ,且∠A =2∠B ,关系式a 2=b (b+c )是否仍然成立?请证明你的结论;x ×2+1 >p 输出 停止 是 否 输入(3)在(2)中,若∠B=36º,b=1,直接填空:a,cos36º=(若结果是无理=数,请用无理数表示).(4)应用(3)的结论,解答下面问题:如图,一厂房屋顶人字架是等腰△ABC,其跨度BC=10m,∠B=∠C=36º,中柱AD⊥BC于D,则上弦AB的长是≈≈≈)m.(可能用到的数:5 2.24,6 2.45,7 2.6524.解题后再回顾反思,可以大大提高学习效率.一次小明有20分钟时间用于学习.假设小明用于解题的时间x分钟与学习收益量y1的关系如图1所示,用于回顾反思的时间t分钟与学习收益量y2的关系如图2所示,其中OA是抛物线的一部分,A为抛物线的顶点,且用于回顾反思的时间不超过用于解题的时间.(1)求小明解题的学习收益量y1与用于解题的时间x之间的函数关系式;(2)求小明回顾反思的学习收益量y2与用于回顾反思的时间t的函数关系式;(3)问小明如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?25.已知二次函数a ax ax y 342+-=(a .>.0.)的图象交x 轴于A 、B 两点(A 在B 点的右边)交y 轴于C 点,且ABC ∆的面积为1.(1)求A 、B 、C 各点的坐标及抛物线的解析式;(2)在图25-1中,设M (x ,y )是抛物线上的一点,当0<x 时,是否存在以A 、C 、M 为顶点的三角形与ABC ∆相似?若存在,请求出M 点的坐标;若不存在,请说明理由; (3)在图25-2中,作出过A 、B 、C 三点的圆,标出圆心I 的坐标及圆I 交y 轴于一点D 的坐标;(4)在(3)的基础上,在图25-3中,作圆F 过C 、D 两点且与x 轴相切,设P 是x 正半轴上的一个动点,P ∠是否有最大值,如有,请求出最大度数;如没有,请说明理由.。
2013年黄州中学、黄冈外国语学校九年级数学试题一、选择题:(每小题3分,共24分)1、13-的倒数是()A、13B、3-C、3D、13-2、下列运算正确的是()A4=±B、235a b ab+=C、22(3)9x x-=-D、222()n nm m-=3、如果所示,在平面直角坐标系中,点A、B的坐标分别为(2,0)-和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A'的坐标为()A、(2,2)B、(2,4)C、(4,2)D、(1,2)4、点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥CD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A、6米B、8米C、18米D、24米5、如图所示,函数1||y x=和21433y x=+的图象相交于(1,1),(2,2)-两点.当12y y>时,x的取值范围是()A、1x<-B、12x-<<C、2x>D、1x<-或2x>6、一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为()A、66B、48 C、36D、577、有下列四个命题:①`直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弦.其中正确的有()A、4个B、3个C、2个D、1个8、三军受命,我解放军各部队奋力抗震救灾第一线。
现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km,如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A、1B、2C、3D、4二、填空题(每小题3分,共21分)9、30499保留2位有效数字并用科学计数法表示;10、苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克元。
