塑性体积成型工艺
- 格式:ppt
- 大小:3.41 MB
- 文档页数:41
成型工艺分为哪几类成型工艺是制造工程中的重要环节,用于将材料加工成所需的形状和尺寸。
根据不同的工艺特点和操作方法,常见的成型工艺可以分为以下几类:1.塑料成型工艺塑料成型工艺是将熔融态的塑料通过一定的方法和工具形成所需的产品形状的工艺过程。
常见的塑料成型工艺包括注塑成型、挤出成型、吹塑成型、压缩成型等。
注塑成型是将熔化的塑料注入模具中,冷却后得到固态产品;挤出成型是将塑料熔化后通过挤出机挤出成型;吹塑成型是通过将熔化的塑料吹进模具中形成空心产品;压缩成型是将熔化的塑料放入模具,通过加压和冷却形成产品。
2.金属成型工艺金属成型工艺是将金属材料通过力的作用,使其发生塑性变形以得到所需形状和尺寸的工艺过程。
常见的金属成型工艺包括锻造、轧制、拉伸、冲压等。
锻造是将金属加热至一定温度后施加力使其变形成型;轧制是通过辊轧对金属进行塑性变形;拉伸是将金属材料拉伸至所需长度和形状;冲压是利用冲压模具对金属材料进行冲击和变形。
3.真空成型工艺真空成型工艺是利用真空态下的热塑性材料,将其加热软化后通过负压将其吸附成型于模具上的工艺过程。
常见的真空成型工艺包括真空吸塑成型、真空热成型等。
真空吸塑成型是将塑料片材加热至软化状态,然后用真空将其吸附在模具上形成所需形状;真空热成型是将热塑性材料加热至它的软化点,然后用真空将其吸附在模具上形成产品。
4.橡胶成型工艺橡胶成型工艺是将橡胶材料加工成所需形状和尺寸的工艺过程。
常见的橡胶成型工艺包括压模成型、浇注成型、挤出成型等。
压模成型是将橡胶材料放置于模具中,通过压力和加热使其发生塑性变形;浇注成型是将橡胶液体倒入模具中,通过固化形成所需的产品;挤出成型是将橡胶熔化后通过挤出机挤出成型。
5.粉末冶金工艺粉末冶金工艺是利用金属或非金属粉末为原料,通过成型、烧结和后处理等工艺,制备出具有一定形状和性能的产品。
常见的粉末冶金工艺包括压制成型、烧结、热处理等。
压制成型是将粉末填充至模具中,通过压力使其形成一定形状;烧结是将成型后的粉末在高温下加热使其颗粒间发生结合;热处理是对烧结后的产品进行热处理,改变其结构和性能。
金属成型工艺的类别
1. 塑性成型工艺,塑性成型工艺是指通过对金属材料施加压力,使其发生塑性变形,从而获得所需形状的工艺过程。
常见的塑性成
型工艺包括锻造、压铸、拉伸、挤压等。
2. 切削成型工艺,切削成型工艺是指通过切削金属材料的方法,将其加工成所需形状的工艺过程。
常见的切削成型工艺包括车削、
铣削、钻削、镗削等。
3. 焊接工艺,焊接工艺是指通过加热或施加压力,使金属材料
相互结合的工艺过程。
常见的焊接工艺包括电弧焊、气体保护焊、
激光焊等。
4. 粉末冶金工艺,粉末冶金工艺是指利用金属粉末或金属粉末
与非金属粉末混合后,通过压制和烧结等工艺形成零件的工艺过程。
5. 热处理工艺,热处理工艺是指通过加热、保温和冷却等方式,改变金属材料的组织结构和性能的工艺过程。
常见的热处理工艺包
括退火、正火、淬火、回火等。
以上是金属成型工艺的主要类别,不同的工艺类别在实际应用中往往会结合使用,以满足不同金属制品的加工需求。
希望以上回答能够全面地解答你的问题。
装备制造业之塑性成形技术随着现代工业的不断发展,各类装备制造业在实现高效生产和优质产品方面面临着日益严峻的挑战。
然而,塑性成形技术作为一种重要的制造工艺,正逐渐成为解决这些问题的关键。
本文将介绍塑性成形技术在装备制造业中的应用及其优势,并分析其未来发展趋势。
一、塑性成形技术在装备制造业中的应用1. 金属板材的压力成形金属板材压力成形技术是制造高强度、高精度零部件的重要手段。
通过将金属板材置于模具中,并施加压力,使金属板材发生弯曲、拉伸或冲裁等变形过程,从而得到所需形状的零部件。
