人教版八年级上册数学乘法公式(提高)巩固练习题与答案及解析
- 格式:pdf
- 大小:103.85 KB
- 文档页数:5
专题01运算能力之乘法公式综合难点专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,为了美化校园,某校要在面积为120平方米的长方形空地ABCD中划出长方形EBKR和长方形QFSD,若两者的重合部分GFHR恰好是一个边长为3米的正方形,>,现将图中阴影部分区域作为花圃,若长方形空地ABCD的长和宽分别为m和n,m n花圃区域AEGQ和HKCS总周长为32米,则m n-的值为()A.2B.3C.4D.5【答案】A【分析】根据花圃区域AEGQ和HKCS总周长为32米,重合部分GFHR恰好是一个边长为3米的正方形,可得m+n=22,再根据长方形面积公式可得mn=120,再根据完全平方公式即可求解.【详解】解:∵花圃区域AEGQ和HKCS总周长为32米,重合部分GFHR恰好是一个边长为3米的正方形,∴2(m-3)+2(n-3)=32,∴m+n=22,∵mn=120,∴(m+n)2=m2+n2+2mn=m2+n2+240=484,∴m2+n2=244,∴(m-n)2=m2+n2-2mn=244-240=4,∵m>n,∴m-n=2.故选:A.【点睛】本题考查了完全平方公式的应用,解题的关键是灵活运用完全平方公式.2.如图有两张正方形纸片A和B,图1将B放置在A内部,测得阴影部分面积为2,图2将正方形AB并列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A和2个正方形B并列放置后构造新正方形如图3,(图2,图3中正方形AB纸片均无重叠部分)则图3阴影部分面积( )A.22B.24C.42D.44【答案】C【分析】由图1可知,阴影部分面积a2﹣b2=2,图2可知,阴影部分面积(a+b)2﹣a2﹣b2=20,进而得到ab=10,由图3可知,阴影部分面积(2a+b)2﹣3a2﹣2b2=a2﹣b2+4ab=2+40=42.【详解】解:设正方形A、B的边长分别为a、b,由图1可知,阴影部分面积a2﹣b2=2,图2可知,阴影部分面积(a+b)2﹣a2﹣b2=20,所以ab=10,由图3可知,阴影部分面积为(2a+b)2﹣3a2﹣2b2=a2﹣b2+4ab=2+40=42.故选:C.【点睛】此题考查完全平方公式在几何图形中的应用,正确理解图形的构成,正确掌握完全平方公式是解题的关键.3.如图,有10个形状大小一样的小长方形①,将其中的3个小长方形①放入正方形②中,剩余的7个小长方形①放入长方形③中,其中正方形②中的阴影部分面积为22,长方形③中的阴影部分面积为96,那么一个小长方形①的面积为()A .5B .6C .9D .10【答案】A【分析】设①小长方形的长为a ,宽为b ,根据正方形阴影面积=正方形面积-3个小长方形面积=22根根据大长方形阴影面积为长为()3+a b ,宽为()3a b +的长方形面积-7个小长方形面积=96列方程求出5ab =即可.【详解】解:设①小长方形的长为a ,宽为b ,根据②正方形边长为+a b ,阴影面积为()2+322a b ab -=,根据③大长方形的长为3+a b ,宽为+3a b ,阴影面积为()()3+3796a b a b ab +-=,∴联立得()()()2+3223+3796a b ab a b a b ab ì-=ïí+-=ïî,整理得222222+32a b ab a b ab ì+-=í+=î①②,解得22=275a b ab ì+í=î,一个小长方形①的面积为5.故选择A .【点睛】本题考查图形阴影面积应用问题,多项式乘法与图形面积,完全平方公式,仔细分析图形,从中找出等量关系,正方形阴影面积=正方形面积-3个小长方形面积=22,大长方形阴影面积为长为()3+a b ,宽为()3a b +的长方形面积-7个小长方形面积=96,列方程组是解题关键.4.利用乘法公式判断,下列等式何者成立?( )A .22224824852+52+=300´B .222248248484800=2-´-C .222248224852++=52300´´D .22224822484848200=-´´-【答案】C【分析】根据完全平方公式的特征进行判断,然后根据公式特点进行计算.【详解】解: A 、222482485252´++不符合完全平方公式的特征且计算错误,完全平方公式的中间一项为224852´´,所以不符合题意;B 、222482484848-´-不符合完全平方公式特征且计算错误,最后一项应为248+,所以不符合题意;C 、()222224822485252248+52300´´++==,所以符合题意;D 、22224822484848200-´´-=不符合完全平方公式特征且计算错误,最后一项应为248+,所以不符合题意.故选:C .【点睛】本题主要考查了完全平方公式的特征,识记且熟练运用完全平方公式:2222a ab b a b ±±+=()是解答问题的关键.二、填空题5.如图,长方形ABCD 的边13BC =,E 是边BC 上的一点,且10BE BA ==,F ,G 分别是线段AB ,CD 上的动点,且BF DG =,现以BE ,BF 为边作长方形BEHF ,以DG 为边作正方形DGIJ ,点H ,I 均在长方形ABCD 内部.记图中的阴影部分面积分别为1S ,2S 长方形BEHF 和正方形DGH 的重叠部分是四边形KILH ,当四边形KILH 的邻边比为3∶4,12S S +的值为________.【答案】7或93125【分析】利用长方形及正方形的性质可求解KI =2DG -10,KH =DG -3,根据当长方形KILH 的邻边的比为3:4可求解DG 的长,再利用DG 的长分别求解AF ,CG ,AJ 的长,进而可求解,注意分类讨论.【详解】解:在长方形ABCD 中,AB =CD =10,AD =BC =13.∵四边形DGIJ 为正方形,四边形BFHE 为长方形,BF =DG ,∴四边形KILH 为长方形,KI =HL =2DG -AB =2DG -10.∵BE =BA =10,∴LG =EC =3,∴KH =IL =DG -LG =DG -3.当长方形KILH 的邻边的比为3:4时,(DG -3):(2DG -10)=3:4,或(2DG -10):(DG -3)=3:4,解得DG =9或315,当DG =9时,AF =CG =1,AJ =4,∴S 1+S 2=AF •AJ +CE •CG =1×4+1×3=7;当DG =315时,AF =CG =195,AJ =345,∴S 1+S 2=AF •AJ +CE •CG =1934193555´+´=93125故答案为7或93125.【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.6.计算:(1)若x 满足(30)(20)10x x --=-则22(30)(20)x x -+-的值为____;(2)如上图,2,4AE CG ==,长方形EFGD 的面积是50,四边形ABCD 和NGDH 以及MEDQ 都是正方形四边形PQDH 是长方形,则图中正方形NFMP 的面积为_______.【答案】120204【分析】(1)设(30-x )=m ,(x -20)=n ,求出mn 和m +n ,利用完全平方公式计算即可;(2)根据正方形ABCD 的边长为x ,AE =2,CG =4,所以DE =x -2,DG =x -4,得到(x -2)(x -4)=50,设x -2=a ,x -4=b ,从而得到ab =50,a -b =(x -2)-(x -4)=2,根据题意求出(a +b )2,即可求出正方形NFMP 的面积.【详解】解:(1)设(30-x)=m,(x-20)=n,∴(30-x)(x-20)=mn=-10,∴m+n=(30-x)+(x-20)=10,∴(30-x)2+(x-20)2,=m2+n2,=(m+n)2-2mn,=102-2×(-10)=120;(2)∵正方形ABCD的边长为x,AE=2,CG=4,∴DE=x-2,DG=x-4,∴(x-2)(x-4)=50,设x-2=a,x-4=b,∴ab=50,a-b=(x-2)-(x-4)=2,则(a+b)2=(a-b)2+4ab=22+4×50=204,∴正方形NFMP的面积为:204,故答案为:(1)120;(2)204.【点睛】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式,进行转化应用.7=_____(直接填写结果).【答案】10n【分析】10n.【详解】==+99 (91)10n=.故答案为:10n.【点睛】本题主要考查算术平方根以及完全平方公式的逆运用,熟练掌握算术平方根以及完全平方公式的逆运用是解决本题的关键.三、解答题8.已知关于x 的二次三项式A 满足2(1)(1)(1)A x x x --+=+.(1)求整式A ;(2)若2342B x x =++,当12x =-时,求B A -的值.【答案】(1)222A x x =+;(2)54B A -=.【分析】(1)直接利用整式的加减运算法则计算得出答案即可;(2)直接利用整式的加减运算法则结合x 的值代入得出答案即可.【详解】解:(1)∵2(1)(1)(1)A x x x --+=+∴2(1)(1)(1)A x x x =+++-22211x x x =+++-222x x =+;(2)∵2342B x x =++,222A x x=+∴()2234222B A x x x x -=++-+2234222x x x x=++--222x x =++2(1)1=++x .当12x =-时,2215(1)11124B A x æö-=++=-++=ç÷èø.【点睛】此题主要考查了整式的加减,正确掌握相关运算法则是解答此题的关键.9.计算:(1)()2354102•2x x x x x -+¸;(2)()()()433223a a b b a a b ---+;(3)()()()323423159x y xy x y -¸-g ;(4)请用简便方法计算:2704696700´-【答案】(1)82x -;(2)228129a ab b --;(3)3445x y ;(4)-16.【分析】(1)先算乘方,再算乘除,最后合并同类项即可;(2)先根据单项式乘以多项式和平方差公式进行计算,再合并同类项即可;(3)先根据积的乘方化简,再从左往右计算即可;(4)先变形,再根据平方差公式进行计算,最后求出答案即可.【详解】解:(1)()2354102•2x x x x x -+¸8884x x x =-+82x =-;(2)()()()433223a a b b a a b ---+()()()432323a a b a b a b =-+-+22241249a ab a b =-+-228129a ab b =--;(3)()()()323423159x y xy x y -¸-g ()()6334227159x y xy x y =-¸-g ()76424059x y x y =-¸-3445x y =;(4)2704696700´-()()270047004700=+´--2270016700=--16=-.【点睛】本题考查了整式的混合运算,能灵活运用知识点进行计算和化简是解此题的关键.10.计算:(1)234110;2x yz xy æö×-ç÷èø(2)221232ab ab ab æö-×ç÷èø;(3)()()()()223523642x x x x x ++-+--;(4)()()2121x y x y -+--.【答案】(1)-5x 3 y 5 z 3;(2)232213a b a b -;(3)18;(4)22441x xy y -+-.【分析】(1)根据单项式乘以单项式的运算法则进行计算即可;(2)根据单项式乘以多项式的运算法则进行计算即可;(3)分别根据多项式乘以多项式和单项式乘以单项式运算法则去括号,然后外挂;(4)运用平方差公式进行计算即可得到答案.【详解】解:()12341102x yz xy æö×-ç÷èø()()2431102x x y y z éùæö=´-××ç÷êúèøëû3535x y z =-.()2221232ab ab ab æö-×ç÷èø()22112322ab ab ab ab =×+-×232213a b a b =-.()3()()()()223523642x x x x x ++-+--2261061061248x x x x x x =+++---+=18()4()()2121x y x y -+--()()2121x y x y éùéù=-+--ëûëû2(2)1x y =--22441x xy y =-+-.【点睛】此题主要考查了整式的混合运算,正确掌握相关运算法则是解答此题的关键.11.对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式.(1)对于等式()()22232a b a b a ab b ++=++,可以由图1进行解释:这个大长方形的长为_____,宽为_____,用长乘以宽可求得其面积,同时,大长方形的面积也等于3个长方形和3个正方形的面积之和.(2)如图2,试用两种不同的方法求它的面积,你能得到什么数学等式?方法1(从整体角度):_________;方法2(从局部角度:6个长方形和3个正方形):_____________;数学等式:______________________.(3)利用(2)中得到的数学等式,解决下列问题:已知7a b c ++=,22219a b c ++=,求ab bc ac ++的值.【答案】(1)(a +2b ),(a +b );(2)(a +b +c )2,a 2+b 2+c 2+2ab +2bc +2ac ,(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ;(3)15【分析】(1)根据图形直接得出长为(a +2b ),宽为(a +b );(2)整体上是一个边长为(a +b +c )的正方形,各个部分的面积和为a 2+b 2+c 2+2ab +2bc +2ac ,可得等式;(3)将(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,变形为(a +b +c )2-a 2-b 2-c 2=2ab +2bc +2ac ,再整体代入求值即可.【详解】解:(1)由图形直观得出,长为:(a +2b ),宽为(a +b ),故答案为:(a +2b ),(a +b );(2)方法1(从整体角度):(a +b +c )2,方法2(从局部角度:6个长方形和3个正方形):a 2+b 2+c 2+2ab +2bc +2ac ,因此有数学等式:(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ;(3)由(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac 得,2ab +2bc +2ac =(a +b +c )2-(a 2+b 2+c 2),∵a +b +c =7,a 2+b 2+c 2=19,∴2ab +2bc +2ac =49-19=30,∴ab +bc +ac =15.【点睛】本题考查完全平方公式的几何背景,因式分解以及多项式乘以多项式的计算法则,掌握公式特征和适当变形是正确应用的前提.12.某公园对一个边长为a (a >1)的正方形花坛进行改造,由于占地需要,正方形花坛南北方向需要缩短1米,使其形状成为长方形.为了使花坛中的绿植面积不变,公园决定将花坛向东侧扩展,使得到的长方形面积和原来正方形的面积相等.(1)小明说:这太简单了,把正方形南北方向减少1米,在花坛东侧增加1米就行了.这样得到的长方形的周长和面积与原来正方形的周长和面积都相等.你认为小明说的对吗?请你说明理由.(2)如果原来正方形的花坛边长是5米,在只保证面积不变的情况下,请你计算出改造后,向东扩展了多少米?(3)如果正方形的花坛边长是a 米,在只保证面积不变的情况下,请你用代数式表示出改造后长方形的长.【答案】(1)小明的说法不对,理由见解析;(2)向东扩展54米;(3)2a a 1-【分析】(1)理由平方差公式求出小明所得的图形面积,与原图形面积相比较即可得到答案;(2)设向东扩展x 米,根据题意得方程2(51)(5)5x -+=,解方程即可;(3)利用长方形的面积公式计算即可【详解】解:(1)小明的说法不对,理由如下:由题意得:22(1)(1)1a a a a -+=-<,∴小明的说法不对;(2)设向东扩展x 米,由题意得2(51)(5)5x -+=,解得x =54,答:向东扩展54米;(3)改造后长方形的长为2a a 1-【点睛】此题考查了平方差计算公式与图形面积,一元一次方程的实际应用,正确理解题意是解题的关键13.对于实数a ,b ,c 定义一种新运算,规定22(,,)2F a b c a b c=++例如:22(1,2,3)122311F =++´=(1)求(2,3,1)F ;(2)如图,在矩形ABFG 和矩形BCDE 中,2AB x =,4AG x =,2BC y =,CD y =,若25x y +=,22(3,3,4)40F x y x y x y +---=.连接AF 和AD ,求图中阴影部分的面积;(3)若,2,2)2F y xy -=-,求x y +的值.【答案】(1)15;(2)754;(3【分析】(1)根据新定义运算法则计算即可;(2)根据新定义运算法则列出方程,得到22420x y +=,运用完全平方公式可得54xy =,再把这两个条件代入阴影面积的代数式可得;(3)根据新定义运算法则列出方程,配方得22(2)(0x y x -+=,根据非负数性质可得.【详解】(1)(2,3,1)F =22221531++´=故答案为:15(2)22(3,3,4)40F x y x y x y +---=Q 2222(3)(3)2(4)0x y x y x y ++-+--=22420x y \+=又25x y +=Q 2(2)25x y +=224425x xy y ++=54xy \=22118224(22)22S x y x x y x y =+-××-+阴224S x y xy=+-阴754S =阴(3),2,2)2F y xy -=-222442x y xy +--=-222440x xy y x -++-=22(2)(0x y x -+=x =,y =x y +=【点睛】考核知识点:新定义运算、乘法公式.熟练掌握完全平方公式是关键.14.现定义运算,对于任意有理数a ,b ,都有()(),()().a b a a b b a b a b b a b a a b Ä=+-£ìíÄ=+->î如:232(23)37Ä=´+-=,522(52)59Ä=´+-=.(1)若(2)(3)x x x x Ä+>Ä-,求x 的取值范围;(2)有理数a ,b 在数轴上的位置如图所示,计算:[]()(2)()(22)a b b b a a b -Ä--Ä-.【答案】(1)x 的取值范围是1x >;(2)2234a b b ab a ---+-.【分析】(1)根据新定义的运算方法进行计算即可,(2)在理解新定义运算()(),()().a b a a b b a b a b b a b a a b Ä=+-£ìíÄ=+->î的意义和转换方法,然后类推计算即可.【详解】解:(1)∵x <x +2,x >x -3,∴22(2)(22)(2)22222x x x x x x x x x x Ä+=+-+=+--=+-,2(3)(3)(23)2109x x x x x x x Ä-=---=-+.∵(2)(3)x x x x Ä+>Ä-,∴22222109x x x x +->-+.∴1111x >.∴1x >.x 的取值范围是1x >.(2)∵a -b <0,2b >0,b -a >0,2a -2b <0,∴a -b <2b ,b -a >2a -2b .[]()(2)()(22)a b b b a a b -Ä--Ä-[]()(2)2(22)(22)()a b a b b b a b b a a b b a =--+----+---[]()()2(22)()a b a b b a b a b b a =-+-----+22222242a b b a ab b b a éù=----+-+ëû22222242a b b a ab b b a=---+-+-2234a b b ab a =---+-.