黄冈市2013年中考数学模拟试题(3)一、选择题:(ABCB 四个答案中,只有一个答案是正确的;每小题3分,共24分) 1.-20131的倒数的相反数是( ) A .2013 B .- 20131C .20131 D .-20132.下列运算中,正确的是( )A .223a a =3-B .(a 2)3=a 5C .369a a =a ⋅D .(2a 2)2=4a 23.函数y =x -2+31+x 中自变量x 的取值范围是( ) A .x ≤2 B .x ≠﹣3 C .x <2且x ≠﹣3 D .x ≤2且x ≠-34.李梦同学在“百度”搜索引擎中输入“魅力黄冈”,能搜索到与之相关的结果个数约为256 000,这个数 用科学记数法表示为( )(自命题)A .2.56×103B .256×103C .2.56×105D .2.56×1065.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A .一处 B .两处 C .三处 D .四处6.小明同学在一个正方体盒子的每一个面都写有一个字,分别是“迎十八大召 开”,其平面展开图如图14所示,那么在该正方体盒子中,和“建”相对的面所写的字是( ).A .美B .丽C .中 D.国(自命题)7.太阳光线与地面成60º的角,照射在地面上的一只皮球上,皮球在地面上的投影长是103cm ,则皮球 的直径是( )A .53B .15C .10D .838.小明早晨从家里出发出门晨练,他没有间断的匀速跑了20 min 后回到家.已知小明在整个晨练途中,他 出发后t min 时,他所在的位置与家的距离为s km ,且s 与t 之间的函数关系的图像如图中的折OA-AB-BC 所示.则下列图形中可大致表示小明晨练的路线的是( )建 设 美 丽 中 国60(第7题图)A B C D二、填空题:(每小题3分,共24分)9.计算-2-2=_________ ;10.分解因式: 2x 5-36x 3+162x= ;(自命题)11.已知│a-2│+(b-3)2+│c-4│=0,则3a+2b-c=_________;12.化简:111(11222+---÷-+-m m m m m m )= ;13.如图,四边形ABCD 是⊙O 的内接矩形,AB =2,BC = 4,E 是BC 的中点,AE 的延长线交⊙O 于点F ,则EF的长是_________.;14.通过平移把点A(2,-3)移到点A ’(4,-2),按同样的平移方式,点B(3,1)移到点B ′, 则点B ′的 坐标是 ________ ;15.如图,在矩形ABCD 中,E 、F 分别是边AD 、BC 的中点,点G 、H 在DC 边上,点M 、N 在AB 边上,且GH=21DC , MN=31AB .若AB=10,BC=12,则图中阴影部分面积和为 ;13题图16.如图,平面直角坐标系中,边长为1的正方形OA 1B 1C 的对角线A 1C 和OB 1交于点M 1;以M 1A 1为对角线作第 二个正方形A 2A 1B 2M 1,对角线A 1M 1和A 2B 2交于点M 2;以M 2A 1为对角线作第三个正方形A 3A 1B 3M 2,对角线A 1M 2 和A 3B 3交于点M 3;……,依次类推,这样作的第n 个正方形对角线交点的坐标为Mn____________.三、解答题:(本大题共72分) 17.(本题满分5分) 解方程11122--=-x x COB 1 B 2 B 3M 1M 2 M 3 A 1 A 3 A 2 x y 第16题图 家家家家20 t /minOs /kmA BC第15题图N MHG FE D CBA锻炼未超过1小时人数频数分布直方图原因人数不喜欢没时间 其它270超过1小时未超过1小时18.(本题满分6分)国家教委规定“中小学生每天在校体育活动时间不低于1小时”。
P 黄冈市2013年初中毕业生学业考试数学全真模拟试卷(三)说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页,考试时间90分钟,满分100分.2.本卷试题,考生必须在答题卡上按规定作答;凡在试卷,草稿纸上作答的,其答案一律无效,答题卡必须保持清洁,不能折叠.3.本卷选择题1-12,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13-23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内。
第一部分 选择题(本部分共12小题,每小题3分,共36分.每小题给出的4个选项,其中只有一个是正确的.) 1.-2的倒数是( )A .2B .-2C .12D .12-2.近年来,随着交通网络的不断完善,我市近郊游持续升温。