该技术广泛应用于航空航天、汽车、电子等领域,并且可以生产出具有优良机械性能和表面质量的产品。
2. 金属管材的拉伸和冲压成形金属管材的拉伸和冲压成形技术主要用于制造管道、管接头和其他金属管材零部件。
通过控制拉伸和冲压力度,使金属管材在变形过程中逐渐改变截面形状,从而得到满足需求的产品。
该技术在石油化工设备、船舶制造等行业中得到广泛应用。
3. 塑性挤压技术塑性挤压技术是将金属坯料通过模具挤压成型,用于制造复杂截面的金属材料。
该技术具有高效率、节能和资源利用率高的特点,并且可以生产出优质的零部件。
在航空航天、铁路交通等领域,塑性挤压技术已成为制造高性能轻质构件的重要工艺。
二、塑性成形技术的优势1. 精度高塑性成形技术可以通过精确的模具设计和控制,实现对材料的精细加工,从而获得高度精密的零部件。
与传统加工工艺相比,塑性成形技术具有更低的工艺损失和变形量,可以提供更高的制造精度和表面质量。
2. 材料利用率高塑性成形技术将材料的变形过程与材料的剪切、挤压和拉伸等工艺相结合,可大幅提高材料的利用率。
与传统切削加工相比,塑性成形技术减少了材料废料的产生,并可在一次成形中得到复杂形状的零部件。
3. 生产效率高塑性成形技术具有高效率、批量生产的优势。
通过合理的设备配置和工艺优化,可以实现自动化、连续化生产,从而大幅提高生产效率。
此外,塑性成形技术还可以快速响应市场需求,缩短产品的开发周期。
第一章1.什么是金属的塑性什么是塑性成形塑性成形有何特点塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法,也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2.试述塑性成形的一般分类。
Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。
可分为一次成型和二次加工。
一次加工:①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。
分纵轧、横轧、斜轧;用于生产型材、板材和管材。
②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。
分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。
③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。
生产棒材、管材和线材。
二次加工:①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形状和尺寸的加工方法。
精度低,生产率不高,用于单件小批量或大锻件。
②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从而获得与模腔形状、尺寸相同的坯料或零件的加工方法。
分开式模锻和闭式模锻。
2)板料成型一般称为冲压。
分为分离工序和成形工序。
分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。
1.冷冲压:利用在压力机上对金属(或非金属)板料施加压力使其分离或变形,从而得到一定形状,并且满足一定使用要求零件的加工方法。
2、硬化指数n:单向拉伸硬化曲线可写成σ=cεn,其中指数n即为硬化指数。
3、厚向异性系数:指单向拉伸试样宽度应变和厚度应变的比值,即r=εb/εt。
4、冲裁:利用模具使板料产生分离的冲压工序。
3.排样:冲裁件在条料、带料或板料上的布置方法。
5、搭边:排样时零件之间以及零件与条料侧边之间留下的剩料。
6、冲裁力:冲裁过程中凸模对材料的压力。