【点睛】此题主要考查了整式的四则运算以及新定义运算的意义,理解新定义的运算方法是正确解答的前提.15.如图1,用4个相同边长是x 、y 的长方形和中间一个小正方形组成的大正方形.(1)若大正方形的面积为36,小正方形的面积为4,则x y -值为__________;则x y +的值为__________;(2)若小长方形两边长为9m -和4m -,则大正方形的边长为___________;若满足(9)(4)4m m --=,则22(9)(4)m m -+-的值为__________;(3)如图2,正方形ABCD 的边长是c ,它由四个直角边长分别是a ,b 的直角三角形和中间一个小正方形组成的,猜想a ,b ,c 三边的数量关系,并说明理由.【答案】(1)2,6;(2)5,17;(3)222+=a b c ,理由见解析【分析】(1)大正方形的边长为x +y ,小正方的边长为x -y ,由面积可求出正方形的边长;(2)小长方形两边之和为正方形的边长,再由完全平方公式求解即可;(3)根据大、小正方形和4个直角三角形的面积之间的关系得出结论.【详解】解:(1)∵大正方形的面积为36,小正方形的面积为4,∴()236x y +=,()24x y -=,又∵0x y >>,∴6x y +=,2x y -=,故答案为:2,6;(2)大正方形的边长为945x y m m +=-+-=,∵(9)(4)4m m --=,∴[]2222(9)(4)(9)(4)2(9)(4)5817m m m m m m -+-=-+----=-=,故答案为:5,17;(3)a ,b ,c 三边的数量关系为222+=a b c .理由如下:由拼图可得,小正方形的边长为-a b ,由大正方形的面积等于小正方形的面积与4个直角三角形的面积和可得,221()42a b ab c -+´=,即222+=a b c .【点睛】本题考查完全平方公式的几何背景,理清各个图形面积之间的关系是解决问题的关键,用代数式表示各个部分的面积是得出结论的前提.16.某同学用如图所示不同颜色的正方形与长方形纸片拼成了一个如图所示的正方形.(1)①请用两种不同的方法求图中阴影部分的面积.方法1:;方法2: .②以上结果可以验证的乘法公式是 .(2)根据上面的结论计算:①已知m +n =5,2211m n +=,求mn 的值.②已知(2019−m )(2020−m )=1010,求()()222020--2019m m +的值.【答案】(1)①22a b +,()2-2a b ab +;②22a b +=()2-2a b ab +;(2)①7;②2021【分析】(1)①方法一:阴影部分面积为两个小正方形面积之和,分别求出两个小正方形面积然后相加即可;方法二:阴影部分面积等于大正方形面积减去两个空白长方形面积,分别求出面积然后进行计算即可;②根据完全平方公式可以很容易得出答案;(2)①根据完全平方公式进行相应的计算即可得到答案;②根据完全平方公式进行相应的计算即可得到答案.【详解】解:(1)①方法一:由题意可知阴影部分面积为两个小正方形面积之和∴22S a b =+阴影方法二:由阴影部分面积等于大正方形面积减去两个空白长方形面积∴()()222S a b ab ab a b ab=+--=+-阴影②∵()22222-222a b ab a b ab ab a b +=++-=+∴()222-2a b ab a b +=+即验证的乘法公式为()222-2a b ab a b +=+(2)①∵m +n =5∴()225m n +=∵2211m n +=∴()()222-225-1114m n m n mn ++===∴mn =7②∵(2019−m )(2020−m )=1010,∴()()()()()2222020--10192020--2019-22020--2019m m m m m m +=+()()2122020-2019-m m =+1210102021=+´=【点睛】本题主要考查了完全平方公式的运用,解题的关键在于能够熟练掌握相关公式.17.数学课外活动小组的同学在学习了完全平方公式之后,针对两个正数之和与这两个请阅读以下探究过程并解决问题.猜想发现:由5510+==;112333+==;0.40.40.8+==;1525+>=;0.2 3.2 1.6+>=;111282+>=猜想:如果0a >,0b >,那么存在a b +³a b =时等号成立).猜想证明:∵20³∴①0=,即a b =时,0a b -+=,∴a b +=②0¹,即a b ¹时,0a b ->,∴a b +>综合上述可得:若0a >,0b >,则a b +³a b =时等号成立).猜想运用:(1)对于函数()10y x x x=+>,当x 取何值时,函数y 的值最小?最小值是多少?变式探究:(2)对于函数()133y x x x =+>-,当x 取何值时,函数y 的值最小?最小值是多少?拓展应用:(3)疫情期间、为了解决疑似人员的临隔离问题.高速公路榆测站入口处,检测人员利用检测站的一面墙(墙的长度不限),用63米长的钢丝网围成了9间相同的长方形隔离房,如图.设每间离房的面积为S (米2).问:每间隔离房的长、宽各为多少时,可使每间隔离房的面积S 最大?最大面积是多少?【答案】(1)1x =,函数y 的最小值为2;(2)4x =,函数y 的最小值为5;(3)每间隔离房长为72米,宽为218米时,S 的最大值为214716米【分析】猜想运用:根据材料以及所学完全平方公式证明求解即可;变式探究:将原式转换为1333y x x =+-+-,再根据材料中方法计算即可;拓展应用:设每间隔离房与墙平行的边为x 米,与墙垂直的边为y 米,依题意列出方程,然后根据两个正数之和与这两个正数之积的算术平方根的两倍之间的关系探究最大值即可.【详解】猜想运用:∵0x >,∴10x>,∴12y x x =+³=,∴当1x x=时,min 2y =,此时21x =,只取1x =,即1x =时,函数y 的最小值为2.变式探究:∵3x >,∴30x ->,103x >-,∴133353y x x =+-+³=-,∴当133x x =--时,min 5y =,此时()231x -=,∴14x =,22x =(舍去),即4x =时,函数y 的最小值为5.拓展应用:设每间隔离房与墙平行的边为x 米,与墙垂直的边为y 米,依题意得:91263x y +=,即3421x y +=,∵30x >,40y >,∴34x y +³,即21≥,整理得:14716xy ≤,即14716S ≤,∴当34x y =时max 14716S =,此时72x =,218y =,即每间隔离房长为72米,宽为218米时,S 的最大值为214716米.【点睛】本题主要考查根据完全平方公式探究两个正数之和与这两个正数之积的算术平方根的两倍之间的关系,熟练运用完全平方公式并参照材料中步骤进行计算是解题关键,属于创新探究题.18.有些同学会想当然地认为333()x y x y -=-.(1)举出反例说明该式不一定成立;(2)计算3()x y -;(3)直接写出当x 、y 满足什么条件,该式成立.【答案】(1)见解析;(2)33222()33x y x x y xy y -=-+-;(3)x y=【分析】(1)选一组使等式不成立的x 、y 值即可;(2)利用多项式乘以多项式的运算法则进行推导计算即可;(3)将x=y 代入等式中即可解答.【详解】解:(1)令2x =,1y = ,(反例不唯一)∵ 3()1x y -=,337x y -=, 17¹,∴该等式不一定成立;(2)3()x y -= 2()()y y x x ×--=22(2)()x xy y x y -+×-=322233x x y xy y -+-,即33222()33x y x x y xy y -=-+-(3)将x y =代入333()x y x y -=-中,得: 3()0x y -=,33330x y x x -==-,0=0,∴当x 、y 满足x=y 时,该式成立.【点睛】本题考查整式的混合运算、完全平方公式,熟练掌握整式的混合运算是解答的关键.19.计算:(1)8x 2y 2÷2y 2;(2)(﹣2a 2)3+4a 5•a ;(3)(x +2y )2﹣2y (2x +y );(4)249922a a a a a --æö-¸ç÷--èø;(5)2323222221a a a a a a a a a a ++¸--+--;(6)23221x xy y x y x y x y æöæö--+¸-ç÷ç÷++èøèø.【答案】(1)4x 2;(2)-4a 6;(3)x 2+2y 2;(4)33a a -+;(5)21a ;(6)y x -.【分析】(1)根据单项式除以单项式可以解答本题;(2)根据积的乘方、单项式乘单项式和合并同类项可以解答本题;(3)根据完全平方公式、单项式乘多项式可以解答本题;(4)根据分式的减法和除法可以解答本题;(5)根据分式的除法和减法可以解答本题;(6)根据分式的减法和除法可以解答本题.【详解】解:(1)8x 2y 2÷2y 2=4x 2;(2)(-2a 2)3+4a 5•a=(-8a 6)+4a 6=-4a 6;(3)(x +2y )2-2y (2x +y )=x 2+4xy +4y 2-4xy -2y 2=x 2+2y 2;(4)2499(22a a a a a ---¸--(2)(49)22(3)(3)a a a a a a a ----=×-+-2249(3)(3)a a a a a --+=+-2(3)(3)(3)a a a -=+-33a a -=+;(5)2323222221a a a a a a a a a a ++¸--+--22(1)(1)(1)2(1)(1)(1)a a a a a a a a a a ++-=×--+-212(1)(1)a a a a a +=---212(1)a a a a +-=-21(1)a a a -=-21a =;(6)23221x xy y x y x y x y æöæö--+¸-ç÷ç÷++èøèø23(2)()2()x xy x y x y y x y x y x y---+-+=¸++2223222x xy x xy xy y x y x y y x y---+++=×+--222x xy y y x-+=-2()y x y x-=-y x =-.【点睛】本题考查分式的混合运算、整式的混合运算,解答本题的关键是明确它们各自的计算方法.20.长方形ABCD 和正方形CEFH ,按如图所示的方式叠放在一起,且长方形ABHG 与长方形DEFG 的周长相等(其中点D 在EC 上,点B 在CH 的延长线上,AD 和FH 相交于点G ),正方形CEFH 的边长为m ,长方形ABCD 的宽为x ,长为y (x <m <y ).(1)写出x ,y ,m 之间的等量关系;(2)若长方形ABHG 的周长记作C 1,长方形DEFG 的周长记作C 2.①求C 1+C 2的值(用含y 、m 的代数式表示);②若关于y 的不等式C 1+C 2<10-2m 的正整数解只有2个,求m 的取值范围;(3)若长方形ABHG 的面积记作S 1,长方形DEFG 的面积记作S 2,试比较2S 2与S 1的大小,并说明理由.【答案】(1)2x +y =3m ;(2)①2m +2y ;②1≤m <32;(3)2S 2>S 1【分析】(1)根据长方形ABHG 与长方形DEFG 的周长相等列式求解即可;(2)①把长方形ABHG 与长方形DEFG 的周长相加整理即可;②根据C 1+C 2<10+2m 列式求解;(3)分别表示出S 1,S 2,然后用作差法比较;【详解】解:(1)长方形ABHG 的周长=2x +2(y -m )=2x +2y -2m ,长方形DEFG 的周长=2m +2(m -x )=4m -2x ,∵长方形ABHG 与长方形DEFG 的周长相等,∴2x+2y-2m=4m-2x,∴2x+y=3m;(2)①C1+C2=2x+2y-2m+4m-2x=2m+2y;②由C1+C2<10-2m,得2m+2y<10-2m,∴y<5-2m,∵C1+C2<10-2m的正整数解只有2个,∴2<5-2m≤3,∴1≤m<32;(3)∵S1=x(y-m)=xy-xm,S2=m(m-x)=m2-mx,∴2S2-S1= 2m2-2mx- xy+xm,∵2x+y=3m∴y=3m-2x∴2S2-S1=2m2-2mx- x(3m-2x)+xm=2m2-4mx+2x2=2(m-x)2,∵x<m<y,∴2(m-x)2>0,∴2S2>S1.【点睛】本题考查了整式混合运算的应用,解一元一次不等式,根据题意正确列出算式是解答本题的关键.21.若一个正整数m能表示为两个正整数a,b的平方和,则称m为“方和数”.(1)100 “方和数”,110 “方和数”;(填写“是”或“不是”)(2)以下两个判断,正确选项的序号是 .①两个“方和数”的和是“方和数”;②两个“方和数”的积是“方和数”.【答案】(1)是,不是;(2)②【分析】(1)根据“方和数”的概念计算求解;(2)①举反例进行分析说明;②根据方和数的概念,结合完全平方公式进行计算求解.【详解】解:(1)100=36+64=62+82,∴100是“方和数”,110不能写成两个正整数的平方和的形式,∴110不是“方和数”,故答案为:是,不是;(2)①两个“方和数”的和不一定是“方和数”,比如:2=12+12,13=22+32,∴2和13都是“方和数”,但2+13=15,而15不能写成两个正整数的平方和的性质,∴15不是“方和数”,故①错误;②设两个方和数分别为m ,n ,设m =a 2+b 2,n =c 2+d 2(a ,b ,c ,d 均为正整数),∴mn =(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=a 2c 2+a 2d 2+b 2c 2+b 2d 2+2abcd -2abcd=(ac +bd )2+(ad +bc )2,∴mn 是“方和数”,故②正确,故答案为:②.【点睛】本题属于新定义题目,考查有理数的乘方运算,理解题意,掌握完全平方公式的结构特点是解题关键.22.通过课堂的学习知道,我们把多项式222a ab b ++及222a ab b -+叫做完全平方式,如果一个多项式不是完全平方式,我们常做如下变形:例如()22223214(1)4x x x x x +-=++-=+-,()2222462232(1)8x x x x x +-=+-=+-,像这样先添加一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称之为配方法,配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值、最小值等等,如:因为222462(1)8x x x +-=+-,可知当1x =-时,2246x x +-的最小值是8-.请阅读以上材料,并用配方法解决下列问题:(1)因式分解:268x x ++;(2)已知a 是任何实数,若(23)M a =-(31)a -,3222N a a æö=--ç÷èø,通过计算判断M 、N的大小关系;(3)如图,用一段长为20米的篱笆围成一个长方形菜园,菜园的一面靠墙,墙长为8米.设与墙壁垂直的一边长为x 米,①试用x 的代数式表示菜园的面积;②求出当x 取何值时菜园面积最大,最大面积是多少平方米?【答案】(1)()()42x x ++;(2)M >N ;(3)①2220x x -+;②当x =6时,菜园面积最大,最大面积为48平方米【分析】(1)根据完全平方公式把原式变形,根据平方差公式进行因式分解;(2)计算M -N 并配方,根据结果判断即可;(3)①根据长方形的面积公式计算即可;②将①中结果进行配方,根据结果利用非负数的性质.【详解】解:(1)2268691x x x x ++=++-=()231x +-=()()3131x x +++-=()()42x x ++;(2)M -N =()()32331222a a a a éùæö-----ç÷êúèøëû=()()32331222a a a a æö----+ç÷èø=226293232a a a a a --+-++=2485a a -+=()242145a a -+-+=()2411a -+>0,∴M >N ;(3)①由题意可得:菜园的面积=()202x x -=2220x x -+;②由题意可得:0<20-2x ≤8,解得:6≤x <10,2220x x -+=()2210x x --=()22102550x x --++=()22550x --+,∴当x =6时,菜园面积最大,最大面积为48平方米.【点睛】本题考查的是完全平方公式的应用,非负数的性质,将多项式配方,再利用非负数的性质解答是解题的关键.23.数学家波利亚说过:“为了得到一个方程,我们必须把同一个量以两种不同的方法表示出来,即将一个量算两次,从而建立相等关系,”这就是“算两次”原理,也称为富比尼(G .Fubini )原理,例如:对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.(教材片段):计算如图1的面积,把图1看做一个大正方形,它的面积是()2a b +,如果把图1看做是由2个长方形和2个小正方形组成的,它的面积为222a ab b ++,由此得到:()2222a b a ab b +=++.(1)如图2,用不同的代数式表示大正方形的而积,由此得到的等式为__________;(用a 、b 表示)(2)利用上面结论解决问题:若6,2x y xy +==,则()2x y -=__________;(3)如图3,用不同的代数式表示大正方形的面积,由此得到的等式为__________;(用a 、b 、c 表示)(4)利用上面结论解决问题:已知7,14a b c ab bc ac ++=++=,则222a b c ++=__________;(5)如图4,用不同的代数式表示大正方形的面积(里面是边长为c 的小正方形),由此得到的等式为__________;(用a 、b 、c 表示)(6)若221,2,1a n b n c n =-==+,请通过计算说明a 、b 、c 满足上面结论.【答案】(1)()()224b a b a ab +=-+;(2)28;(3)()2222222a b c a b c ac ab bc ++=+++++;(4)21;(5)222+=a b c ;(6)见解析【分析】(1)分别利用整体和部分和两种方法表示出面积即可得到结论;(2)由(1)得到()()224x y x x y y +=-+,再将已知等式代入计算即可;(3)分别利用整体和部分和两种方法表示出面积即可得到结论;(4)根据(3)中结论,将已知等式代入计算即可;(5)分别利用整体和部分和两种方法表示出面积即可得到结论;(6)分别计算出2a ,2b ,2c ,根据整式的混合运算法则可得结论.【详解】解:(1)大正方形整体表示面积为:()2a b +,大正方形部分和表示面积为:()24b a ab -+,∴由此可得等式为:()()224b a b a ab +=-+;(2)由(1)可得:()()224x y x x y y +=-+,∴x +y =6,xy =2,∴()22642x y =-+´,∴()236828x y -=-=;(3)大正方形面积整体表示为:()2a b c ++,大正方形面积部分和表示为:222222a b c ac ab bc +++++,故由此可得公式为:()2222222a b c a b c ac ab bc ++=+++++;(4)∵a +b +c =7,ab +bc +ac =14,∴由(3)可得:22227214a b c =+++´,∴222492821a b c ++=-=;(5)由题可得:大正方形面积整体表示为:()2a b +,大正方形面积部分和表示为:221422c ab c ab +´=+,∴()222a b c ab +=+,∴222+=a b c ;(6)∵21a n =-,2b n =,21c n =+,∴()22242121a n n n =-=-+,()22224b n n ==,()22242121c n n n =+=++,∴2242242221421a b n n n n n c +=-++=++=,∴222+=a b c .【点睛】本题考查了完全平方公式的几何背景,整式的混合运算,解题的关键是读懂题意,用不同的方式表示出同一个图形的面积,解题时注意数形结合思想的运用.24.