据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为 ( ) A .4103.20⨯ B .51003.2⨯ C .41003.2⨯ D .31003.2⨯ 3.下列计算正确的是( )A .32x x x =⋅B .2x x x =+C .532)(x x =D .236x x x =÷ 4.下列美丽图案,既是轴对称图形又是中心对称图形的个数是( )A .1个B .2个C .3个D .4个5.不等式组21318x x --⎧⎨-≥>的解集在数轴上可表示为( )A .B .C .D .6.“五一”黄金周期间,“天堂寨”风景区在7天假期中对每天上山旅游的人数统计如下表:这7天中上山旅游人数的数据的众数和中位数分别是( ) A .1.2,1.8B .1.8,1.2C .1.2,1.2D .1.8,1.87.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是 ( )A .100元B .105元C .108元D .118 8.(2011·山东威海)在□A BCD 中,点E 为AD 的中点,连接BE ,交AC 于点F , 则AF :CF =( )A .1:2B .1:3C .2:3D .2:59梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为 ( )A .14B .12C .34D .110.如图,⊙O 是正方形ABCD 的外接圆,点P 在⊙O 上,则∠APB 等于( )A .30°B .45°C .55°D .60°11.小明从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有 ( )A .2个B .3个C .4个D .5个第11题图D CBA FE第8题图数学试卷 第3页(共8页) 数学试卷 第4页(共8页)密 封 线 内 请 勿 答 题 ………密………………………………………………..…封………………………………………………...线………第15题图AE CBDO第16题图FAO 12.如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A.7π3B.4π3C .πD.4π3第二部分 非选择题填空题(本题共4小题,每小题3分,共12分.) 13.分解因式:22x xy xy -+=_________________.14.函数y =x 的取值范围是____________________.15.如图,在梯形ABCD 中,AB ∥DC ,∠ADC 的平分线与∠BCD 的平分线的交点E 恰在 AB 上.若AD =7cm ,BC =8cm ,则AB 的长度是___________cm .16.如图,矩形纸片ABCD ,点E 是AB 上一点,且BE ∶EA =5∶3,EC=△BCE沿折痕EC 向上翻折,若点B 恰好落在AD 边上,设这个点为F ,若⊙O 内切于以F 、E 、B 、C 为顶点的四边形,则⊙O 的面积=______.解答题(本题共7小题,其中第17小题6分,第18小题6分,第19小题6分,第20小题 8分,第21小题8分,第22小题8分,第23小题10分,共52分.)17.(本题6分)计算:1221)21()14.3(60tan 220+----︒--π18.(本题6分)先化简代数式:1)1111(-÷+--x xx x ,再从你喜欢的数中选择一个恰当的作为x 的值,代入求出代数式的值.19.(本题6分)黄冈中学为了解全校1600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整). (1)在这次调查中,一共抽取了多少名学生? (2)补全频数分布直方图;(3)估计全校所有学生中有多少人乘坐公交车第12题图AHBO C1O1H 1A1C第19题图数学试卷 第5页 (共8页) 数学试卷 第 6页 (共8页)密 封 线 内 请 勿 答 题………密………………………………………………..…封………………………………………………...线………ABD OCEPQ第20题图20.(本题8分)如图,等边△ABC 中,AO 是∠BAC 的角平分线,D 为AO 上一点,以CD为一边且在CD 下方作等边△CDE ,连结BE . (1)求证:△ACD ≌△BCE ;(2)延长BE 至Q ,P 为BQ 上一点,连结CP 、CQ 使CP =CQ =5,若BC =8时,求PQ 的长.21.(本题8分)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:(1)2011年,王大爷养殖甲鱼20亩,桂鱼10亩.求王大爷这一年共收益多少万元?(收益=销售额-成本)(2)2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3)已知甲鱼每亩需要饲料500kg ,桂鱼每亩需要饲料700kg .