7、冲裁间隙:冲裁凸、凹模刃口部分尺寸之差称为冲裁间隙。
8、模具中心压力:冲压力合力的作用点。
9、弯曲:将板料、棒料、管料和型材等弯曲成一定形状及角度的零件的成形方法。
10、应力中性层:弯曲主应力分布图中应力不连续()的纤维层。
11、应变中性层:板料弯曲时长度始终不发生变化的纤维层。
12、最小相对弯曲半径:防止外层纤维拉裂的极限弯曲半径,r/t。
min13、弯曲回弹:当弯曲件从模具中取出后,塑性变形保留,弹性变形完全消失,发生弯曲角和弯曲半径与模具不一致的现象。
14、拉深:又称拉延,是利用拉伸模具将冲裁好的平板毛坯压制成各种开口的空心工件,或将已制成的开口空心件加工成其他形状空心件的冲压加工方法。
15、拉深系数:指拉深后圆筒形件的直径与拉深前毛坯的直径之比。
16、变薄拉深:在拉深过程中改变拉深件筒壁的厚度,二毛坯直径变化很小的拉深方法。
17、软模拉深:用橡胶、液体或气体代替刚性凸模或凹模,直接作用于毛坯上进行冲压加工的方法。
18、翻边:沿曲线或直线薄板坯料边部或坯料上预制孔边部窄带区域的材料弯折成竖边的塑性加工方法。
19、缩口:将空心件或管件的口部直径缩小的成形方法。
20、旋压:将板料或毛坯重心加紧在胎具上,由旋压机带动胎模和毛坯一起高速旋转,同时用赶棒压于毛坯,使毛坯产生局部塑性变形并使变形逐步扩展,最后获得所需形状和尺寸的制件。
21、胀形:利用模具是板料拉伸变薄局部表面积增大以获得零件的加工方法。
金属塑性成形原理pdf
金属塑性成形(MPM)是一种成型工艺,它包括冷弯折形、冷拉伸、热弯形、热拉伸、冲压和挤压等,它能够将金属材料塑性变形,从而制造成各种形状和尺寸的部件或零件。
虽然它与铸造有许多相似之处,但具有明显的不同,它更多的是在金属材料弯折或拉伸的基础上进行裁剪和成型。
金属塑性成形的主要原理是材料的塑性变形,当金属或其它金属材料受力时,它会发生塑性变形,例如在冷弯折形时,金属材料会受到压力而不会断裂。
冷拉伸的原理与冷弯折形的原理基本相同,只是它使用的是拉伸力而非压力。
热弯形和热拉伸原理与冷弯折形和冷拉伸的原理大致相同,只是需要加热材料来使其塑性变形。
冲压和挤压是两种机器成型工艺,它们通过对金属材料施加压力而产生细小的型腔,从而制造出不同形状的部件或零件。
金属塑性成形的另一个重要原理是金属温度、应力和应变。
温度变化会影响材料的变形性能,应力和应变是金属材料变形的两个重要参数,它们可以帮助确定材料的力学性能,从而选择合适的成形工艺来完成成型任务。
最后,成形过程中还需要考虑工具的
使用,例如冲床、挤压机、回转机等,这些工具可以应用到金属塑性成形中,使金属材料发挥更好的塑性变形性能。
总之,金属塑性成形技术的主要原理是材料的塑性变形,应力、应变和温度等因素的影响,以及工具的使用。
这些原理可以用来帮助确定正确的成型工艺和工具,从而产生精确度相当高的金属零件。
生活中塑性成型原理的应用1. 引言•塑性成型是一种常见的加工工艺,广泛应用于生活中的各个领域。
•塑性成型原理是通过施加力量使材料发生变形,从而得到所需形状的一种加工方法。
•本文将介绍生活中塑性成型原理的几个应用案例。
2. 塑料制品加工•塑料制品加工是塑性成型最常见的应用之一。
•塑料制品可以通过注塑、挤塑、吹塑等工艺进行成型。
•注塑是将熔融的塑料通过高压射向模具中,然后在冷却后取出成型。
•挤塑是将熔融的塑料通过模具挤出,形成所需形状。
•吹塑是将熔融的塑料注入到空气膨胀的模具中,通过气压使塑料膨胀成所需形状。
•这些塑料制品广泛应用于日常生活中,例如家电、玩具、日用品等。
3. 金属加工•塑性成型在金属加工中也有着重要的应用。
•金属材料可以通过锻造、压延等工艺进行塑性成型。
•锻造是将金属材料加热至一定温度后,施加力量使其发生塑性变形。
•锻造可以制备各种金属零件,例如汽车发动机曲轴、工业机械零件等。