同学们,在数学课本第9章《整式乘法与因式分解》里学习了整式乘法的完全平方公式,还记得它是如何被发现的吗?(苏科版教材P75页)计算如图1的面积,把图1看做一个大正方形,它的面积是2()a b +,如果把图1看做是由2个长方形和2个小正方形组成的,它的面积为222a ab b ++,由此得到:222()2a b a ab b +=++.(类比探究(1)):如图2,正方形ABCD 是由四个边长分别是a ,b 的长方形和中间一个小正方形组成的,用不同的方法对图2的面积进行计算,你发现的等式是_______(用a ,b 表示)(应用探索结果解决问题):已知:两数x ,y 满足7x y +=,6xy =,求x y -的值.(类比探究(2)):如图3,正方形ABCD 的边长是c ,它由四个直角边长分别是a ,b 的直角三角形和中间一个小正方形组成的,对图3的面积进行计算,你发现的式子是_________.(用a ,b ,c 表示,结果尽可能化简)(应用探索结果解决问题):正方形ABCD 的边长是c ,它由四个直角边长分别是a ,b 的直角三角形和中间一个小正方形组成的,当22103,3a xb y ==时,4c =;当232a x =,22b y =时,3c =,求x ,y 的值.【答案】[类比探究(1)]:22()()4a b a b ab +=-+,±5;[类比探究(2)]:222+=a b c ;[应用探索结果解决问题]:23x y =ìí=î.【分析】[类比探究(1)]根据正方形ABCD 的面积2()a b =+,正方形ABCD 的面积2()4a b ab -+,即可得出22()()4a b a b ab +=-+;据此可得x y -的值.[类比探究(2)]根据正方形ABCD 的面积2c =,正方形ABCD 的面积21()42a b ab -+´,即可得出222+=a b c ;[应用探索结果解决问题]根据222+=a b c 可得关于x ,y 的方程组,求得x ,y 的值.【详解】解:(1)如图2,正方形ABCD 的面积2()a b =+,正方形ABCD 的面积2()4a b ab -+,22()()4a b a b ab \+=-+;22()()4x y x y xy +=-+Q ,且7x y +=,6xy =,249()24x y \=-+,即2()25x y -=,x y \-的值为5±;(2)如图3,正方形ABCD 的面积2c =,正方形ABCD 的面积21()42a b ab -+´,221()42c a b ab \=-+´,即222+=a b c ,Q 当23a x =,2103b y =时,4c =;当232a x =,22b y =时,3c =,\1031633292x y x y ì+=ïïíï+=ïî,解得23x y =ìí=î.【点睛】本题主要考查了完全平方公式的几何背景以及解二元一次方程组,解决问题的关键是运用面积法得出完全平方公式:(a +b )2=a 2+2ab +b 2.解题时注意数形结合思想的运用.25.(知识生成)通常情况下,通过用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.如图1,在边长为a 的正方形中剪掉一个边长为b 的小正方形()a b >.把余下的部分沿虚线剪开拼成一个长方形(如图2).图1中阴影部分面积可表示为:a 2-b 2,图2中阴影部分面积可表示为(a +b )(a -b ),因为两个图中的阴影部分面积是相同的,所以可得到等式:a 2-b 2=(a +b )(a -b );(拓展探究)图3是一个长为2a ,宽为2b 的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图4的形状拼成一个正方形.(1)用两种不同方法表示图4中阴影部分面积:方法1: ,方法2: ;(2)由(1)可得到一个关于(a +b )2、(a -b )2、ab 的的等量关系式是 ;(3)若a +b =10,ab =5,则(a -b )2= ;(知识迁移)(4)如图5,将左边的几何体上下两部分剖开后正好可拼成如右图的一个长方体.根。
2022-2023学年人教版八年级数学上册《14.2乘法公式》自主提升训练题(附答案)一.选择题1.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长为2b的小正方形后,再将剩下的三块拼成一个矩形,则这个矩形的面积为()A.9a2﹣4b2B.3a+2b C.6a2+2b2D.9a2﹣6ab2.下列运算中,可用平方差公式计算的是()A.(2x+y)(2x+y)B.(﹣x+y)(x﹣y)C.(﹣x+2y)(﹣2y﹣x)D.(x+y)(﹣x﹣y)3.计算:(x+2y﹣3)(x﹣2y+3)=()A.(x+2y)2﹣9B.(x﹣2y)2﹣9C.x2﹣(2y﹣3)2D.x2﹣(2y+3)2 4.下列各式,不能用平方差公式化简的是()A.B.(﹣a+2b)(a﹣2b)C.(c﹣d)(d+c)D.5.计算:=()A.B.C.D.6.如果x2+2mx+9是一个完全平方式,则m的值是()A.3B.±3C.6D.±67.如图,一块直径为2a+2b的圆形钢板,从中挖去直径分别为2a与2b的两个圆,已知剩下钢板的面积与一个长为a的长方形面积相等,则这个长方形的宽为()A.2πb B.2b C.2πD.πb8.已知a+b=6,ab=﹣2,则a2+b2的值是()A.36B.40C.42D.329.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.1210.若x+y=﹣4,xy=3,则x2+y2的值是()A.4B.9C.10D.1611.图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()A.(m+n)2﹣(m﹣n)2=4mn B.(m+n)2﹣(m2+n2)=2mnC.(m﹣n)2+2mn=m2+n2D.(m+n)(m﹣n)=m2﹣n2二.填空题12.点(﹣3,4)与点(a2,b2)关于y轴对称,则(a+b)(a﹣b)=.13.(3+1)(32+1)(34+1)(38+1)(316+1)=.14.等式(﹣x﹣y)()=x2﹣y2中,括号内的多项式为.15.若m2﹣n2=6,且m﹣n=3,则m+n=.16.阅读下文,寻找规律.计算:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4….(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)=.(2)根据你的猜想,计算:1+3+32+33…+3n=.(其中n是正整数)17.若a2+b2=10,ab=﹣3,则(a﹣b)2=.18.已知(a+b)2=2019,(a﹣b)2=2015,则ab=.19.若a﹣=,则a2+值为.20.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a﹣b)5=.三.解答题21.计算:(2x﹣2)(x+1)﹣(x﹣1)2﹣(x+1)222.已知x+y=3,xy=2,求下列各式的值.(1)x2+y2;(2)(x﹣1)(y﹣1).23.利用乘法公式解决下列问题:(1)若x﹣y=8,xy=40.则x2+y2=;(2)已知,若x满足(25﹣x)(x﹣10)=﹣15,求(25﹣x)2+(x﹣10)2值.24.原有一块长方形绿地,现进行如下改造:将长减少3m,将宽增加3m,改造后得到一块正方形绿地,它的面积是原长方形绿地面积的2倍,求改造后正方形绿地的边长.25.已知多项式A=(x+2)2+(x+2)(1﹣x)﹣3.(1)化简多项式A;(2)若(x+1)2=5,求A的值.26.乘法公式的探究及应用.(1)如图1,是将图2阴影部分裁剪下来,重新拼成的一个长方形,面积是;如图2,阴影部分的面积是;比较图1,图2阴影部分的面积,可以得到乘法公式;(2)运用你所得到的公式,计算下列各题:①103×97;②(2x+y﹣3)(2x﹣y+3).27.若x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x﹣9)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(4﹣x)2+(x﹣9)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17.请仿照上面的方法求解下面的问题:若x满足(x﹣2018)2+(x﹣2021)2=31,求(x﹣2018)(x﹣2021)的值.参考答案一.选择题1.解:∵阴影部分面积=9a2﹣4b2,∴将阴影部分的三块拼成一个矩形,则这个矩形的面积为9a2﹣4b2,故选:A.2.解:(﹣x+2y)(﹣2y﹣x)=(﹣x+2y)(﹣x﹣2y)=(﹣x)2﹣(2y)2=x2﹣4y2,故选:C.3.解:原式=[x+(2y﹣3)][x﹣(2y﹣3)]=x2﹣(2y﹣3)2故选:C.4.解:A、(a+b)(b﹣a)=(b+a)(b﹣a),可以利用平方差公式化简,不合题意;B、(﹣a+2b)(a﹣2b)=﹣(a﹣2b)(a﹣2b),不能用平方差公式化简,符合题意;C、(c﹣d)(d+c)=(c﹣d)(c+d),可以利用平方差公式化简,不合题意;D、(a+3b)(3b﹣a)可以利用平方差公式化简,不合题意;故选:B.5.解:原式=y2﹣y+,故选:A.6.解:∵x2+2mx+9是一个完全平方式,∴2m=±6,∴m=±3,故选:B.7.解:圆形钢板的面积==π(a+b)2;两个小圆的面积==πa2+πb2;∴剩下钢板的面积=π(a+b)2﹣(πa2+πb2)=2πab;∴长方形的宽=;故选:A.8.解:∵(a+b)2=a2+2ab+b2,a+b=6,ab=﹣2,∴a2+b2=(a+b)2﹣2ab=36﹣2×(﹣2)=40,故选:B.9.解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.10.解:∵x+y=﹣4,xy=3,∴x2+y2=(x+y)2﹣2xy=(﹣4)2﹣2×3=10,故选:C.11.解:(m+n)2﹣(m2+n2)=2mn.故选:B.二.填空题12.解:∵点(﹣3,4)与点(a2,b2)关于y轴对称,∴a2=3,b2=4.∴(a+b)(a﹣b)=a2﹣b2=3﹣4=﹣1.故答案为:﹣1.13.解:(3+1)(32+1)(34+1)(38+1)(316+1)=(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)=(316﹣1)(316+1)=.故答案为.14.解:根据平方差公式可得(﹣x﹣y)(﹣x+y)=x2﹣y2,故答案为:﹣x+y.15.解:m2﹣n2=(m+n)(m﹣n)=3(m+n)=6;故m+n=2.16.解:(1)(1﹣x)(1+x+x2+…+x n)=1﹣x n+1;(2)1+3+32+…+3n=﹣(1﹣3)(1+3+32+33…+3n)=﹣.故答案为:(1)1﹣x n+1,(2)﹣.17.解:∵(a﹣b)2=a2﹣2ab+b2,a2+b2=10,ab=﹣3,∴(a﹣b)2=10﹣2×(﹣3)=10+6=16.故答案为:16.18.解:∵(a+b)2=2019,(a﹣b)2=2015,∴4ab=(a+b)2﹣(a﹣b)2=2019﹣2015=4,∴ab=1.故答案为:1.19.解:∵a﹣=∴(a﹣)2=6∴a2﹣2+=6∴a2+=8故答案为:820.解:(a﹣b)5=a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5,故答案为:a5﹣5a4b+10a3b2﹣10a2b3+5ab4﹣b5.三.解答题21.解:原式=2x2+2x﹣2x﹣2﹣(x2﹣2x+1)﹣(x2+2x+1)=2x2+2x﹣2x﹣2﹣x2+2x﹣1﹣x2﹣2x﹣1=﹣4.22.解:(1)将x+y=3两边平方得:(x+y)2=x2+2xy+y2=9,将xy=2代入得:x2+y2=5;(2)原式=xy﹣(x+y)+1=2﹣3+1=0.23.解:(1)∵x2+y2=(x﹣y)2+2xy,把x﹣y=8,xy=40,代入上式,得x2+y2=82+2×40=144.故答案是:144;(2)设25﹣x=a,x﹣10=b,由(a+b)2=a2+2ab+b2进行变形得,a2+b2=(a+b)2﹣2ab,∴(25﹣x)2+(x﹣10)2=[(25﹣x)+(x﹣10)]2﹣2(25﹣x)(x﹣10)=152﹣2×(﹣15)=225+30=255.24.解:设改造后正方形绿地的边长为am,则改造前长方形绿地的长为(a+3)m,宽为(a ﹣3)m,由题意得,a2=2(a+3)(a﹣3)a2=2(a2﹣9)a2=2a2﹣18a2=18a=3;答:改造后正方形绿地的边长为3m25.解:(1)A=x2+4x+4+x+2﹣x2﹣2x﹣3=3x+3;(2)∵(x+1)2=5,∴x+1=±,则A=3x+3=3(x+1)=±3 .26.解:(1)由拼图可知,图形1的长为(a+b),宽为(a﹣b),因此面积为(a+b)(a﹣b),图形2的阴影部分的面积为两个正方形的面积差,即a2﹣b2,由图形1,图形2的面积相等可得,(a+b)(a﹣b)=a2﹣b2,故答案为:(a+b)(a﹣b),a2﹣b2,(a+b)(a﹣b)=a2﹣b2;(2)①103×97=(100+3)(100﹣3)=1002﹣32=10000﹣9=9991;②原式=(2x+y﹣3)[2x﹣(y﹣3)]=(2x)2﹣(y﹣3)2=4x2﹣(y2﹣6y+9)=4x2﹣y2+6y﹣9.27.解:设x﹣2018=a,x﹣2021=b,则a2+b2=31,a﹣b=x﹣2018﹣x+2021=3,∴a2﹣2ab+b2=(a﹣b)2=9,∴31﹣2ab=9,解得ab=11,即(x﹣2018)(x﹣2021)=11.。
【巩固练习】一.选择题1. 在下列计算中,不能用平方差公式计算的是( )A.))((n m n m +--B.()()3333x y x y -+C.))((b a b a ---D.()()2222c d d c -+ 2.若x y +=6,x y -=5,则22x y -等于( ).A.11B.15C.30D.60 3.下列计算正确的是( ).A.()()55m m -+=225m -B. ()()1313m m -+=213m -C.()()24343916n n n ---+=-+D.( 2ab n -)(2ab n +)=224ab n - 4.下列多项式不是完全平方式的是( ).A.244x x --B.m m ++241C.2296a ab b ++D.24129t t ++5.下列等式能够成立的是( ).A.()()22a b a b -=--B.()222x y x y -=- C.()()22m n n m -=-D.(x -y)(x +y)=(-x -y)(x -y) 6.下列等式不能恒成立的是( ).A.()222396x y x xy y -=-+B.()()22a b c c a b +-=--C.22241)21(n m n m n m +-=-D.()()()2244x y x y x y x y -+-=- 二.填空题7.若2216x ax ++是一个完全平方式,则a =______.8. 若2294x y +=()232x y M ++,则M =______.9. 若x y +=3,xy =1,则22x y +=_______.10.观察等式222222213,325,437-=-=-=,…用含自然数n 的等式表示它的规律为:_________.11. ()25(2)(2)21x x x -+--=___________.12.若()212x -=,则代数式225x x -+的值为________. 三.解答题13. 计算下列各题:(1)33(2)(2)22x y x y +--+(2)2(4)(4)(16)x x x +-+(3)2(2)()4(2)x y x y x y -+--(4)23()(2)(2)y z y z z y --+-+14.先化简,再求值:22)1(2)1)(1(5)1(3-+-+-+a a a a ,其中3=a .15.已知:2225,7x y x y +=+=,且,x y >求x y -的值.【答案与解析】一.选择题1. 【答案】A ;【解析】A 中m 和m -符号相反,n 和n -符号相反,而平方差公式中需要有一项是符号相同的,另一项互为相反数.2. 【答案】C ;【解析】()()22x y x y x y -=+-=6×5=30. 3. 【答案】C ;【解析】()()55m m -+=225m -;()()1313m m -+=219m -; (2ab n -)(2ab n +)=2224a b n -.4. 【答案】A ;【解析】2211()42m m m ++=+;22296(3)a ab b a b ++=+;224129(23)t t t ++=+. 5. 【答案】C ;6. 【答案】D ;【解析】()()()()22222x y x y x y x y -+-=-. 二.填空题7. 【答案】±4;【解析】222216244x ax x x ++=±⨯+,所以4a =±.8. 【答案】12xy -;【解析】2294x y +=()23212x y xy +-.9. 【答案】7;【解析】()2222x y x y xy +=++,22927x y +=-=.10.【答案】()22121n n n +-=+ (n ≥1的正整数); 11.【答案】2421x x +-;【解析】()()()22225(2)(2)2154441421x x x x x x x x -+--=---+=+-. 12.【答案】6;【解析】因为()212x -=,所以2221,256x x x x -=-+=.三.解答题13.【解析】 解:(1)原式=22223339222462224x y x y x y x y y ⎡⎤⎛⎫⎛⎫⎛⎫+---=--=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦; (2)原式=()()2241616256x x x -+=-;(3)原式=()2222222244421717x xy xy y x xy y x xy y +----+=-+-; (4)原式=()()22222232464y yz z y z y yz z -+--=--+.14.【解析】解:223(1)5(1)(1)2(1)a a a a +-+-+- ()()()22232151221210a a a a a a =++--+-+=+当3,=231016a =⨯+=时原式.15.【解析】解:∵()2222x y x y xy +=++,且2225,7x y x y +=+= ∴27252xy =+,∴12xy =,∵()2222252121x y x y xy -=+-=-⨯= ∴1x y -=±∵,x y >即0x y ->∴1x y -=.。
新人教版初二数学上学期乘法公式练习题与答案初中数学课堂上大家学习了很多数学知识点,在课下大家要及时进行练习巩固,通过做练习题能够让大家发现自己课堂上没掌握好的知识点,下面为大家带来新人教版初二数学上学期乘法公式练习题与答案,希望有助于大家学好初中数学知识。
1. (3a+1)(3a-1)+(3a-1)=2. 观察给予x、y不同的值,你都能计算x2-2xy+y2与(x-y)2的值吗?______。
当x=0,y=1时,x2-2xy+y2与(x-y)2的值相同吗?__________。
当x=-1,y=-2时,x2-2xy+y2与(x-y)2的值相同吗?______。
是否当无论x、y是什么值,计算x2-2xy+y2与(x-y)2所得结果都相同吗?__________。
由此你能推出x2-2xy+y2=(x-y)2吗?__________。
3. 计算(用两种方法求解,并比较哪种方法简单):(1)(- 3a-2b)2;(2)(a-2b)2-(a+2b)2;(3)(x+2y)2(x-2y)2。