根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求王大爷原定的运输车辆每次可装载饲料多少kg?数学试卷 第3页(共8页) 数学试卷 第4页(共8页)密 封 线 内 请 勿 答 题 ………密………………………………………………..…封………………………………………………...线………CF第22题图第23题图22.(本题8分)如图,AB 是⊙O 的直径,CD 是⊙O 的切线,切点为C .延长AB 交CD于点E .连接AC ,作∠DAC =∠ACD ,作AF ⊥ED 于点F ,交⊙O 于点G . (1)求证:AD 是⊙O 的切线;(2)如果⊙O 的半径是6cm ,EC =8cm ,求GF 的长.23.(本题10分)如图,抛物线y =x 2-2x -3与x 轴交于A 、B 两点(点A 在点B 的左侧),直线l 与抛物线交于A ,C 两点,其中点C 的横坐标为2. (1)求A ,B 两点的坐标及直线AC 的函数表达式;(2)P 是线段AC 上的一个动点(P 与A ,C 不重合),过P 点作y 轴的平行线交抛物线于点E ,求△ACE 面积的最大值;(3)若直线PE 为抛物线的对称轴,抛物线与y 轴交于点D ,直线AC 与y 轴交于点Q ,点M 为直线PE 上一动点,则在x 轴上是否存在一点N ,使四边形DMNQ 的周长最小,若存在,求出这个最小值及点M ,N 的坐标;若不存在,请说明理由. (4)点H 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、H 四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F 点坐标;如果 不存在,请说明理由.模拟试卷(三)第一部分 选择题1.D .提示:由倒数的定义,乘积为1的两个数互为倒数,故满足条件的只有12. 2.B .提示:科学记数法写成a ×10n 的形式,且1≤a <10,故选B . 3.A .提示:B 应为2x ;C 应为x 6;D 应为x 3.故选A .4.C .提示:由轴对称和中心对称的定义可知,只有第二个图不是中心对称,故选C .5.B .提示:先解不等式组,表示解集时注意空心与实心,同大取大,同小取小,大小小大取中间,大大数学试卷 第7页(共8页) 数学试卷 第8页(共8页)数学试卷 第5页 (共8页) 数学试卷 第 6页 (共8页)密 封 线 内 请 勿 答 题 ………密………………………………………………..…封………………………………………………...线………小小无解.6.C .提示:众数是出现最多的数1.2,中位数是从小到大排列中间一个是1.2.故选C . 7.A .提示:设进价为x 元,得;200×60%=x (1+20%),解得:x =100.故选A .8.A .提示:∵△AEF ∽△CBF ∴AF :CF=AE :BC =1:29.B .提示:圆、矩形、等边三角形、等腰梯形四个图案中,中心对称图形有两个,∴概率为12.故选B.10.B .提示:连接OA ,O B .因∠APB =90°则∠APB 等于∠AOB 的一半,即∠APB =45°. 11.C .提示:由二次函数2y ax bx c =++的图象知,0,0,0<<>c b a ∴①0c <;②0abc >;正确,由x =-1,0>+-=c b a y ③正确,由对称轴312=-a b ,得到032=+b a ∴④2a -3b =0是错误. 的;x =2,得⑤40c b ->是正确的,故选C .12.C .提示:连接BH ,BH 1.在Rt △BHC 中,CH =12AC根据勾股定理得:BH∴S 扫=11BHH BOOS S -扇扇 21202360ππ⨯⨯-=.第二部分 非选择题13.2)1(y x - 提示:x -2xy +xy 2=+-=+-)21(222y y x xy xy x 2)1(y x -14.x ≥1且x ≠2提示:y =义,01≥-x 02≠-x∴x ≥1且x ≠215.15提示:∵AB ∥DC ,DE 是∠ADC 的平分线,∴AE=AD =7cm ,同理BE =BC =8cm .则AB=15cm . 16.π100提示:连接OB ,由于⊙O 内切于以F 、E 、B 、C 为顶点的四边形,则BE =EF ,BC =CF ;由BE :EA =5:3,设BE =5x ,EA =3x ,则F A =4x ,CD =8x ,又CF =AD ,∴CF 2=CD 2+DF 2,即CF 2=(8x )2+(CF -4x )2,可得CF =10x , DF =6x ,则BC =10x ;在Rt △EBC 中, EB 2+BC 2=EC 2,即(5x )2+(10x )2=(515)2,解得:x =3,则BE =15,BC =30.