•压延是将金属材料通过辊轧等方式使之发生塑性变形。
•压延广泛应用于金属板材的加工,例如汽车车身板、铝合金门窗等。
4. 玻璃加工•塑性成型在玻璃加工中也起到重要的作用。
•热玻璃成型是一种常见的玻璃加工方法。
•热玻璃成型是将玻璃加热至一定温度后进行塑性变形。
•通过在模具中施加压力,使玻璃变形成所需形状。
•热玻璃成型广泛应用于玻璃器皿、灯饰等制品的生产中。
5. 橡胶制品加工•橡胶制品是另一个常见的塑性成型应用领域。
•橡胶材料可以通过压缩成型、挤出成型等工艺进行加工。
•压缩成型是将橡胶材料放置在模具中,施加压力使其发生压缩变形。
•挤出成型是将熔融的橡胶材料挤出模具,形成所需形状。
•这些橡胶制品广泛应用于汽车、家具、医疗器械等领域。
6. 其他应用•塑性成型在生活中还有许多其他应用。
•例如,面团的搓揉、拉伸过程就是一种塑性变形,通过搓揉和拉伸,面团可以变得更加柔软和有弹性。
•塑料瓶的压缩也是一种塑性变形,通过施加力量可以将塑料瓶压缩成较小体积,方便储存和回收利用。
塑性加工工艺塑性加工工艺是一种将塑料材料加工成各种形状和尺寸的方法。
塑性加工工艺广泛应用于塑料制品的生产中,包括塑料零件、塑料容器和塑料包装等。
首先,塑性加工工艺包括热塑性和热固性两种类型。
热塑性加工工艺是指将塑料材料加热至一定温度后,通过外力使其变形成所需的形状。
这种加工工艺常用于塑料制品的注塑、挤出和吹塑等过程。
热固性加工工艺则是将塑料材料加热至一定温度后,通过化学反应使其固化成为硬质塑料。
这种加工工艺常用于制作热固性塑料制品,如玻璃纤维增强塑料和环氧树脂工件。
其次,塑性加工工艺还包括一系列的步骤和设备。
其中,塑料材料的预处理是塑性加工的重要步骤之一,它包括塑料颗粒的干燥和混合等过程。
此外,塑性加工还需要一系列的设备,如注塑机、挤出机、吹塑机和模具等。
这些设备可以根据不同的塑料制品要求进行调整和控制,以完成塑性加工过程。
再次,塑性加工工艺在实际应用中具有很高的灵活性和适应性。
通过调整加工温度、流量速度和压力等参数,可以控制塑料制品的形状和尺寸。
此外,还可以通过添加填充剂、增塑剂和颜料等辅助材料,改变塑料制品的性能和外观。
最后,塑性加工工艺在现代工业生产中发挥着重要作用。
它具有加工周期短、成本低和生产效率高等优势,广泛应用于汽车、家电、电子、包装和建筑等行业。
随着科学技术的不断发展,塑性加工工艺也在不断创新和改善,以满足人们对塑料制品的多样化需求。
塑性加工工艺在现代工业生产中扮演着重要的角色。
随着科技的进步和人们对塑料制品需求的增加,塑性加工工艺变得越来越复杂和多样化。
下面将继续介绍一些常见的塑性加工工艺。
一种常见的塑性加工工艺是注塑。
注塑是使用注塑机将加热熔化的塑料材料注入模具中,然后在一定的压力和温度下保持一段时间,使塑料快速冷却硬化成型。
注塑工艺适用于制造各种形状和尺寸的塑料零件,如电子产品外壳、汽车零部件和家用电器配件等。
注塑工艺具有生产效率高、成本低、产品质量稳定的优点,因此被广泛应用于各个行业。
3.何谓冷变形、热变形和温变形?答:冷变形:在再结晶温度以下(通常是指室温)的变形。
热变形:在再结晶温度以上的变形。
温变形:在再结晶温度以下,高于室温的变形。
弹性 当作用力P<Pe(弹性极限载荷)时进行卸载,试样恢复原来长度,这种性质称为材料弹性。
弹性变形:当作用在物体上外力取消后,物体的变形能够完全恢复,这种变形称为弹性变形。
塑性变形:当作用在物体上外力取消后物体的变形不能完全恢复而产生的残余变形。
塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力称为塑性。