4. 已知(a+b)2=24,(a-b)2=20,求:(1)ab的值是多少?(2)a2+b2的值是多少?5. 计算:1-(-1-2x)2.6. 阅读理解:求代数式y2+4y+8的最小值.解:∵y2+4y+8=(y2+4y+4)+4=(y+2)2+44当y=-2时,代数式y2+4y+8的最小值是4.仿照应用(1):求代数式m2+2m+3的最小值.仿照应用(2):求代数式-m2+3m+的最大值.为大家带来了新人教版初二数学上学期乘法公式练习题与答案,希望大家能够养成课后做数学练习题的好习惯,这样能够在做题中加深大家对初中数学知识点的掌握程度。
人教版八年级上册数学14.2乘法公式同步练习(含解析)一.选择题1.下列各式中,运算错误的是()A.(x+5)(x﹣5)=x2﹣25B.(﹣x﹣5)(﹣x+5)=x2﹣25C.(x+)2=x2+x+D.(x﹣3y)2=x2﹣3xy+9y22.下列各式中,能用平方差公式进行计算的是()A.(﹣2x﹣y)(2x﹣y)B.(﹣2x﹣y)(2x+y)C.(2x﹣y)(y﹣2x)D.(2x﹣y)(2x﹣y)3.下列乘法公式的运用,正确的是()A.(2x﹣3)(2x+3)=4x2﹣9B.(﹣2x+3y)(3y+2x)=4x2﹣9y2C.(2a﹣3)2=4a2﹣9D.(﹣4x﹣1)2=16x2﹣8x+14.已知a+b=3,ab=,则a2+b2的值等于()A.6B.7C.8D.95.如图,用4个相同的小长方形与1个小正方形(阴影部分)摆成了一个正方形图案,已知该图案的面积为81,小正方形的面积为25,若用x、y表示小长方形的两边长(x>y),请观察图案.指出以下关系式中,不正确的是()A.x+y=9B.x﹣y=5C.4xy+25=81D.x2+y2=496.为了运用平方差公式计算(x+3y﹣z)(x﹣3y+z),下列变形正确的是()A.[x﹣(3y+z)]2B.[(x﹣3y)+z][(x﹣3y)﹣z]C.[x﹣(3y﹣z)][x+(3y﹣z)]D.[(x+3y)﹣z][(x﹣3y)+z]7.下列计算中,正确的是()A.x(2x2﹣x+1)═2x3﹣x2+1B.(a+b)2=a2+b2C.(x﹣2)2=x2﹣2x+4D.(﹣a﹣b)2=a2+2ab+b28.为了应用平方差公式计算(a﹣b+c)(a+b﹣c),必须先适当变形,下列变形中,正确的是()A.[(a+c)﹣b][(a﹣c)+b]B.[(a﹣b)+c][(a+b)﹣c]C.[a﹣(b+c)][a+(b﹣c)]D.[a﹣(b﹣c)][a+(b﹣c)]9.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和30,则正方形A、B的面积之和为()A.33B.30C.27D.24二.填空题10.计算(a﹣2b)2﹣2a(3a﹣4b)的结果是.11.计算(a+b)(a﹣b)的结果等于.12.如图是边长为a+b的大正方形,通过两种不同的方法计并该大正方形的面积,聪明的你可以得到一个乘法公式,请你用含有a,b的等式表达出来,结果是.13.如图1,将边长为a的大正方形剪去一个边长为b的小正方形,再沿图中的虚线剪开,然后按图2所示进行拼接,请根据图形的面积写出一个含字母a,b的等式.14.已知(5+2x)2+(3﹣2x)2=40,则(5+2x)•(3﹣2x)的值为.三.解答题15.计算:(1)9992.(2)计算()2﹣()2.16.23.142﹣23.14×6.28+3.142.17.下面是小华同学在笔记本上完成课堂练习的解题过程:(2x﹣3y)2﹣(x﹣2y)(x+2y)=4x2﹣6xy+3y2﹣x2﹣2y2第一步=3x2﹣6xy+y2第二步小禹看到小华的做法后,对她说:“你做错了,在第一步运用公式时出现了错误,你好好查一下.”小华仔细检查后发现,小禹说的是正确的.解答下列问题:(1)请你用标记符号“”在以上小华解答过程的第一步中圈出所有错误之处;(2)请重新写出完成此题的解答过程.答案1.解:A.(x+5)(x﹣5)=x2﹣25,故本选项不合题意;B.(﹣x﹣5)(﹣x+5)=x2﹣25,故本选项不合题意;C.(x+)2=x2+x+,故本选项不合题意;D.(x﹣3y)2=x2﹣6xy+9y2,故本选项符合题意.故选:D.2.解:(﹣2x﹣y)(2x﹣y)=﹣(2x+y)(2x﹣y),能用平方差公式进行计算;(﹣2x﹣y)(2x+y)=﹣(2x+y)2,不能用平方差公式进行计算;(2x﹣y)(y﹣2x)不能用平方差公式进行计算;(2x﹣y)(2x﹣y)=(2x﹣y)2,不能用平方差公式进行计算.故选:A.3.解:A.(2x﹣3)(2x+3)=(2x)2﹣32=4x2﹣9,故本选项符合题意;B.(﹣2x+3y)(3y+2x)=(3y)2﹣(2x)2=9y2﹣4x2,故本选项不合题意;C.(2a﹣3)2=4a2﹣12a+9,故本选项不合题意;D.(﹣4x﹣1)2=﹣16x2﹣8x﹣1,故本选项不合题意.故选:A.4.解:∵a+b=3,∴(a+b)2=32=9,∴a2+b2=(a+b)2﹣2ab=9﹣3=6.故选:A.5.解:∵小正方形的面积为25,∴小正方形的为边长为5,∴x﹣y=5,∴选项B正确;∵已知该图案的面积为81,∴4xy+25=81,∴选项C正确,∵由题与图已知x+y=9,x=7,y=2,∴选项A正确,∴选项D不正确,故选:D.6.解:运用平方差公式计算(x+3y﹣z)(x﹣3y+z),应变形为[x+(3y﹣z)][x﹣(3y﹣z)],故选:C.7.解:A、x(2x2﹣x+1)═2x3﹣x2+x,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、(x﹣2)2=x2﹣4x+4,故此选项错误;D、(﹣a﹣b)2=a2+2ab+b2,正确.故选:D.8.解:(a﹣b+c)(a+b﹣c)=[a﹣(b﹣c)][a+(b﹣c)].故选:D.9.解:设正方形A的边长是a,正方形B的边长是b(a>b),由题可得图甲中阴影部分的面积是S甲=(a﹣b)2,图乙中阴影部分的面积是S乙=(a+b)2﹣a2﹣b2=2ab,∵图甲和图乙中阴影部分的面积分别为3和30,∴S甲=(a﹣b)2=3,S乙=2ab=30,∴正方形A、B的面积之和为:S A+S B=a2+b2=(a﹣b)2+2ab=3+30=33,故选:A.10.解:(a﹣2b)2﹣2a(3a﹣4b)=a2﹣4ab+4b2﹣6a2+8ab=﹣5a2+4ab+4b2,故答案为:﹣5a2+4ab+4b2.11.解:(a+b)(a﹣b)=a2﹣b2;故答案为:a2﹣b2.12.解:如图,用不同的方法表示大正方形的面积可得(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.13.解:图1面积为a2﹣b2,图2的面积为(a+b)(a﹣b),因此有:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b).14.解:∵(5+2x)2+(3﹣2x)2=40,∴[(5+2x)+(3﹣2x)]2﹣2(5+2x)(3﹣2x)=40,即64﹣2(5+2x)(3﹣2x)=40,∴(5+2x)(3﹣2x)=12.故答案为12.15.解:(1)9992=(1000﹣1)2=10002﹣2×1000+1=1000000﹣2000+1=9980001;(2)原式=x2+5x+1﹣(x2﹣5x+1)=x2+5x+1﹣x2+5x﹣1=10x.16.解:原式=23.142﹣2×23.14×3.14+3.142=(23.14﹣3.14)2=400.17.解:(1)如图所示:(2)(2x﹣3y)2﹣(x﹣2y)(x+2y)=4x2﹣12xy+9y2﹣x2+4y2=3x2﹣12xy+13y2.。
人教版八年级上册14.2《乘法公式》同步练习带答案基础巩固1.下列添括号错误的是().A.-x+5=-(x+5) B.-7m-2n=-(7m+2n)C.a2-3=+(a2-3) D.2x-y=-(y-2x)2.下列各式,计算正确的是().A.(a-b)2=a2-b2B.(x+y)(x-y)=x2+y2C.(a+b)2=a2+b2D.(a-b)2=a2-2ab+b23.下列各式中,与(a-1)2相等的是().A.a2-1 B.a2-2a+1C.a2-2a-1 D.a2+14.下列等式能够成立的是().A.(x-y)2=x2-xy+y2B.(x+3y)2=x2+9y2C.(x-12y)2=x2-xy+214yD.(m-9)(m+9)=m2-95.应用乘法公式计算:1.234 52+2.469×0.765 5+0.765 52的值为__________.6.正方形的边长增大5 cm,面积增大75 cm2.那么原正方形的边长为__________,面积为__________.7.(-a-b)(a-b)=-[()(a-b)]=-[()2-()2]=__________.8.计算:(1)(x-3)(x2+9)(x+3);(2)(x+y-1)(x-y+1);9.(1)先化简,再求值:2(3x+1)(1-3x)+(x-2)(2+x),其中x=2.(2)化简求值:(1-4y)(1+4y)+(1+4y)2,其中y=2 5 .能力提升10.若x2-y2=20,且x+y=-5,则x-y的值是().A.5 B.4C.-4 D.以上都不对11.等式(-a-b)()(a2+b2)=a4-b4中,括号内应填().A.-a+b B.a-bC.-a-b D.a+b12.若a2+2ab+b2=(a-b)2+A,则A的值为().A.2ab B.-abC.4ab D.-4ab13.若x-1x=1,则x2+21x的值为().A.3 B.-1 C.1 D.-314.(湖南益阳)观察下列算式:①1×3-22=3-4=-1②2×4-32=8-9=-1③3×5-42=15-16=-1④________________________________________________________________________ ……(1)请你按以上规律写出第④个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.15.已知x=12,求代数式(2x-y)(2x+y)+(2x-y)(y-4x)+2y(y-3x)的值,在解这道题时,小茹说:“只给出了x的值,没给出y的值,求不出答案.”小毅说:“这道题与y的值无关,不给出y的值,也能求出答案.”你认为谁的说法正确?请说明理由。
14.2乘法公式专题一乘法公式1.下列各式中运算错误的是()A.a2+b2=(a+b)2-2ab B.(a-b)2=(a+b)2-4abC.(a+b)(-a+b)=-a2+b2D.(a+b)(-a-b)=-a2-b2 2.代数式(x+1)(x-1)(x2+1)的计算结果正确的是()A.x4-1 B.x4+1 C.(x-1)4D.(x+1)43.计算:(2x+y)(2x-y)+(x+y)2-2(2x2-xy)(其中x=2,y=3).专题二乘法公式的几何背景4.请你观察图形,依据图形面积之间的关系,不需要连其他的线,便可得到一个你非常熟悉的公式,这个公式是()A.(a+b)(a-b)=a2-b2 B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2 D.(a+b)2=a2+ab+b25.如图,你能根据面积关系得到的数学公式是()A.a2-b2=(a+b)(a-b) B.(a+b)2=a2+2ab+b2C.(a-b)2=a2-2ab+b2 D.a(a+b)=a2+ab6.我们在学习完全平方公式(a+b)2=a2+2ab+b2时,了解了一下它的几何背景,即通过图来说明上式成立.在习题中我们又遇到了题目“计算:(a+b+c)2”,你能将知识进行迁移,从几何背景说明(大致画出图形即可)并计算(a+b+c)2吗?状元笔记【知识要点】1.平方差公式(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积,等于这两个数的平方差.2.完全平方公式(a±b)2=a2±2ab+b2,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.【温馨提示】1.不要将平方差公式和完全平方公式相混淆,注意它们项数和符号的不同.2.完全平方公式中,中间项是左边两个数的和的2倍,注意系数的特点.【方法技巧】1.公式中的字母a、b可以是具体的数,也可以是单项式、多项式.只要符合公式的结构特征,就可以利用公式.2.有些题目往往不能直接应用公式求解,但稍做适当的变形后就可以用乘法公式求解.如:位置变化,符号变化,数字变化,系数变化,项数变化等.参考答案:1.D 解析:A中,由完全平方公式可得(a+b)2-2ab=a2+2ab+b2-2ab=a2+b2,故A正确;B中,由完全平方公式可得(a-b)2=a2-2ab+b2,(a+b)2-4ab=a2+2ab+b2-4ab=a2-2ab+b2,故B正确;C中,由平方差公式可得(a+b)(-a+b)=(a+b)(b-a)=b2-a2=-a2+b2,故C正确;D中,(a+b)(-a-b)=-(a+b)2=-a2-2ab-b2,故D错误.2.A 解析:原式=(x2-1)(x2+1)=(x2)2-1=x4-1.3.解:原式=4x2-y2+x2+2xy+y2-4x2+2xy=x2+4xy,当x=2,y=3时,原式=22+4×2×3=4+24=28.4.B 解析:这个图形的整体面积为(a+b)2;各部分的面积的和为a2+2ab+b2;所以得到公式(a+b)2=a2+2ab+b2.故选B.5.C 解析:从图中可知:阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,∴(a-b)2=a2-2ab+b2,故选C.6.解:(a+b+c)2的几何背景如图,整体的面积为:(a+b+c)2,用各部分的面积之和表示为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,所以(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
2022-2023学年人教版八年级数学上册《14.2乘法公式》解答题专题提升训练(附答案)1.化简:(x+3)(x﹣3)﹣x(x﹣1).2.计算:(2a+b)(a﹣2b)﹣(2a﹣b)2.3.计算:(1)(2x﹣y)(3x﹣2y)+(x﹣3y)(x+3y);(2)(3x﹣5y)2﹣(3x+5y)2.4.已知多项式A=(x+2)2+(x+2)(1﹣x)﹣3.(1)化简多项式A;(2)若(x+1)2=5,求A的值.5.A=(2x+y)2﹣(2x+y)(2x﹣y)﹣2y2.(1)化简A;(2)若点(x,y)在第四象限,请选择合适的整数代入,求此时A的值.6.已知正实数x、y,满足(x+y)2=25,xy=4.(1)求x2+y2的值;(2)若m=(x﹣y)2时,4a2+na+m是完全平方式,求n的值.7.用乘法公式简便计算:(1)(2)20222﹣2022×4042+202128.利用公式简算.(1)20222﹣2021×2023.(2)1012.9.已知2m2+5m﹣1=0,求代数式(m+3)2+m(m﹣1)的值.10.计算:(a﹣2b+3)(a+2b﹣3).11.用乘法公式计算:(1)20212﹣2023×2019;(2)(2x+y+z)(2x﹣y﹣z).12.计算题.(x+1)(x2+1)(x﹣1)(x4+1).13.用简便方法计算.(1)186.72﹣2×186.7×86.7+86.72;(2)(3+1)(32+1)(34+1)(38+1).14.从乘法公式(a+b)2=a2+2ab+b2中,我们可以算出a+b、a2+b2与ab的数量关系,应用此关系解决下列数学问题.(1)若a+b=8,ab=15,求a2+b2的值;(2)若m满足(11﹣m)2+(m+9)2=10,求(11﹣m)(m+9)的值.15.请你参考黑板中老师的讲解,用乘法公式进行简便计算:利用乘法公式有时可以进行简便计算.例1:1012=(100+1)2=1002+2×100×1+1=10201;例2:17×23=(20﹣3)(20+3)=202﹣32=391.(1)9992;(2)20222﹣2021×2023.16.图1、图2分别由两个长方形拼成.(1)图1中图形的面积为a2﹣b2,图2中图形的面积为(a﹣b)×.(用含有a、b的代数式表示)(2)由(1)可以得到等式:.(3)根据你得到的等式解决下列问题:①计算:68.52﹣31.52.②若m+4n=2,求(m+1)2﹣m2+(2n+1)2﹣(2n﹣1)2的值.17.如图,边长为a的大正方形有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)上述操作能验证的等式是:(请选择正确的选项);A.a2﹣ab=a(a﹣b)B.a2﹣2ab+b2=(a﹣b)2C.a2+ab=a(a+b)D.a2﹣b2=(a+b)(a﹣b)(2)请利用你从(1)选出的等式,完成下列各题:①已知9a2﹣b2=36,3a+b=9,则3a﹣b=;②计算:.18.如图1,有A型、B型、C型三种不同形状的纸板,A型是边长为a的正方形,B型是边长为b的正方形,C型是长为b,宽为a的长方形.现用A型纸板一张,B型纸板一张,C型纸板两张拼成如图2的大正方形.(1)观察图2,请你用两种方法表示出图2的总面积.方法1:;方法2:;请利用图2的面积表示方法,写出一个关于a,b的等式:.(2)已知图2的总面积为49,一张A型纸板和一张B型纸板的面积之和为25,求ab 的值.(3)用一张A型纸板和一张B型纸板,拼成图3所示的图形,若a+b=8,ab=15,求图3中阴影部分的面积.19.图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)请根据拼图的原理,写出三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系;(2)根据(2)中等式,已知a+b=9,ab=8,求﹣b2+2ab﹣a2和b2﹣a2的值.20.用等号或不等号填空,探究规律并解决问题:(1)比较a2+b2与2ab的大小:①当a=3,b=3时,a2+b22ab;②当a=2,b=时,a2+b22ab;③当a=﹣2,b=3时,a2+b22ab.(2)通过上面的填空,猜想a2+b2与2ab的大小关系,并证明你的猜想;(3)如图,点C在线段AB上,以AC,BC为边,在线段AB的两侧分别作正方形ACDE,BCFG,连接AF,设两个正方形的面积分别为S1,S2,若△ACF的面积为1,求S1+S2的最小值.参考答案1.解:(x+3)(x﹣3)﹣x(x﹣1)=x2﹣9﹣x2+x=x﹣9.2.解:原式=2a2﹣3ab﹣2b2﹣(4a2﹣4ab+b2)=2a2﹣3ab﹣2b2﹣4a2+4ab﹣b2=﹣2a2+ab﹣3b2.3.解:(1)(2x﹣y)(3x﹣2y)+(x﹣3y)(x+3y)=6x2﹣4xy﹣3xy+2y2+x2﹣9y2=7x2﹣7xy﹣7y2;(2)(3x﹣5y)2﹣(3x+5y)2=(9x2﹣30xy+25y2)﹣(9x2+30xy+25y2)=9x2﹣30xy+25y2﹣9x2﹣30xy﹣25y2=﹣60xy.4.解:(1)A=x2+4x+4+x+2﹣x2﹣2x﹣3=3x+3;(2)∵(x+1)2=5,∴x+1=±,则A=3x+3=3(x+1)=±3 .5.解:(1)原式=4x2+4xy+y2﹣4x2+y2﹣2y2=4xy;(2)∵点(x,y)在第四象限,∴x=1,y=﹣2(答案不唯一),∴A=4×1×(﹣2)=﹣8.6.解:(1)∵xy=4,∴(x+y)2=x2+2xy+y2=x2+y2+2×4=25,∴x2+y2=17.(2)∵(x﹣y)2=x2+y2﹣2xy=17﹣2×4=9,∴m=9,∵4a2+na+m=4a2+na+9是完全平方式,∴na=±2×2a×3=±12a,∴n=±12.7.解:(1)原式=(50+)(50﹣)=2500﹣=2499;(2)原式=20222﹣2×2022×2021+20212=(2022﹣2021)2=1.8.解:(1)20222﹣2021×2023=20222﹣(2022﹣1)×(2022+1)=20222﹣(20222﹣1)=20222﹣20222+1=1;(2)1012=(100+1)2=10000+200+1=10201.9.解:∵2m2+5m﹣1=0,∴2m2+5m=1,∴(m+3)2+m(m﹣1)=m2+6m+9+m2﹣m=2m2﹣5m+9=1+9=10.10.解:(a﹣2b+3)(a+2b﹣3)=[a﹣(2b﹣3)][a+(2b﹣3)]=a2﹣(2b﹣3)2=a2﹣4b2+12b﹣9.11.