再由S △EBC =S △OEB +S △OBC , 得:r =10;则⊙O 的面积为πr 2=100π. 17.解:0212tan 60( 3.14)()2π--︒----2143=-=-18.解:1)1111(2-÷+--x xx x =x x x x x )1)(1()1)(1(2-+⋅+-=x 2 (注:若x 取1±或0,以下步骤不给分)当x =2时 原式=119.解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人).(2)被抽到的学生中,步行的人数为80×20%=16人,直方图略. (3)被抽到的学生中,乘公交车的人数为80-(24+16+10+4)=26,∴全校所有学生中乘坐公交车上学的人数约为 26160052060⨯=人. 20.解:(1)证明ABC 和△CDE 均为等边三角形,∴AC =BC ,CD =CE 且∠ACB =∠DCE =60°∵∠ACD +∠DCB =∠DCB +∠BCE =60° ∴∠ACD =∠BCE ∴△ACD ≌△BCE(2)解:作CH ⊥BQ 交BQ 于则PQ =2HQ 在Rt △BHC 和(1)得∠CBH =∠CAO =∴CH =4在Rt △CHQ 中,HQ =3452222=-=-CH CQ ∴PQ =2HQ =621.解:(1)2011年王大爷的收益为:20×(3-2.4)+10×(2.5-2)=17(万元)(2)设养殖甲鱼x 亩,则养殖桂鱼(30-x )亩.由题意得2.42(30)70,x x +-≤解得25x ≤,又设王大爷可获得收益为y 万元,则(3 2.4)(2.52)(30)y x x =-+--,即11510y x =+. ∵函数值y 随x 的增大而增大,∴当x =25,可获得最大收益. 答:要获得最大收益,应养殖甲鱼25亩,养殖桂鱼5亩.(3)设王大爷原定的运输车辆每次可装载饲料a kg ,由(2)得,共需饲料为50025+700516000⨯⨯=(kg ),根题据意,得160001600022a a-=,经检验4000=a 是原方程的解. 答:王大爷原定的运输车辆每次可装载饲料4000kg. 22.解:(1)证明:连接OC .∵CD 是⊙O 的切线,∴∠OCD =90°.数学试卷 第3页(共8页) 数学试卷 第4页(共8页)密 封 线 内 请 勿 答 题 ………密………………………………………………..…封………………………………………………...线………∴∠OCA+∠ACD =90°. ∵OA =OC ,∴∠OCA =∠OAC .∵∠DAC =∠ACD ,∴∠OAC +∠CA D=90°. ∴∠OAD =90°. ∴AD 是⊙O 的切线. (2)连接BG ; ∵OC =6cm ,EC =8cm , ∴在Rt △CEO 中,OE =OC 2+EC 2=10cm . ∴AE =OE +O A =OE +OC =10+6=16(cm).∵AF ⊥ED ,∴∠AFE =∠OCE =90°,∠E =∠E .∴Rt △AEF ∽Rt △OEC . ∴AF OC =AE OE .即:AF 6=1610.∴AF =9.6.∵AB 是⊙O 的直径, ∴∠AGB =90°. ∴∠AGB =∠AFE . ∵∠BAG =∠EAF , ∴Rt △ABG ∽Rt △AEF∴AG AF =AB AE .即:9.6AG ∴AG =7.2.∴GF =AF -AG =9.6-7.2=2.4(cm) . 23.解:(1)令y =0,解得x 1=-1或x 2=3,∴A (-1,0),B (3,0);将C 点的横坐标x =2代入y =x 2-2x -3得y =-3,∴C (2,-3) ∴直线AC 的函数解析式是y =-x -1 (2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x -1),E (x ,x 2-2x -3) ∵P 点在E 点的上方,PE =(-x -1)-(x 2-2x -3) =-x 2+x +2, ∴当x =21时,PE 的最大值=49△ACE 的面积最大值=[]82723)1(221==--PE PE (3)D 点关于PE 的对称点为点C (2,-3),点Q (0,-1)点关 于x 轴的对称点为M (0,1),连接CQ 交直线PE 与MD 点, 交x 轴于N 点,可求直线CQ 的解析式为12+-=x y , M (1,-1), N (21,0) (4)存在F 1(-3,0),F 2(1,0),F 3)3,74(-,F 4)0,74(+.ECFD。