塑性成形:是指金属材料在一定的外力作用下利用其塑性而使其成形并获得一定力学性能的加工方法也称为塑性加工或压力加工金属成形的特点:1.组织、性能好;2.材料利用率高;3. 尺寸精度较高;4. 生产效率高,适于大批量生产;金属塑性变形的特点:1.不同时;2.不均匀性;3.相互协调性;金属塑性成型的分类:按成形的特点分为块料成形(体积成形)和板料成形。
块料成形(体积成形)块料成形是在塑性成形过程中靠体积转移和分配来实现的。
可分为一次加工和二次加工。
一次加工这是属于冶金工业内的原材料生产的加工方法,可提供棒材、板材、管材、线材等。
包括轧制、挤压和拉拔等。
轧制:轧制是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。
挤压:挤压是在大截面坯料的后端施加一定的压力将坯料通过模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料的成形方法。
(挤压又分正挤压、反挤压和正反复合挤压)拉拔:拉拔是在金属坯料的前端施加一定的拉力,将金属坯料通过模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。
二次加工:为机械制造工业领域内提供零件或坯料的加工方法。
(包括自由锻和模锻,统称为锻造)自由锻:自由锻是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需形状和尺寸的加工方法。
模锻:模锻是将金属坯料放在与成品形状、尺寸相同的模腔中使其产生塑性变形,从而获得与模腔形状、尺寸相同的坯料或零件的加工方法。
金属塑性成型的理论与仿真摘要:金属塑性成型技术是机械冶金、汽车拖拉机、电工仪表、宇航军工、五金日用品等制造业最基本,最古老,亦是极重要的加工手段之一,包括锻、冲、挤、轧,拉、辊、旋、辗等工艺技术。
结合近代科技,金属成形技术正向精密、高效、节能、节材,清洁化生产方向发展,是国家工业发展的最基础工艺技术之一。
本文主要对塑性成型的基本原理、方法以及应用做了综合介绍。
文章还介绍了有限元法处理金属塑性成型过程的问题。
最后针对塑性成形技术的发展提出了一些建议和对该技术在以后的生产中的展望。
关键词:塑性成型原理应用展望引言:金属塑性成型就是利用金属的塑性,在工具及模具的外力作用下来加工制件的少切削或无切削的工艺方法。
由于工艺本身的特点,它虽然有很长的发展历史却又在不断的研究和创新之中,新工艺、新方法层出不穷。
这些研究和创新的基本目的不外乎增加材料塑性、提高成形零件的精度及性能、降低变形力、增加模具使用寿命和节约能源等。
而“塑性成形原理”正是实现这些目的的基础理论知识。
金属塑性成型技术是机械冶金、汽车拖拉机、电工仪表、宇航军工、五金日用品等制造业最基本,最古老,亦是极重要的加工手段之一。
除了这些传统的应用外金属成形技术正向精密、高效、节能、节材,清洁化生产方向发展,是国家工业发展的最基础工艺技术之一一、金属塑性成型机理1、冷态下的塑性成型塑性成形所用的金属材料绝大部分是多晶体,其变形过程较单晶体的复杂得多,这主要是与多晶体的结构特点有关。
多晶体是由许多结晶方向不同的晶粒组成。
每个晶粒可看成是一个单晶体。
晶粒之间存在厚度相当小的晶界。
1.1晶内变形晶内变形的主要方式和单晶体一样为滑移和孪生。
1.1.1滑移当晶体受力时,由于各个滑移系相对于外力的空间位向不同,其上所作用的切应力分量的大小也必然不同。
现设某一晶体作用有由拉力 P引起的拉伸应力σ,其滑移面的法线方向与拉伸轴的夹角为υ,面上的滑移方向与拉伸轴的夹角为λ,通过简单的静力学分析可知,在此滑移方向上的切应力分量为τ=σcosυcosλ令μ=cosυcosλ,称为取向因子。