解:(1)20212﹣2023×2019=20212﹣(2021+2)×(2021﹣2)=20212﹣20212+4=4;(2)(2x+y+z)(2x﹣y﹣z)=[2x+(y+z)][2x﹣(y+z)]=4x2﹣(y+z)2=4x2﹣y2﹣2yz+z2.12.解:(x+1)(x2+1)(x﹣1)(x4+1)=(x2﹣1)(x2+1)(x4+1)=(x4﹣1)(x4+1)=x8﹣1.13.解:(1)原式=(186.7﹣86.7)2=1002=10000;(2)原式=(3﹣1)(3+1)(32+1)(34+1)(38+1)=(32﹣1)(32+1)(34+1)(38+1)=(34﹣1)(34+1)(38+1)=(38﹣1)(38+1)=(316﹣1)=.14.解:(1)∵(a+b)2=a2+2ab+b2,∴a2+b2=(a+b)2﹣2ab.∵a+b=5,ab=3,∴a2+b2=(a+b)2﹣2ab=52﹣2×3=19.(2)∵(11﹣m)2+(m+9)2=10,∴[(11﹣m)+(m+9)]2﹣2(11﹣m)(m+9)=10,即:400﹣2(11﹣m)(m+9)=10.∴(11﹣m)(m+9)=195.15.解:(1)原式=(1000﹣1)2=10002﹣2×1000×1+1=1000000﹣2000+1=998001;(2)20222﹣(2022﹣1)×(2022+1)=20222﹣20222﹣+1=1.16.解:(1)图1中图形的面积为a2﹣b2,图2中图形的面积为(a﹣b)×(a+b),故答案为:a+b;(2)根据两个图形的面积相等,可得a2﹣b2=(a﹣b)(a+b),故答案为:a2﹣b2=(a﹣b)(a+b);(3)①68.52﹣31.52=(68.5﹣31.5)(68.5+31.5)=37×100=3700;②(m+1)2+(2n+1)2﹣m2﹣(2n﹣1)2=[(m+1)2﹣m2]+[(2n+1)2﹣(2n﹣1)2]=[(m+1﹣m)(m+1+m)]+[(2n+1﹣2n+1)(2n+1+2n﹣1)]=2m+1+8n=2(m+4n)+1=4+1=5.17.解:(1)图1阴影部分的面积可以看作两个正方形的面积差,即a2﹣b2,图2阴影部分是长为a+b,宽为a﹣b的长方形,因此面积为(a+b)(a﹣b),由图1、图2的面积相等得,a2﹣b2=(a+b)(a﹣b),故答案为:D;(2)①∵9a2﹣b2=36,∴(3a+b)(3a﹣b)=36,又∵3a+b=9,∴3a﹣b=36÷9=4,故答案为:4;②原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)(1﹣)(1+) (1))(1+)=××××××××…××=×=.18.解:(1)用两种方法表示出图2的总面积为(a+b)2和a2+2ab+b2,关于a,b的等式(a+b)2=a2+2ab+b2,故答案为:(a+b)2,a2+2ab+b2,(a+b)2=a2+2ab+b2;(2)由题意得,(a+b)2=a2+2ab+b2=49,a2+b2=25,∴ab====12;(3)由题意得图3中阴影部分的面积为:+a2﹣==,∴当a+b=8,ab=15时,图3中阴影部分的面积为:==.19.解:(1)大正方形的边长为m+n,因此面积为(m+n)2,阴影小正方形的边长为m﹣n,因此面积为(m﹣n)2,而每个长方形的面积为mn,由S大正方形=S小正方形+4S长方形可得,(m+n)2=(m﹣n)2+4mn,故答案为:(m+n)2=(m﹣n)2+4mn;(2)由(1)得,(a+b)2=(a﹣b)2+4ab,即81=(a﹣b)2+32,∴a﹣b=±7.∴﹣b2+2ab﹣a2=﹣(b2﹣2ab+a2)=﹣(a﹣b)2=﹣49,∴b2﹣a2=(a+b)(b﹣a)=9×(±7)=±63.20.解:(1)①把a=3,b=3代入,a2+b2=9+9=18,2ab=2×3×3=18,所以a2+b2=2ab,故答案为:=;②把a=2,b=代入,a2+b2=4+=,2ab=2×2×=2,所以a2+b2>2ab,故答案为:>;③把a=﹣2,b=3代入,a2+b2=4+9=13,2ab=2×(﹣2)×3=﹣12,所以a2+b2>2ab,故答案为:>;(2)由(1)可得,a2+b2≥2ab,理由如下:∵(a﹣b)2≥0,即a2﹣2ab+b2≥0,∴a2+b2≥2ab;(3)由题意可知S1=a2,S2=b2,∵△ACF的面积为1,即ab=1,∴ab=2,∵S1+S2=a2+b2≥2ab,∴S1+S2=a2+b2≥4,因此S1+S2的最小值为4.。
【巩固练习】一.选择题1.下列各多项式相乘,可以用平方差公式的有( ).①()()2552ab x x ab -++ ②()()ax y ax y ---③()()ab c ab c --- ④()()m n m n +--A.4个B.3个C.2个D.1个 2. 若214x kx ++是完全平方式,则k 值是( ) A. 2± B. 1± C. 4± D. 13.下面计算()()77a b a b -++---正确的是( ).A.原式=(-7+a +b )[-7-(a +b )]=-27-()2a b + B.原式=(-7+a +b )[-7-(a +b )]=27+()2a b + C.原式=[-(7-a -b )][-(7+a +b )]=27-()2a b + D.原式=[-(7+a )+b ][-(7+a )-b ]=()227a b +- 4.(a +3)(2a +9)(a -3)的计算结果是( ).A.4a +81B.-4a -81C. 4a -81D.81-4a 5.下列式子不能成立的有( )个.①()()22x y y x -=- ②()22224a b a b -=- ③()()()32a b b a a b -=--④()()()()x y x y x y x y +-=---+ ⑤()22112x x x -+=-- A.1B.2C.3D.4 6.计算2)22(b a -的结果与下面计算结果一样的是( ). A.2)(21b a - B.ab b a -+2)(21 C.ab b a +-2)(41 D.ab b a -+2)(41 二.填空题 7.多项式28x x k -+是一个完全平方式,则k =______.8. 已知15a a +=,则221a a+的结果是_______. 9. 若把代数式223x x --化为()2x m k -+的形式,其中m ,k 为常数,则m +k =_______.10. 如果1ab =,那()()22_________n n n n a b a b --+=.11.对于任意的正整数n ,能整除代数式()()()()313133n n n n +---+的最小正整数是_______.12. 如果()()221221a b a b +++-=63,那么a +b 的值为_______.三.解答题13.计算下列各值.22(1)10199+ ()()()2222(2)224m m m +-+(3)()()a b c a b c +--+ 2(4)(321)x y -+14. 已知 21x x =+,求下列代数式的值:(1)553x x -+; (2)221x x+ 15. 已知:()26,90,a b ab c a -=+-+=求a b c ++的值.【答案与解析】一.选择题1. 【答案】B ;【解析】①,②,③可用平方差公式.2. 【答案】B ; 【解析】2221112224x x x kx ⎛⎫⎛⎫±⨯+=±+ ⎪ ⎪⎝⎭⎝⎭,所以k =±1. 3. 【答案】C ;4. 【答案】C ;【解析】(a +3)(2a +9)(a -3)=224(9)(9)81a a a -+=-.5. 【答案】B ;【解析】②,③不成立.6. 【答案】D ; 【解析】22221()()224424a b a b ab a b ab -=+-=+-. 二.填空题7. 【答案】16;【解析】2228244x x k x x -+=-⨯+,∴k =16.8. 【答案】23;【解析】21()25,a a +=222211225,23a a a a++=+=.9. 【答案】-3;【解析】()22223211314x x x x x --=-+--=--,m =1,k =-4. 10.【答案】-4;【解析】原式()()()22n n n n n n n n n n a b a b ab a b a b =-++---=⋅- ()444n n n a b ab =-=-=-.11.【答案】10;【解析】利用平方差公式化简得10()21n -,故能被10整除. 12.【答案】±4;【解析】()()221221a b a b +++-()222163,228,4a b a b a b =+-=+=±+=±.三.解答题13.【解析】解:(1)原式=()()2210011001=100002001100002001=20002++-+++-+(2)原式=()()()22222484441632256m m m m m -+=-=-+ (3)原式=()222222a b c a b c bc --=--+ (4)原式=()()222(321)3212322322x y x y x y x y -+=++-⨯⨯+⨯-⨯229412641x y xy x y =+-+-+14.【解析】解:(1)()()()2523343111x x x x x x x x x x =⋅=+⋅=+=+++ ()2231213153x x x x x =++=+++=+ ∴55353536x x x x -+=+-+=(2)已知两边同除以x ,得111,1x x x x=+-=即 ∴22211()21x x x x-=+-= ∴2213x x +=. 15.【解析】解:∵6,a b -=∴6a b =+∵()290,ab c a +-+=∴()()2690,b b c a ++-+= ∴()()2230,b c a ++-= ∴3,b c a =-=∴()363,3a c =-+==∴()3333a b c ++=+-+=.。
14.2 乘法公式 提升练习一.单选题 1.若2125x mx ++是一个完全平方式,则m 为( ) A .15 B .25 C .15±D .25± 2. 已知()()202220202021m m --=,那么()()2220222020m m -+-的值为( )A .4046B .2023C .4042D .40433.对于任意有理数a ,b ,现用★定义一种运算:22a b a b =-★.根据这个定义,代数式()x y y +★可以化简为( )A .2xy x +B .2xy y -C .22x xy +D .2x4.已知2216x mx ++(m 为常数)是一个完全平方式,则m 的值为( )A .4B .4-C .4±D .8±5.已知,长方形的长宽分别为a 和b ,长方形的周长和面积分别为20和24,那么22a b +=( ).A .64B .52C .48D .446.若二次三项式2(1)9x k x +++是一个完全平方式,则k 的值是( )A .5B .7-C .5±D .5或7-7.下列各式中,能用完全平方公式计算的是( )A .()()2424a b a b ---B .()()44a b a b +--.C .()()44a b a b -+D .()()2442a b a b -+8.如图1是一个长为2a ,宽为()2b a b >的长方形,用剪刀沿图中虚线剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积为( )图1 图2A .abB .()2a b +C .()2a b -D .22a b -二.填空题9.若()2125x a x +-+是一个完全平方式,则=a . 10.计算1234567895123456789212345678931234567894⨯-⨯的结果为 .11.若整式424++x x Q 是完全平方式,请写出所有满足条件的Q 是 .12.配上适当的数,使下列等式成立:23x x -+ x =-( 2) 13.从边长为a 的正方形中减掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2),上述操作能验证的等式是 .三.解答题14.计算(1) 2201420132015-⨯ (2)()()a b c a b c ++-+(3) 22222111111111123499100⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅-- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.15.已知5,4x y xy +==,求下列各式的值:(1)22x y +;(2)2()x y -.16.若一个整数能表示成22a b +(a 、b 是正整数)的形式,则称这个数为“吉祥数”.例如,2是“吉祥数”,因为22211=+所以2是“吉祥数”,再如,因为()222222M x xy y x y y =++=++(x y +,y 是正整数),所以M 也是“吉祥数”.(1)请你写一个最小的三位“吉祥数”是 ,并列出对应的等式 .(2)已知2226S x y x y k =++-+(x 、y 是正整数,k 是常数),要使S 为“吉祥数”,试求出符合条件的一个k 值,并说明理由.17.【阅读理解】“若x 满足()()522x x --=,求()()2252x x -+-的值. 解:设5x a -=,2x b -=,则()()()()522523x x ab a b x x --==+=-+-=,.所以()()()2222225223225x x a b a b ab -+-=+=+-=-⨯=.【解决问题】(1)若x 满足()()423x x --=-,则()()2242x x -+-的值为 ; (2)若x 满足()()923212x x +-=,则()()222321x x ++-的值为 ; (3)如图,C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1248S S +=,求图中阴影部分的面积.18.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个关于整式乘法的数学等式,例如图①可以得到两数和的平方公式()2222a b a ab b +=++,请利用这一方法解决下列问题:(1)观察图②,写出所表示的数学等式:______;(2)观察图③,写出所表示的数学等式:______;(3)根据整式乘法的运算法则,通过计算验证上述等式.(4)已知(2)的等式中的三个字母可以取任何数,若75a x =-,42b x =-+,34c x =-+,且22237a b c ++=.请利用(2)中的结论求ab bc ac ++的值.。
人教版初二上册整式的乘法巩固提升练习1. 计算:〔1〕y y ⋅3;〔2〕12+⋅m m x x ;〔3〕62a a ⋅-2. 计算:〔1〕()3310;〔2〕()23x ;〔3〕()5m x - ;〔4〕()532a a ⋅3. 计算:〔1〕()6xy ;〔2〕231⎪⎭⎫ ⎝⎛p ;〔3〕()2323y x - 4. 计算:〔1〕()⎪⎭⎫ ⎝⎛⋅-2232xy y x ;〔2〕()223212xz yz x xy -⋅⎪⎭⎫ ⎝⎛-⋅ 5. 计算〔1〕⎪⎭⎫ ⎝⎛+-+⋅-1312322y xy x xy ;〔2〕()()ab b ab ab -⋅+-432 6. 计算:()()y x y x 342++稳固1.b 3·b 3的值是( ).(A)b 9 (B)2b 3 (C)b 6 (D)2b 62.(-c)3·(-c)5的值是( ).(A)-c 8 (B)(-c)15 (C)c 15 (D)c 83.以下计算正确的选项是( ).(A)(x 2)3=x 5 (B)(x 3)5=x 15(C)x 4·x 5=x 20 (D)-(-x 3)2=x 64.(-a 5)2+(-a 2)5的结果是( ).(A)0 (B)-2a 7 (C)2a 10 (D)-2a 105.以下计算正确的选项是( ).(A)(xy)3=xy 3 (B)(-5xy 2)2=-5x 2y 4(C)(-3x 2)2=-9x 4 (D)(-2xy 2)3=-8x 3y 66.假定(2a m b n )3=8a 9b 15成立,那么( ).(A)m =6,n =12 (B)m =3,n =12(C)m =3,n =5 (D)m =6,n =57.以下计算中,错误的个数是( ).①(3x 3)2=6x 6 ②(-5a 5b 5)2=-25a 10b 10 ③3338)32(x x -=- ④(3x 2y 3)4=81x 6y 7⑤x 2·x 3=x 5(A)2个 (B)3个 (C)4个 (D)5个8.以下算式中正确的选项是( ).(A)3a 3·2a 2=6a 6 (B)2x 3·4x 5=8x 8(C)3x ·3x 4=9x 4 (D)5y 7·5y 7=10y 149.21-m 2n ·(-mn 2x)的结果是( ).(A)x n m 2421 (B)3321n m (C)x n m 3321 (D)x n m 3321- 10.假定(8×106)×(5×102)×(2×10)=M ×10a ,那么M 、a 的值为( ).(A)M =8,a =10 (B)M =8,a =8(C)M =2,a =9 (D)M =5,a =1011.整式a m (a m -a 2+7)的结果是( ).(A)a 2m -a 2m +7a m(B)2m a -a 2m +7a m (C)a 2m -a 2+m +7a m (D)2m a -a m +2+7a m 12.化简a(b -c)-b(c -a)+c(a -b)的结果是( ).(A)2ab +2bc +2ac (B)2ab -2bc (C)2ab (D)-2bc13.方程2x(x -1)-x(2x -5)=12的解为( ).(A)x =2 (B)x =1 (C)x =-3 (D)x =414.下面计算正确的选项是( ).(A)(2a +b)(2a -b)=2a 2-b 2 (B)(-a -b)(a +b)=a 2-b 2(C)(a -3b)(3a -b)=3a 2-10ab +3b 2 (D)(a -b)(a 2-ab +b 2)=a 3-b 315.(2x +1)(x -3)=2x 2-mx -3,那么m 的值为( ).(A)-2 (B)2 (C)-5 (D)5提升1. 计算题〔1〕.23×23×2. 〔2〕.x n ·x n +1·x n -1.〔3〕.(-m)·(-m)2·(-m)3. 〔4〕.(a -b)·(a -b)3·(a -b)2.〔5〕.a 2·a 3+a ·a 4+a 5. 〔6〕.a ·a 4-3a 2·a ·a 2.2. 计算题〔1〕.(x 2)3·x 4. 〔2〕.2(x n -1)2·x n . 〔3〕.(x 3)4-3(x 6)2. 〔4〕.m ·(-m 3)2·(-m 2)3. 〔5〕.[(-2)3]4·(-2)2.〔6〕.[(x -y)2·(x -y)n -1]2. 〔7〕.[(a -b)3]2-[(b -a)2]3.3. 计算题〔1〕..)4()21(2332a a ⋅ 〔2〕.-(-2xy 2)3(-y 3)5. 〔3〕.(x 2y 3)3+(-2x 3y 2)2·y 5. 〔4〕.(-2a)6-(-2a 3)2-[(-2a)2]3.4. 计算题〔1〕.).21()103(2333c ab bc a ⋅ 〔2〕.(4x m +1z 3)·(-2x 2yz 2). 〔3〕.).32()43(5433c ab b a ab -⋅-⋅ 〔4〕.[4(a -b)m -1]·[-3(a -b)2m ]. 5. 计算题〔1〕.2a 2-a(2a -5b)-b(5a -b). 〔2〕.2(a 2b 2-ab +1)+3ab(1-ab). 〔3〕.(-2a 2b)2(ab 2-a 2b +a 2). 〔4〕.-(-x)2·(-2x 2y)3+2x 2(x 6y 3-1).6. 计算题〔1〕.(2x +3y)(x -y).〔2〕.).214)(221(-+x x 〔3〕.(a +3b 2)(a 2-3b). 〔4〕.(5x 3-4y 2)(5x 3+4y 2).〔5〕.(x 2+xy +y 2)(x -y). 〔6〕.(x -1)(x +1)(2x +1). 7.当41=a ,b =4时,求代数式32233)21()(ab b a -+-的值. 8.m =-1,n =2时,代数式)43253(4)12(562---+-+--n m m n m m m 的值是多少?9.假定n 为自然数,试说明整式n(2n +1)-2n(n -1)的值一定是3的倍数.10.假定a =-2,那么代数式(3a +1)(2a -3)-(4a -5)(a -4)的值是多少?11.(x -1)(2-kx)的结果中不含有x 的一次项,求k 的值.C 档〔跨越导练〕1. 选择题〔1〕假设单项式-3x 2a -b y 2与31x 3a +b y 5a +8b 是同类项,那么这两个单项式的积是( ).(A)-x 10y 4 (B)-x 6y 4 (C)-x 25y 4 (D)-x 5y 2〔2〕以下各题中,计算正确的选项是( ).(A)(-m 3)2(-n 2)3=m 6n 6 (B)(-m 2n)3(-mn 2)3=-m 9n 9(C)(-m 2n)2(-mn 2)3=-m 9n 8 (D)[(-m 3)2(-n 2)3]3=-m 18n 18〔3〕要使x(x +a)+3x -2b =x 2+5x +4成立,那么a ,b 的值区分是( ).(A)a =-2,b =-2 (B)a =2,b =2(C)a =2,b =-2 (D)a =-2,b =2〔4〕假设x 2与-2y 2的和为m ,1+y 2与-2x 2的差为n ,那么2m -4n 化简后为( ) (A)-6x 2-8y 2-4 (B)10x 2-8y 2-4(C)-6x 2-8y 2+4 (D)10x 2-8y 2+4〔5〕如图,用代数式表示阴影局部面积为( ).(A)ab (B)ac +bc(C)ac +(b -c)c (D)(a -c)(b -c)〔6〕设M =(x -3)(x -7),N =(x -2)(x -8),那么M 与N 的关系为( ).(A)M <N (B)M >N (C)M =N (D)不能确定〔7〕方程(x +4)(x -5)=x 2-20的解为( ).(A)x =0 (B)x =-4 (C)x =5 (D)x =402. 计算题〔1〕-(-2x 3y 2)2·(-23x 2y 3)2. 〔2〕(-2x m y n )·(-x 2y n )2·(-3xy 2)3. 〔3〕(2a 3b 2)2+(-3ab 3)·(5a 5b). 〔4〕(-5x 3)·(-2x 2)·41x 4-2x 4·(-41x 5).〔5〕-43(-2x 2y)2·(-31xy)-(-xy)3·(-x 2). 〔6〕-2[(-x)2y]2(-3x m y n ).〔7〕4a -3[a -3(4-2a)+8]. 〔8〕).3()]21(2)3([322b a b b a b ab -⋅--- 〔9〕)].21(36[32y x xy xy xy -- 〔10〕.6)6121(2)2143(2121xy y x xy y x n n ⋅--⋅-++〔11〕).12)(5(21+--a a 〔12〕-3(2x +3y)(7y -x).〔13〕)33)(2(3+-b b a . 〔14〕(3a +2)(a -4)-3(a -2)(a -1).3. 解答题〔1〕解方程2x(x -2)-6x(x -1)=4x(1-x)+16.〔2〕解不等式2x 2(x -2)+4(x 2-x)≥x(2x 2+5)-3.〔3〕ax(5x -3x 2y +by)=10x 2-6x 3y +2xy ,求a ,b 的值.〔4〕先化简,再求值:4x(y -x)+(2x +y)(2x -y),其中x =21,y =-2. 〔5〕解不等式(x -3)(x +4)+22>(x +1)(x +2).〔6〕在(x 2+ax +b)(2x 2-3x -1)的积中,x 3项的系数是-5,x 2项的系数是-6,求a 、b .〔7〕(x 2+px +8)(x 2-3x +q)的展开式中不含x 2和x 3项,求p 、q 的值. 〔8〕经过对代数式停止适当变化求出代数式的值①假定x +5y =6,求x 2+5xy +30y ;②假定m 2+m -1=0,求m 3+2m 2+2020;③假定2x +y =0,求4x 3+2xy(x +y)+y 3.整式的乘法参考答案1. 解:〔1〕4133y y y y ==⋅+〔2〕131212++++==⋅m m m m m x x x x〔3〕86262a a a a -=-=⋅-+2. 解:〔1〕()93333101010==⨯〔2〕()62323x x x ==⨯〔3〕()5m x -m m x x 55-=-=⨯ 〔4〕()11532532a a a a ==⋅+⨯3. 解:〔1〕()66666y x y x xy =⋅= 〔2〕2222913131p p p =⋅⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛ 〔3〕()()()()6423222232933y x y x y x =⋅⋅-=-4. 解:〔1〕()3322223232132y x y y x x xy y x -=⋅⋅⋅⎪⎭⎫ ⎝⎛⨯-=⎪⎭⎫ ⎝⎛⋅- 〔2〕()()3242222332123212z y x x yz xy x x xz yz x xy =⋅⋅⋅⋅-⨯⎪⎭⎫ ⎝⎛-⨯=-⋅⎪⎭⎫ ⎝⎛-⋅ 5. 解:〔1〕()()()()xy xy y x y x xy y xy xy xy x xy y xy x xy 33633313231312332232222-+--=-+--+⋅-+⋅-=⎪⎭⎫ ⎝⎛+-+⋅- 〔2〕()()()()()()2223222434343ab b a b a ab b ab ab ab ab ab b ab ab -+-=-+--+-=-⋅+-6. 解:()()()()22226114683434234342y xy x y xy xy x y x y y x x y x y x ++=+++=+++=++稳固1.C 2.D 3.B 4.A 5.D 6.C 7.C 8.B 9.C 10.A11.C 12.B 13.D 14.C 15.D提升1. 〔1〕128 〔2〕x 3n 〔3〕m 6 〔4〕(a -b)6 〔5〕3a 5 〔6〕-2a 52. 〔1〕x 10 〔2〕2x 3n -2 〔3〕-2x 12 〔4〕-m 13 〔5〕214 〔6〕(x -y)2n +2 〔7〕03. 〔1〕2a 12 〔2〕-8x 3y 21 〔3〕5x 6y 9 〔4〕-4a 64. 〔1〕544203c b a 〔2〕-8x m +3yz 5 〔3〕c b a 8525 〔4〕-12(a -b)3m -1 5. 〔1〕b 2 〔2〕-a 2b 2+ab +2 〔3〕4a 5b 4-4a 6b 3+4a 6b 2 〔4〕10x 8y 3-2x 26. 〔1〕2x 2+xy -3y 2 〔2〕.143122-+x x 〔3〕a 3-3ab +3a 2b 2-9b 3 〔4〕25x 6-16y 4 〔5〕x 3-y 3 〔6〕2x 3+x 2-2x -17.568.279.3n 是3的倍数10. -4311.k =-2C 档〔跨越导练〕1. 〔1〕A 〔2〕D 〔3〕C 〔4〕A 〔5〕C 〔6〕B 〔7〕A2. 〔1〕-9x 10y 10 〔2〕54x m +7y 3n +6 〔3〕-11a 6b 4 〔4〕3x 9 〔5〕0 〔6〕6x m +4y n +2.〔7〕-17a +12. 〔8〕-3a 3b 4. 〔9〕.2992322y x y x + 〔10〕.232y x n +- 〔11〕252112---a a 〔12〕-33xy +6x 2-63y 2 〔13〕ab 2+7ab -18a 〔14〕-a -143. 〔1〕x =-8 〔2〕31≤x 〔3〕a =2;b =1 〔4〕-8 〔5〕x <4 〔6〕a =-1;b =-4 〔7〕p =3;q =1 〔8〕①36;②2021;③0.。
【巩固练习】 一.选择题1. 在下列计算中,不能用平方差公式计算的是( ) A.))((n m n m +-- B.()()3333x y xy -+ C.))((b a b a --- D.()()2222c d dc -+2.若x y +=6,x y -=5,则22x y -等于( ). A.11 B.15 C.30D.603.(2016•怀化)下列计算正确的是( )A .(x +y )2=x 2+y 2B .(x ﹣y )2=x 2﹣2xy ﹣y 2C .(x +1)(x ﹣1)=x 2﹣1D .(x ﹣1)2=x 2﹣1 4.下列多项式不是完全平方式的是( ). A.244x x -- B.m m ++241C.2296a ab b ++D.24129t t ++5.(2015春•重庆校级期中)已知关于x 的二次三项式4x 2﹣mx+25是完全平方式,则常数m 的值为( ) A .10 B .±10 C .﹣20 D .±20 6.下列等式不能恒成立的是( ). A.()222396x y x xy y -=-+B.()()22a b c c a b +-=-- C.22241)21(n mn m n m +-=- D.()()()2244x y x y x y x y -+-=-二.填空题7.若2216x ax ++是一个完全平方式,则a =______. 8. 若2294x y +=()232x y M ++,则M =______.9. (2016•巴中)若a +b=3,ab=2,则(a ﹣b )2= .10.(2015春•陕西校级期末)(1+x )(1﹣x )(1+x 2)(1+x 4)= . 11. ()25(2)(2)21x x x -+--=___________.12.若()212x -=,则代数式225x x -+的值为________.三.解答题13.(2015春•兴平市期中)用平方差公式或完全平方公式计算(必须写出运算过程). (1)69×71; (2)992.14.先化简,再求值:22)1(2)1)(1(5)1(3-+-+-+a a a a ,其中3=a .15.已知:2225,7x y x y +=+=,且,x y >求x y -的值.【答案与解析】 一.选择题1. 【答案】A ;【解析】A 中m 和m -符号相反,n 和n -符号相反,而平方差公式中需要有一项是符号相同的,另一项互为相反数.2. 【答案】C ;【解析】()()22x y x y x y -=+-=6×5=30. 3. 【答案】C ; 【解析】A 、(x +y )2=x 2+y 2+2xy ,故此选项错误;B 、(x ﹣y )2=x 2﹣2xy +y 2,故此选项错误;C 、(x +1)(x ﹣1)=x 2﹣1,正确;D 、(x ﹣1)2=x 2﹣2x +1,故此选项错误; 故选:C .4. 【答案】A ;【解析】2211()42m m m ++=+;22296(3)a ab b a b ++=+;224129(23)t t t ++=+.5. 【答案】D ;【解析】解:∵关于x 的二次三项式4x 2﹣mx+25是完全平方式,∴﹣m=±20,即m=±20. 故选:D .6. 【答案】D ;【解析】()()()()22222x y x y x yx y -+-=-.二.填空题7. 【答案】±4;【解析】222216244x ax x x ++=±⨯+,所以4a =±. 8. 【答案】12xy -;【解析】2294x y +=()23212x y xy +-.9. 【答案】1;【解析】将a +b=3平方得:(a +b )2=a 2+2ab +b 2=9,把ab=2代入得:a 2+b 2=5,则(a ﹣b )2=a 2﹣2ab +b 2=5﹣4=1.10.【答案】1﹣x 8; 【解析】解:(1+x )(1﹣x )(1+x 2)(1+x 4)=(1﹣x 2)(1+x 2)(1+x 4) =(1﹣x 4)(1+x 4) =1﹣x 8,故答案为:1﹣x 811.【答案】2421x x +-;【解析】()()()22225(2)(2)2154441421x x x x x x x x -+--=---+=+-.12.【答案】6;【解析】因为()212x -=,所以2221,256x x x x -=-+=.三.解答题 13.【解析】 解:(1)原式=(70﹣1)×(70+1)=4900﹣1=4899; (2)原式=(100﹣1)2=10000﹣200+1=9801. 14.【解析】解:223(1)5(1)(1)2(1)a a a a +-+-+-()()()22232151221210a a a a a a =++--+-+=+当3,=231016a =⨯+=时原式. 15.【解析】解:∵()2222x y x y xy +=++,且2225,7x y x y +=+=∴27252xy =+,∴12xy =,∵()2222252121x y x y xy -=+-=-⨯=∴1x y -=± ∵,x y >即0x y -> ∴1x y -=.附录资料:【巩固练习】 一、选择题1. (2016•长沙模拟) 如图所示,△ABC ≌△DEC ,则不能得到的结论是( ) A. AB =DE B. ∠A =∠D C. BC =CD D. ∠ACD =∠BCE2. 如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A. 4cmB. 5cmC. 6cmD. 以上都不对3. 下列说法中正确的有()①形状相同的两个图形是全等图形②对应角相等的两个三角形是全等三角形③全等三角形的面积相等④若△ABC≌△DEF,△DEF ≌△MNP,△ABC≌△MNP.A.0个B.1个C.2个D.3个4. (2014秋•庆阳期末)如图,△ABC≌△A′B′C,∠ACB=90°,∠A′CB=20°,则∠BCB′的度数为()A.20°B.40°C.70°D.90°5. 已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()A.6cmB.7cmC.8cmD.9cm6. 将一张长方形纸片按如图所示的方式折叠,BC、BD分别为折痕,则∠CBD的度数为()A.60° B.75°C.90°D.95°二、填空题7.(2014秋•安阳县校级期末)如图所示,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是___________,图中相等的线段有____________________________.8. (2016•成都)如图,△ABC ≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=___________.9. 已知△DEF ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DEF 的边中必有一条边等于______.10. 如图,如果将△ABC 向右平移CF 的长度,则与△DEF 重合,那么图中相等的线段有__________;若∠A =46°,则∠D =________.11.已知△ABC ≌△'''A B C ,若△ABC 的面积为10 2cm ,则△'''A B C 的面积为________2cm ,若△'''A B C 的周长为16cm ,则△ABC 的周长为________cm .12. △ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______ . 三、解答题13.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数与EC 的长.14. (2014秋•射阳县校级月考)如图,在图中的两个三角形是全等三角形,其中A 和D 、B 和E 是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上); (2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.15. 如图,E为线段BC上一点,AB⊥BC,△ABE≌△ECD.判断AE与DE的关系,并证明你的结论.【答案与解析】一.选择题1. 【答案】C;【解析】因为△ABC≌△DEC,可得:AB=DE,∠A=∠D,BC=EC,∠ACD=∠BCE,故选C.2. 【答案】B;【解析】AD与BC是对应边,全等三角形对应边相等.3. 【答案】C;【解析】③和④是正确的;4. 【答案】C;【解析】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠BCB′=∠A′CB′﹣∠A′CB=70°.故选C.5. 【答案】A;【解析】EF边上的高=1826 6⨯=;6. 【答案】C;【解析】折叠所成的两个三角形全等,找到对应角可解.二.填空题7. 【答案】∠OBA,OA=OC、OB=OD、AB=CD;【解析】解:∵△AOB≌△COD,∠AOB=∠COD,∠A=∠C,∴∠D=∠OBA,OA=OC、OB=OD、AB=CD,故答案为:∠OBA,OA=OC、OB=OD、AB=CD.8. 【答案】120°;【解析】∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠B=120°.9. 【答案】4cm或9.5cm;【解析】DE=DF=9.5cm,EF=4cm;10.【答案】AB=DE、AC=DF、BC=EF、BE=CF, 46°;11.【答案】10,16;【解析】全等三角形面积相等,周长相等;12.【答案】40°;【解析】见“比例”设k,用三角形内角和为180°求解.三.解答题13.【解析】解:在△ABC中,∠ACB=180°-∠A-∠B,又∠A=30°,∠B=50°,所以∠ACB=100°.又因为△ABC≌△DEF,所以∠ACB=∠DFE,BC=EF(全等三角形对应角相等,对应边相等)所以∠DFE=100°EC=EF-FC=BC-FC=BF=2.14. 【解析】解:(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,理由是:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠DFE,∴AB∥DE,BC∥EF.15. 【解析】 AE=DE ,且AE⊥DE证明:∵△ABE≌△ECD,∴∠B=∠C,∠A=∠DEC,∠AEB=∠D,AE=DE又∵AB⊥BC∴∠A+∠AEB=90°,即∠DEC+∠AEB=90°∴AE⊥DE∴AE与DE垂直且相等.。