【收藏】13种最常⽤的塑料成型⼯艺流程塑料成型的⼯艺包括:注塑成型、挤出成型、模压成型、吹塑成型、压延成型、滚塑成型、真空成型(吸塑成型)、浇铸成型(铸塑成型)、搪塑成型、流延成型、发泡成型、传递模塑成型(压注成型)、缠绕成型等本⽂将简单介绍以上塑料成型⽅法的过程、优缺点,以及应⽤的领域。
增加⼤家对成型⼯艺的了解。
1.注塑成型注塑成型⼜称注射成型,是⼗分常⽤的塑料成型⼿法。
将融熔的塑料利⽤压⼒注进塑料制品模具中,随后冷却成型得到想要的部件。
过程:a.合模。
将模具闭合形成注塑的空间。
b.填充。
将融熔的塑料利⽤压⼒注⼊模具中,填充模具型腔的95%后停⽌。
c.保压。
持续施加压⼒,以压实熔体,使成型件结构紧密。
d.冷却。
使成型件冷却到可以脱模为⽌,这个过程占据整个流程70%的时间。
e.冷却脱模。
模具打开,⽤顶杆或脱模板将产品顶出。
卧式注塑机优点:⽣产效率⾼,全程由机器进⾏操作。
由于成型时会对熔体施加压⼒,因此可以⽣产形状复杂的塑件。
对原料的浪费少。
缺点:由于需要均匀冷却,因此限制了塑件的厚度。
模具和注塑机成本⾼,不适合⼩批量⽣产。
应⽤:2.挤出成型挤出成型是⼀种⾼效、连续、低成本的加⼯⽅法。
是指物料通过挤出机料筒和螺杆间的作⽤,边受热边塑化,边被螺杆向前推送。
主要⽤于加⼯各种管材、棒材、板材、单丝等。
过程:a.加料。
将塑料加热成粘流态,在加压的情况下通过螺杆向前推进。
b.挤出。
使塑料通过⼀定形状的料⼝c.冷却。
冷却成型,根据需要进⾏剪裁或切割单螺杆挤出机优点:加⼯⼯艺简单,成本低。
可以实现连续、⾃动化⽣产,效率⾼。
产品均匀,质量⾼。
对材料适应性⾼。
缺点:只能⽣产形状简单的管材、棒材等。
产品往往需要⼆次加⼯成合适的长度。
应⽤:3.模压成型模压成型⼜称为压缩成型。
是先将粉料、粒状塑料放⼊成型模具中。
同时加温,然后合模加压成型。
过程:a.预热预压。
将塑料粉料、颗粒、纤维进⾏预热处理,⼀是为了缩短成型周期。
⼆是⼲燥塑料中的⽔分。
1.注塑是一种工业产品生产造型的方法。
产品通常使用橡胶注塑和塑料注塑。
注塑还可分注塑成型模压法和压铸法。
注射成型机(简称注射机或注塑机)是将热塑性塑料或热固性料利用塑料成型模具制成各种形状的塑料制品的主要成型设备,注塑成型是通过注塑机和模具来实现的。
2.挤出物料通过挤出机料筒和螺杆间的作用,边受热塑化,边被螺杆向前推送,连续通过机头而制成各种截面制品或半制品的一种加工方法。
3.旋转成型又称滚塑成型、旋塑、旋转模塑、旋转铸塑、回转成型等,该成型方法是先将计量的塑料(液态或粉料)到加入模具中,在模具闭合后,使之沿两垂直旋转轴旋转,同时使模具加热,模内的塑料原料在重力和热能的作用下,逐渐均匀地涂布、熔融粘附于模腔的整个表面上,成型为与模腔相同的形状,再经冷却定型、脱模制得所需形状的制品。
4.吹塑也称中空吹塑,是一种发展迅速的塑料加工方法。
热塑性树脂经挤出或注射成型得到的管状塑料型坯,趁热(或加热到软化状态),置于对开模中,闭模后立即在型坯内通入压缩空气,使塑料型坯吹胀而紧贴在模具内壁上,经冷却脱模,即得到各种中空制品。
5.吸塑一种塑料加工工艺,主要原理是将平展的塑料硬片材加热变软后,采用真空吸附于模具表面,冷却后成型,并应用于各行各业的一种技术工艺。
6.模压成型又称压制成型或压缩成型,是先将粉状,粒状或纤维状的塑料放入成型温度下的模具型腔中,然后闭模加压而使其成型并固化的作业.模压成型可兼用于热固性塑料,热塑性塑料和橡胶材料。
7.压延成型将熔融塑化的热塑性塑料通过两个以上的平行异向旋转辊筒间隙,使熔体受到辊筒挤压延展、拉伸而成为具有一定规格尺寸和符合质量要求的连续片状制品,最后经自然冷却成型的方法。
压延成型工艺常用于塑料薄膜或片材的生产。
8.发泡成型是在发泡材料(PVC,PE和PS等)中加入适当的发泡剂,使塑料产生微孔结构的过程。
几乎所有的热固性和热塑性塑料都能制成泡沫塑料,发泡成型已成为塑料加工中一个重要领域。