【巩固练习】一.选择题1.下列各多项式相乘,可以用平方差公式的有( ).①()()2552ab x x ab -++ ②()()ax y ax y ---③()()ab c ab c --- ④()()m n m n +--A.4个B.3个C.2个D.1个2. (2016•濮阳校级自主招生)若x 2+mx +k 是一个完全平方式,则k 等于( )A .m 2B .m 2C .m 2D .m 23.下面计算()()77a b a b -++---正确的是( ).A.原式=(-7+a +b )[-7-(a +b )]=-27-()2a b + B.原式=(-7+a +b )[-7-(a +b )]=27+()2a b + C.原式=[-(7-a -b )][-(7+a +b )]=27-()2a b + D.原式=[-(7+a )+b ][-(7+a )-b ]=()227a b +- 4.(a +3)(2a +9)(a -3)的计算结果是( ).A.4a +81B.-4a -81C. 4a -81D.81-4a 5.下列式子不能成立的有( )个.①()()22x y y x -=- ②()22224a b a b -=- ③()()()32a b b a a b -=-- ④()()()()x y x y x y x y +-=---+ ⑤()22112x x x -+=-- A.1 B.2 C.3 D.46.(2015春•开江县期末)计算20152﹣2014×2016的结果是( )A .﹣2B .﹣1C .0D .1二.填空题7.(2016•湘潭)多项式x 2+1添加一个单项式后可变为完全平方式,则添加的单项式可以 是 (任写一个符合条件的即可).8. 已知15a a +=,则221a a+的结果是_______. 9. 若把代数式223x x --化为()2x m k -+的形式,其中m ,k 为常数,则m +k =_______.10.(2015春•深圳期末)若A=(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是 .11.对于任意的正整数n ,能整除代数式()()()()313133n n n n +---+的最小正整数是_______.12. 如果()()221221a b a b +++-=63,那么a +b 的值为_______.三.解答题13.计算下列各值.22(1)10199+ ()()()2222(2)224m m m +-+(3)()()a b c a b c +--+ 2(4)(321)x y -+14.(2015春•成华区月考)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4、12、20都是这种“神秘数”.(1)28和2012这两个数是“神秘数”吗?试说明理由;(2)试说明神秘数能被4整除;(3)两个连续奇数的平方差是神秘数吗?试说明理由.15. 已知:()26,90,a b ab c a -=+-+=求a b c ++的值.【答案与解析】一.选择题1. 【答案】B ;【解析】①,②,③可用平方差公式.2. 【答案】D ;【解析】∵x 2+mx +k 是一个完全平方式,∴k=m 2,故选D .3. 【答案】C ;4. 【答案】C ;【解析】(a +3)(2a +9)(a -3)=224(9)(9)81a a a -+=-. 5. 【答案】B ;【解析】②,③不成立.6. 【答案】D ;【解析】解:原式=20152﹣(2015﹣1)×(2015+1)=20152﹣(20152﹣1)=20152﹣20152+1=1,故选D.二.填空题7. 【答案】2x ;【解析】解:∵x 2+1+2x=(x +1)2,∴添加的单项式可以是2x .8. 【答案】23;【解析】21()25,a a +=222211225,23a a a a ++=+=. 9. 【答案】-3;【解析】()22223211314x x x x x --=-+--=--,m =1,k =-4.10.【答案】6;【解析】解:(2+1)(22+1)(24+1)(28+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1,=(22﹣1)(22+1)(24+1)(28+1)+1,=(24﹣1)(24+1)(28+1)+1,=(28﹣1)(28+1)+1,=(216﹣1)(216+1)+1,=232﹣1+1,因为232的末位数字是6,所以原式末位数字是6.故答案为:6.11.【答案】10;【解析】利用平方差公式化简得10()21n -,故能被10整除.12.【答案】±4;【解析】()()221221a b a b +++-()222163,228,4a b a b a b =+-=+=±+=±.三.解答题13.【解析】解:(1)原式=()()2210011001=100002001100002001=20002++-+++-+(2)原式=()()()22222484441632256m m m m m -+=-=-+ (3)原式=()222222a b c a b c bc --=--+ (4)原式=()()222(321)3212322322x y x y x y x y -+=++-⨯⨯+⨯-⨯ 229412641x y xy x y =+-+-+14.【解析】解:(1)是,理由如下:∵28=82﹣62,2012=5042﹣5022,∴28是“神秘数”;2012是“神秘数”;(2)“神秘数”是4的倍数.理由如下:(2k+2)2﹣(2k )2=(2k+2+2k )(2k+2﹣2k )=2(4k+2)=4(2k+1),∴“神秘数”是4的倍数;(3)设两个连续的奇数为:2k+1,2k ﹣1,则(2k+1)2﹣(2k ﹣1)2=8k ,而由(2)知“神秘数”是4的倍数,但不是8的倍数,所以两个连续的奇数的平方差不是神秘数.15.【解析】解:∵6,a b -=∴6a b =+∵()290,ab c a +-+=∴()()2690,b b c a ++-+= ∴()()2230,b c a ++-= ∴3,b c a =-=∴()363,3a c =-+==∴()3333a b c ++=+-+=.。
14.2 乘法公式(巩固作业)人教版八年级上册一.选择题1.已知(2022﹣m)(2020﹣m)=2021,那么(2022﹣m)2+(2020﹣m)2的值为()A.4046B.2023C.4042D.40432.若n满足关系式(n﹣2020)2+(2021﹣n)2=3,则代数式(n﹣2020)(2021﹣n)=()A.﹣1B.0C.D.13.下列四种说法中正确的有()①关于x、y的方程2x+6y=199存在整数解.②若两个不等实数a、b满足2(a4+b4)=(a2+b2)2,则a、b互为相反数.③若(a﹣c)2﹣4(a﹣b)(b﹣c)=0,则2b=a+c.④若x2﹣yz=y2﹣xz=z2﹣xy,则x=y=z.A.①④B.②③C.①②④D.②③④4.如图,点C是线段BG上的一点,以BC,CG为边向两边作正方形,面积分别是S1和S2,两正方形的面积和S1+S2=40,已知BG=8,则图中阴影部分面积为()A.6B.8C.10D.125.如果一个正整数能表示为两个正整数的平方差,那么这个正整数就称为“智慧数”,例如:7=7×1=(4+3)×(4﹣3)=42﹣32,7就是一个智慧数,8=4×2=(3+1)×(3﹣1)=32﹣12,8也是一个智慧数,则下列各数不是智慧数的是()A.2021B.2022C.2023D.20246.如果4x2+2kx+25是一个完全平方式,那么k的值是()A.20B.±20C.10D.±107.若(a+b)2=25,a2+b2=13,则ab的值为()A.6B.﹣6C.12D.﹣128.2×(3+1)(32+1)(34+1)(38+1)(316+1)+1的计算结果是()A.332+1B.332﹣1C.331D.3329.从前,一位农场主把一块边长为a米(a>4)的正方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的一边增加4米,相邻的另一边减少4米,变成长方形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.没有变化B.变大了C.变小了D.无法确定10.将四个长为a,宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2,若S1=2S2,则a,b满足()A.a=2b B.a=3b C.2a=3b D.2a=5b二.填空题11.计算20222﹣2020×2024的结果是.12.若x+y=3,xy=﹣5,则(x﹣y)2=.13.如图,由四张大小相同的矩形纸片拼成一个大正方形和一个小正方形.如果大正方形的面积为75,小正方形的面积为3,则矩形的宽AB为.14.如图,边长分别为a、b的两个正方形并排放在一起,当a+b=8,ab=10时,阴影部分的面积为.15.如图,边长为6的正方形ABCD中放置两个长和宽分别为a,b(a<6,b<6)的长方形,若长方形的周长为16,面积为15.75,则图中阴影部分面积S1+S2+S3=.三.解答题16.已知A=(2y﹣x)(﹣2y﹣x),B=4y(x﹣2y).(1)对A,B进行整式乘法运算;(2)甲、乙两位同学用如图所示的方法比较A,B的大小.甲认为:A大于B;乙认为:A不小于B.通过计算判断谁的说法正确.17.乘法公式(a+b)2=a2+2ab+b2给出了a+b、a2+b2与ab的数量关系,灵活的应用这个关系,可以解决一些数学问题.(1)若a+b=5,ab=3,求a2+b2的值;(2)若m满足(11﹣m)2+(m+9)2=10,求(11﹣m)(m+9)的值;(3)如图,点E、G分别在正方形ABCD的边AD、AB上,且BG=DE+1,以AG为一边作正方形AGJK,以AE的长为边长过点E作正方形GFIH,若长方形AEFG的面积是,求阴影部分的面积.18.(1)【观察】如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).请你写出(a+b)2,(a﹣b)2,ab之间的等量关系:.(2)【应用】若m+n=6,mn=5,则m﹣n=;(3)【拓展】如图3,正方形ABCD的边长为x,AE=5,CG=15,长方形EFGD的面积是300,四边形NGDH和四边形MEDQ都是正方形,四边形PQDH是长方形,求图中阴影部分的面积.19.学习了平方差、完全平方公式后,小聪同学对学习和运用数学公式非常感兴趣,他通过上网查阅,发现还有很多数学公式,如立方和公式:(a+b)(a2﹣ab+b2)=a3+b3,他发现,运用立方和公式可以解决很多数学问题,请你也来试试利用立方和公式解决以下问题:(1)【公式理解】公式中的字母可以代表任何数、字母或式子.①化简:(a﹣b)(a2+ab+b2)=;②计算:(993+1)÷(992﹣99+1)=;(2)【公式运用】已知:+x=5,求的值;(3)【公式应用】如图,将两块棱长分别为a、b的实心正方体橡皮泥揉合在一起,重新捏成一个高为的实心长方体,问这个长方体有无可能是正方体,若可能,a与b应满足什么关系?若不可能,说明理由.20.综合与实践我们知道,图形是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.小明同学用如图1所示不同颜色的正方形与长方形纸片拼成了一个如图2所示的正方形.(1)用不同的代数式表示图2中阴影部分的面积,写出你能得到的等式,并用乘法公式说明这个等式成立;(2)小明想到利用(1)中得到的等式可以完成了下面这道题:如果x满足(6﹣x)(x﹣2)=3.求(6﹣x)2+(x﹣2)2的值.小明想:如果设6﹣x=m,x﹣2=n,那要求的式子就可以写成m2+n2了,请你按照小明的思路完成这道题目.(3)如图3,在长方形ABCD中,AB=10,BC=6,E、F是BC,CD上的点,且BE=DF=x,分别以FC,CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为40,求图中阴影部分的面积和.。
人教新版八年级上学期《14.2 乘法公式》同步练习卷一.选择题(共15小题)1.下列各式:①(a﹣b)(b+a)②(a﹣b)(﹣a﹣b)③(﹣a﹣b)(a+b)④(a﹣b)(﹣a+b),能用于平方差公式计算的有()A.1 个B.2 个C.3 个D.4 个2.如果x2+6x+n2是一个完全平方式,则n值为()A.3B.﹣3C.6D.±33.(a﹣b+c)(a﹣b﹣c)的计算结果是()A.a2﹣b2+c2B.a2+b2﹣c2C.a 2﹣2ab+b2﹣c2D.a2﹣2ac+c2﹣b24.若x2﹣2(a﹣3)x+25是完全平方式,那么a的值是()A.﹣2,8B.2C.8D.±25.若(2﹣x)(2+x)(4+x2)=16﹣x n,则n的值等于()A.6B.4C.3D.26.已知(m﹣n)2=36,(m+n)2=400,则m2+n2的值为()A.4036B.2016C.2017D.2187.已知a+b=6,a﹣b=5,则a2﹣b2的值是()A.11B.15C.30D.608.下列各式中,能用平方差公式计算的是()A.(p+q)(﹣p﹣q)B.(p﹣q)(q﹣p)C.(5x+3y)(3y﹣5x)D.(2a+3b)(3a﹣2b)9.若x2+kx+81是一个完全平方式,则k的值为()A.18B.﹣18C.±18D.±910.若x2+2(m﹣1)x+4是一个完全平方式,则m的值为()A.2B.3C.﹣1or3D.2or﹣2 11.若a+b=10,ab=11,则代数式a2﹣ab+b2的值是()A.89B.﹣89C.67D.﹣6712.如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为()A.a2﹣b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b213.若a=4+,则a2+的值为()A.14B.16C.18D.2014.计算20172﹣2016×2018的结果是()A.2B.﹣2C.﹣1D.115.如果(x+1)2=3,|y﹣1|=1,那么代数式x2+2x+y2﹣2y+5的值是()A.7B.9C.13D.14二.填空题(共7小题)16.计算:(3a﹣b)(﹣3a﹣b)=.17.计算:(2a﹣1)(﹣2a﹣1)=.18.如果4x2+mx+9是完全平方式,则m的值是.19.已知(m+n)2=7,(m﹣n)2=3,则m2+n2=.20.化简:(2a﹣3)(2a+3)﹣(a﹣1)2=.21.计算:1102﹣109×111=.22.已知(a+b)2=1,(a﹣b)2=49,则ab=.三.解答题(共13小题)23.如图,正方形ABCD的边长为a,点E在AB边上,四边形EFGB也是正方形,它的边长为b(a>b)连结AF、CF、AC,若a+b=10,ab=20,求阴影部分的面积.24.计算:(x﹣3y+2c)(x+3y+2c).25.已知x2+y2=25,x+y=7,求xy和x﹣y的值.26.已知图甲是一个长为2a,宽为2b的长方形,沿图甲中虚线用剪刀均匀分成四个小长方形,然后按图乙的形状拼成一个正方形.(1)请将图乙中阴影部分正方形的边长用含a、b的代数式表示;(2)请用两种不同的方法求图乙中阴影部分的面积S;(3)观察图乙,并结合(2)中的结论,写出下列三个整式:(a+b)2,(a﹣b)2,ab之间的等式;(4)根据(3)中的等量关系,解决如下问题:当a+b=8,ab=12时,求(a﹣b)2的值.27.如图,两个正方形边长分别为a、b,(1)求阴影部分的面积;(2)如果a+b=12,ab=30,求阴影部分的面积.28.利用乘法公式计算:(1)5002﹣499×501.(2)50×4929.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形.并用A种纸片一张,B种纸片张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:;方法2:(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.30.利用乘法公式计算:(1)1282﹣129×127(2)(2x﹣4y+3z)(2x﹣4y﹣3z)31.化简:(a﹣1)(a+3)﹣(2﹣a)(2+a)32.看图解答:(1)通过观察比较左、右两图的阴影部分面积,可以得到哪个乘法公式?(2)运用你所得到的公式计算:10.3×9.7.33.(2+1)(22+1)(24+1)(28+1)(216+1)34.数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图1可以解释完全平方公式:(a+b)2=a2+2ab+b2.(1)如图2(图中各小长方形大小均相等),请用两种不同的方法求图2中阴影部分的面积(不化简):方法1:.方法2:.(2)由(1)中两种不同的方法,你能得到怎样的等式?请说明这个等式成立;(3)已知(2m+n)2=13,(2m﹣n)2=5,请利用(2)中的等式,求mn的值.35.已知a+b=5,ab=6,求下列各式的值.(1)a2+b2;(2)a2+b2﹣3ab;人教新版八年级上学期《14.2 乘法公式》同步练习卷参考答案与试题解析一.选择题(共15小题)1.下列各式:①(a﹣b)(b+a)②(a﹣b)(﹣a﹣b)③(﹣a﹣b)(a+b)④(a﹣b)(﹣a+b),能用于平方差公式计算的有()A.1 个B.2 个C.3 个D.4 个【分析】利用平方差公式的结构特征判断即可.【解答】解:①(a﹣b)(b+a)=a2﹣b2,符合题意;②(a﹣b)(﹣a﹣b)=b2﹣a2,符合题意;③(﹣a﹣b)(a+b)=﹣(a+b)2=﹣a2﹣2ab﹣b2,不符合题意;④(a﹣b)(﹣a+b)=﹣(a﹣b)2=﹣a2+2ab﹣b2,不符合题意,故选:B.【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.2.如果x2+6x+n2是一个完全平方式,则n值为()A.3B.﹣3C.6D.±3【分析】利用完全平方公式的结构特征判断即可确定出n的值.【解答】解:∵x2+6x+n2是一个完全平方式,∴n=±3,故选:D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.3.(a﹣b+c)(a﹣b﹣c)的计算结果是()A.a2﹣b2+c2B.a2+b2﹣c2C.a 2﹣2ab+b2﹣c2D.a2﹣2ac+c2﹣b2【分析】先利用平方差公式计算,再利用完全平方公式计算可得.【解答】解:原式=(a﹣b)2﹣c2=a2﹣2ab+b2﹣c2,故选:C.【点评】本题主要考查平方差公式和完全平方公式,解题的关键是掌握平方差公式的结构特点.4.若x2﹣2(a﹣3)x+25是完全平方式,那么a的值是()A.﹣2,8B.2C.8D.±2【分析】根据完全平方公式即可求出答案.【解答】解:∵(x±5)2=x2±10x+25,∴﹣2(a﹣3)=±10,∴a=﹣2或8,故选:A.【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.5.若(2﹣x)(2+x)(4+x2)=16﹣x n,则n的值等于()A.6B.4C.3D.2【分析】把等号左边利用平方差公式进行计算,再根据x的指数相等求解.【解答】解:(2﹣x)(2+x)(4+x2)=(4﹣x2)(4+x2)=16﹣x4,∵(2﹣x)(2+x)(4+x2)=16﹣x n,∴16﹣x4=16﹣x n,则n=4,故选:B.【点评】本题主要考查平方差公式,解题的关键是掌握平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.即(a+b)(a﹣b)=a2﹣b2.6.已知(m﹣n)2=36,(m+n)2=400,则m2+n2的值为()A.4036B.2016C.2017D.218【分析】根据完全平方公式即可求出答案.【解答】解:∵(m+n)2=m2+2mn+n2,(m﹣n)2=m2﹣2mn+n2,∴2m2+2n2=36+400,∴m2+n2=218,故选:D.【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.7.已知a+b=6,a﹣b=5,则a2﹣b2的值是()A.11B.15C.30D.60【分析】已知等式利用平方差公式展开,即可求出所求式子的值.【解答】解:∵a+b=6,a﹣b=5,∴a2﹣b2=(a+b)(a﹣b)=30,故选:C.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.8.下列各式中,能用平方差公式计算的是()A.(p+q)(﹣p﹣q)B.(p﹣q)(q﹣p)C.(5x+3y)(3y﹣5x)D.(2a+3b)(3a﹣2b)【分析】运用平方差公式(a+b)(a﹣b)=a2﹣b2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【解答】解:A、不存在相同的项,不能运用平方差公式进行计算B、不存在相同的项,不能运用平方差公式进行计算,C、3y是相同的项,互为相反项是5x与﹣5x,符合平方差公式的要求;D、不存在相同的项,不能运用平方差公式进行计算;故选:C.【点评】本题考查了平方差公式的应用,熟记公式是解题的关键.9.若x2+kx+81是一个完全平方式,则k的值为()A.18B.﹣18C.±18D.±9【分析】利用完全平方公式的结构特征判断即可求出k的值.【解答】解:∵x2+kx+81是一个完全平方式,∴k=±18,故选:C.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.10.若x2+2(m﹣1)x+4是一个完全平方式,则m的值为()A.2B.3C.﹣1or3D.2or﹣2【分析】根据完全平方公式得出2(m﹣1)x=±2•x•2,求出m即可.【解答】解:∵x2+2(m﹣1)x+4是一个完全平方式,∴2(m﹣1)x=±2•x•2,解得:m=3或﹣1,故选:C.【点评】本题考查了完全平方公式的应用,能熟记公式的特点是解此题的关键.11.若a+b=10,ab=11,则代数式a2﹣ab+b2的值是()A.89B.﹣89C.67D.﹣67【分析】把a+b=10两边平方,利用完全平方公式化简,将ab=11代入求出a2+b2的值,代入原式计算即可得到结果.【解答】解:把a+b=10两边平方得:(a+b)2=a2+b2+2ab=100,把ab=11代入得:a2+b2=78,∴原式=78﹣11=67,故选:C.【点评】此题考查了完全平方公式的运用,熟练掌握完全平方公式的结构特征是解本题的关键.12.如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为()A.a2﹣b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b2【分析】边长为a的大正方形剪去一个边长为b的小正方形后的面积=a2﹣b2,新的图形面积等于(a+b)(a﹣b),由于两图中阴影部分面积相等,即可得到结论.【解答】解:图中阴影部分的面积等于两个正方形的面积之差,即为a2﹣b2;剩余部分通过割补拼成的平行四边形的面积为(a+b)(a﹣b),∵前后两个图形中阴影部分的面积相等,∴a2﹣b2=(a+b)(a﹣b).故选:B.【点评】本题考查了利用几何方法验证平方差公式,解决问题的关键是根据拼接前后不同的几何图形的面积不变得到等量关系.13.若a=4+,则a2+的值为()A.14B.16C.18D.20【分析】先将a=4+,整理成a﹣=4,再两边平方,展开整理即可得出结论.【解答】解:∵a=4+,∴a﹣=4,两边平方得,(a﹣)2=16,∴a2+﹣2=16,即:a2+=18,故选:C.【点评】此题主要考查了完全平方公式,给a﹣=4两边平方是解本题的关键.14.计算20172﹣2016×2018的结果是()A.2B.﹣2C.﹣1D.1【分析】原式变形后,利用平方差公式计算即可求出值.【解答】解:原式=20172﹣(2017﹣1)×(2017+•1)=20172﹣20172+1=1,故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.15.如果(x+1)2=3,|y﹣1|=1,那么代数式x2+2x+y2﹣2y+5的值是()A.7B.9C.13D.14【分析】原式利用完全平方公式化简,将已知等式代入计算即可求出值.【解答】解:∵(x+1)2=3,|y﹣1|=1,∴原式=(x2+2x+1)+(y2﹣2y+1)+3=(x+1)2+(y﹣1)2+3=3+1+3=7,故选:A.【点评】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.二.填空题(共7小题)16.计算:(3a﹣b)(﹣3a﹣b)=﹣9a2+b2.【分析】平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.依此即可求解.【解答】解:(3a﹣b)(﹣3a﹣b)=﹣9a2+b2.故答案为:﹣9a2+b2.【点评】考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.17.计算:(2a﹣1)(﹣2a﹣1)=1﹣4a2.【分析】根据平方差公式计算即可.【解答】解:原式=1﹣4a2,故答案为:1﹣4a2【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.18.如果4x2+mx+9是完全平方式,则m的值是±12.【分析】利用完全平方公式化简即可求出m的值.【解答】解:∵4x2+mx+9是完全平方式,∴m=±12,故答案为:±12【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.19.已知(m+n)2=7,(m﹣n)2=3,则m2+n2=5.【分析】利用完全平方公式计算即可求出所求.【解答】解:∵(m+n)2=m2+n2+2mn=7①,(m﹣n)2=m2+n2﹣2mn=3②,∴①+②得:2(m2+n2)=10,则m2+n2=5,故答案为:5【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.20.化简:(2a﹣3)(2a+3)﹣(a﹣1)2=3a2+2a﹣10.【分析】先根据乘法公式进行计算,再合并同类项即可.【解答】解:(2a﹣3)(2a+3)﹣(a﹣1)2=(4a2﹣9)﹣(a2﹣2a+1)=4a2﹣9﹣a2+2a﹣1=3a2+2a﹣10,故答案为:3a2+2a﹣10.【点评】本题考查了平方差公式和完全平方公式,能熟练地运用公式进行计算是解此题的关键.21.计算:1102﹣109×111=1.【分析】原式变形后,利用平方差公式计算即可求出值.【解答】解:原式=1102﹣(110﹣1)×(110+1)=1102﹣1102+1=1,故答案为:1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.22.已知(a+b)2=1,(a﹣b)2=49,则ab=﹣12.【分析】根据完全平方公式得到a2+2ab+b2=1,a2﹣2ab+b2=49,把两式相减,可计算出ab的值.【解答】解:∵(a+b)2=1,(a﹣b)2=49,∴a2+2ab+b2=1,a2﹣2ab+b2=49,两式相减,可得4ab=﹣48,∴ab=﹣12.故答案为:﹣12.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.解决问题的关键是熟悉完全平方公式的变形.三.解答题(共13小题)23.如图,正方形ABCD的边长为a,点E在AB边上,四边形EFGB也是正方形,它的边长为b(a>b)连结AF、CF、AC,若a+b=10,ab=20,求阴影部分的面积.【分析】根据完全平方公式即可求出答案.【解答】解:∵a2+b2=(a+b)2﹣2ab=100﹣40=60,∴阴影部分的面积=a2+b2﹣(a+b)•b﹣a2=60﹣×ab﹣b2﹣a2=60﹣×20﹣×60=60﹣10﹣30=20.【点评】本题考查图形的面积计算,涉及三角形面积公式,正方形面积公式,完全平方公式,题目较为综合.24.计算:(x﹣3y+2c)(x+3y+2c).【分析】根据平方差公式和完全平方公式计算.【解答】解:原式=[(x+2c)﹣3y][(x+2c)﹣3y]=(x+2c)2﹣(3y)2=x2+4xc+4c2﹣9y2.【点评】本题考查的是多项式乘多项式,掌握平方差公式和完全平方公式是解题的关键.25.已知x2+y2=25,x+y=7,求xy和x﹣y的值.【分析】先根据完全平方公式求出xy的值,再根据完全平方公式求出(x﹣y)2的值,再求出答案即可.【解答】解:∵x2+y2=(x+y)2﹣2xy,∴25=72﹣2xy,∴xy=12,∴(x﹣y)2=x2﹣2xy+y2=25﹣2×12=1,∴x﹣y=±1.【点评】本题考查了完全平方公式,能灵活运用完全平方公式进行变形是解此题的关键,注意:a2+2ab+b2=(a+b)2,a2﹣2ab+b2=(a﹣b)2.26.已知图甲是一个长为2a,宽为2b的长方形,沿图甲中虚线用剪刀均匀分成四个小长方形,然后按图乙的形状拼成一个正方形.(1)请将图乙中阴影部分正方形的边长用含a、b的代数式表示;(2)请用两种不同的方法求图乙中阴影部分的面积S;(3)观察图乙,并结合(2)中的结论,写出下列三个整式:(a+b)2,(a﹣b)2,ab之间的等式;(4)根据(3)中的等量关系,解决如下问题:当a+b=8,ab=12时,求(a﹣b)2的值.【分析】(1)根据图形即可得出图乙中阴影部分小正方形的边长为a﹣b;(2)直接利用正方形的面积公式得到图中阴影部分的面积为(a﹣b)2;也可以用大正方形的面积减去4个长方形的面积得到图中阴影部分的面积为(a+b)2﹣4ab;(3)根据图中阴影部分的面积是定值得到(a+b)2,(a﹣b)2,ab之间的等量关系式;(4)利用(3)中的公式得到(a﹣b)2=(a+b)2﹣4ab,进而得出(a﹣b)2的值.【解答】解:(1)图乙中小正方形的边长为a﹣b.(2)方法①:S=(a﹣b)2;方法②:S=(a+b)2﹣4ab;(3)因为图中阴影部分的面积不变,所以(a﹣b)2=(a+b)2﹣4ab;(4)由(3)得:(a﹣b)2=(a+b)2﹣4ab,∵a+b=8,ab=12,∴(a﹣b)2=82﹣4×12=64﹣48=16.【点评】本题考查了完全平方公式的几何背景,列代数式,可以根据题中的已知数量利用代数式表示其他相关的量.27.如图,两个正方形边长分别为a、b,(1)求阴影部分的面积;(2)如果a+b=12,ab=30,求阴影部分的面积.【分析】(1)阴影部分的面积=两正方形的面积之和﹣两直角三角形的面积,列出关系式,化简即可;(2)利用完全平方公式将(1)得出的关系式整理后,将a+b及ab的值代入计算,即可求出值.=a2+b2﹣a2﹣b(a+b)=a2+b2﹣a2﹣ab 【解答】解:(1)根据题意得:S阴影﹣b2=a2﹣ab+b2;(2)∵a+b=12,ab=30,∴S=(a2﹣ab+b2)=[(a+b)2﹣3ab]=(122﹣90)=27.阴影【点评】此题考查了整式的混合运算,以及化简求值,涉及的知识有:单项式乘以多项式法则,去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.28.利用乘法公式计算:(1)5002﹣499×501.(2)50×49【分析】(1)原式变形后,利用平方差公式计算即可求出值;(2)原式变形后,利用平方差公式计算即可求出值.【解答】解:(1)原式=5002﹣(500﹣1)×(500+1)=5002﹣(5002﹣1)=5002﹣5002+1=1;(2)原式=(50+)×(50﹣)=2500﹣=2499.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.29.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形.并用A种纸片一张,B种纸片张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:(a+b)2;方法2:a2+b2+2ab(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(a+b)2=a2+2ab+b2(3)类似的,请你用图1中的三种纸片拼一个图形验证:(a+b)(a+2b)=a2+3ab+2b2(4)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.【分析】(1)依据正方形的面积计算公式即可得到结论;(2)依据(1)中的代数式,即可得出(a+b)2,a2+b2,ab之间的等量关系;(3)画出长为a+2b,宽为a+b的长方形,即可验证:(a+b)(a+2b)=a2+3ab+2b2;(4)①依据a+b=5,可得(a+b)2=25,进而得出a2+b2+2ab=25,再根据a2+b2=11,即可得到ab=7;②设2018﹣a=x,a﹣2017=y,即可得到x+y=1,x2+y2=5,依据(x+y)2=x2+2xy+y2,即可得出xy==﹣2,进而得到(2018﹣a)(a﹣2017)=﹣2.【解答】解:(1)图2大正方形的面积=(a+b)2图2大正方形的面积=a2+b2+2ab故答案为:(a+b)2,a2+b2+2ab;(2)由题可得(a+b)2,a2+b2,ab之间的等量关系为:(a+b)2=a2+2ab+b2故答案为:(a+b)2=a2+2ab+b2;(3)如图所示,(4)①∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,又∵a2+b2=11,∴ab=7;②设2018﹣a=x,a﹣2017=y,则x+y=1,∵(2018﹣a)2+(a﹣2017)2=5,∴x2+y2=5,∵(x+y)2=x2+2xy+y2,∴xy==﹣2,即(2018﹣a)(a﹣2017)=﹣2.【点评】本题主要考查了完全平方公式的几何背景,熟练掌握完全平方公式是解本题的关键.30.利用乘法公式计算:(1)1282﹣129×127(2)(2x﹣4y+3z)(2x﹣4y﹣3z)【分析】(1)原式变形后,利用平方差公式计算即可求出值;(2)原式利用平方差公式,以及完全平方公式计算即可求出值.【解答】解:(1)原式=1282﹣(128+1)×(128﹣1)=1282﹣1282+1=1;(2)原式=(2x﹣4y)2﹣9z2=4x2﹣16xy+16y2﹣9z2.【点评】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.31.化简:(a﹣1)(a+3)﹣(2﹣a)(2+a)【分析】先计算多项式乘多项式、平方差公式,再合并同类项即可得.【解答】解:原式=a2﹣a+3a﹣3﹣22+a2=2a2+2a﹣7.【点评】考查了平方差公式和多项式乘多项式,属于基础计算题,熟记计算法则解题即可.32.看图解答:(1)通过观察比较左、右两图的阴影部分面积,可以得到哪个乘法公式?(2)运用你所得到的公式计算:10.3×9.7.【分析】(1)根据左右两图的面积相等即可求出答案.(2)利用(1)中的公式即可求出答案.【解答】解:(1)左图的阴影部分面积为a2﹣b2,右图的阴影部分面积为(a+b)(a﹣b),所以由阴影部分面积相等可得(a+b)(a﹣b)=a2﹣b2,可以得到的乘法公式为:(a+b)(a﹣b)=a2﹣b2,(2)原式=(10+0.3)(10﹣0.3)=102﹣0.32=100﹣0.09=99.91【点评】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题是属于基础题型.33.(2+1)(22+1)(24+1)(28+1)(216+1)【分析】原式变形后,利用平方差公式计算即可求出值.【解答】解:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22﹣1)(22+1)(24+1)(28+1)(216+1)=(24﹣1)(24+1)(28+1)(216+1)=(28﹣1)(28+1)(216+1)=(216﹣1)(216+1)=232﹣1.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.34.数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图1可以解释完全平方公式:(a+b)2=a2+2ab+b2.(1)如图2(图中各小长方形大小均相等),请用两种不同的方法求图2中阴影部分的面积(不化简):方法1:4ab.方法2:(a+b)2﹣(a﹣b)2.(2)由(1)中两种不同的方法,你能得到怎样的等式?请说明这个等式成立;(3)已知(2m+n)2=13,(2m﹣n)2=5,请利用(2)中的等式,求mn的值.【分析】(1)根据阴影部分的面积=4个小长方形的面积=大正方形的面积﹣小正方形的面积,利用完全平方公式,即可解答;(2)根据完全平方公式解答;(3)根据(2)的结论代入即可解答.【解答】解:(1)阴影部分的面积为:4ab或(a+b)2﹣(a﹣b)2,故答案为:4ab;(a+b)2﹣(a﹣b)2.(2)(a+b)2﹣(a﹣b)2=4ab,成立.证明:∵(a+b)2﹣(a﹣b)2=a2+2ab+b2﹣(a2﹣2ab+b2)=4ab.∴(a+b)2﹣(a﹣b)2=4ab.(3)由(2)得:(2m+n)2﹣(2m﹣n)2=8mn.∵2m+n)2=13,(2m﹣n)2=5,∴8mn=13﹣5.mn=1.【点评】本题考查了完全平方公式的几何背景,准确识图,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等,列等式是解题的关键.35.已知a+b=5,ab=6,求下列各式的值.(1)a2+b2;(2)a2+b2﹣3ab;【分析】(1)直接利用完全平方公式计算得出答案;(2)利用(1)中所求,代入求出答案.【解答】解:(1)∵a+b=5,∴(a+b)2=25,则a2+2ab+b2=25,∵ab=6,∴a2+b2=25﹣12=13;(2)由(1)得:a2+b2﹣3ab=13﹣3×6=﹣5.【点评】此题主要考查了完全平方公式,正确将原式变形是解题关键.。
人教版(五四学制)数学-八年级上册-第二十一章-整式的乘法与因式分解-巩固练习一、单选题1.下列运算正确的是()A. 2a+2a=2a2B. (﹣a+b)(﹣a﹣b)=a2﹣b2C. (2a2)3=8a5D. a2•a3=a62.已知,则A=()A. x+yB. ﹣x+yC. x﹣yD. ﹣x﹣y3.下列计算正确的是()A. (a+b)2=a2+b2B. (﹣2a)2=﹣4a2C. (a5)2=a7D. a•a2=a34.下列各式能用平方差公式计算的是()A. (2a+b)(2b﹣a)B. (x+1)(﹣x﹣1)C. (﹣m﹣n)(﹣m+n)D. (3x﹣y)(﹣3x+y)5.下列多项式中,在有理数范围内能够分解因式的是()A. ﹣5B. +5x+3C. 0.25 ﹣16D. +96.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A. 2xB. ﹣4xC. 4x4D. 4x7.如果长方体长为3m﹣4,宽为2m,高为m,则它的体积是()A. 3m3﹣4m2B. m2C. 6m3﹣8m2D. 6m2﹣8m8.下列运算中,错误的是()A. 2a﹣3a=﹣aB. (﹣ab)3=﹣a3b3C. a6÷a2=a4D. a•a2=a29.把多项式x2+mx﹣35分解因式为(x﹣5)(x+7),则m的值是()A. 2B. -2C. 12D. -12二、填空题10.把多项式分解因式的结果为________.11.因式分解:6(x﹣3)+x(3﹣x)=________.12.若4x2+4x+a是完全平方式,则常数a的值是________.13.分解因式:4a2b-4b=________.14.因式分解:ab+ac=________.15.因式分解:9a3-ab2=________.16.已知:a+b= ,ab=1,化简(a﹣2)(b﹣2)的结果是________.17.多项式8a2b3+6ab2的公因式是________.三、计算题18.把下列各式分解因式:(1)x2y-2xy+xy2;(2)x2-3x+2;(3)4x4―64;19.因式分解:(1).(2).四、综合题20.用提公因式法分解因式:(1)6m2n-15n2m+30m2n2;(2)-4x3+16x2-26x;(3)x(x+y)+y(x+y).21.已知:A=(a+b)2﹣2a(a+b)(1)化简A;(2)已知(a﹣1)2+ =0,求A的值.22.请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.答案一、单选题1.【答案】B【解析】【解答】A、应为2a+2a=4a,故选项错误;B、(﹣a+b)(﹣a﹣b)=(a﹣b)(a+b)=a2﹣b2,故正确;C、应为(2a2)3=8a6,故选项错误;D、应为a2•a3=a5,故选项错误.故选B.【分析】根据合并同类项的法则,平方差公式,幂的乘方与积的乘方法则,及同底数幂的乘法法则得出.2.【答案】D【解析】【解答】∵(-x-y)(-x+y)=(x+y)(x-y)=x2-y2∴A=-x-y故答案为:D.【分析】根据(x+y)(x-y)=x2-y2=A(-x+y),即可得出A的值3.【答案】D【解析】【解答】解:A、原式=a2+b2+2ab,故选项错误;B、原式=4a2,故选项错误;C、原式=a10,故选项错误;D、原式=a3,故选项正确.故选D.【分析】A、原式利用完全平方公式展开得到结果,即可做出判断;B、原式利用积的乘方运算法则计算得到结果,即可做出判断;C、原式利用幂的乘方运算法则计算得到结果,即可做出判断;D、原式利用同底数幂的乘法法则计算得到结果,即可做出判断.4.【答案】C【解析】【解答】解:能用平方差公式计算的是(﹣m﹣n)(﹣m+n),故选C.【分析】利用平方差公式的结构特征判断即可.5.【答案】C【解析】【解答】解:0.25x2-16y2=(0.5x+4y)(0.5x-4y).故答案为:C.【分析】在有理数范围内进行因式分解,所以符合选项的只有C选项,利用平方差公式进行因式分解。