BP-神经网络的设计实例(MATLAB编程)
- 格式:doc
- 大小:3.04 MB
- 文档页数:20
p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); % 原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx'); %设置网络,建立相应的BP 网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM 算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn);anew=postmnmx(anewn,mint,maxt); %对 BP 网络进行仿真%还原数据y=anew';1、 BP 网络构建(1)生成 BP 网络net newff ( PR,[ S1 S2...SNl],{ TF1 TF 2...TFNl }, BTF , BLF , PF ) PR :由R 维的输入样本最小最大值构成的R 2 维矩阵。
[ S1 S2...SNl] :各层的神经元个数。
{TF 1 TF 2...TFNl } :各层的神经元传递函数。
BTF :训练用函数的名称。
(2)网络训练[ net,tr ,Y, E, Pf , Af ] train (net, P, T , Pi , Ai ,VV , TV )(3)网络仿真[Y, Pf , Af , E, perf ] sim(net, P, Pi , Ai ,T ){'tansig','purelin'},'trainrp'BP 网络的训练函数训练方法梯度下降法有动量的梯度下降法自适应 lr 梯度下降法自适应 lr 动量梯度下降法弹性梯度下降法训练函数traingd traingdm traingda traingdx trainrpFletcher-Reeves 共轭梯度法traincgf Ploak-Ribiere 共轭梯度法traincgpPowell-Beale 共轭梯度法traincgb 量化共轭梯度法trainscg 拟牛顿算法trainbfg 一步正割算法trainoss Levenberg-Marquardt trainlmBP 网络训练参数训练参数net.trainParam.epochsnet.trainParam.goal net.trainParam.lrnet.trainParam.max_fail net.trainParam.min_grad net.trainParam.show net.trainParam.timenet.trainParam.mc net.trainParam.lr_inc 参数介绍最大训练次数(缺省为10)训练要求精度(缺省为0)学习率(缺省为0.01 )最大失败次数(缺省为5)最小梯度要求(缺省为1e-10)显示训练迭代过程( NaN 表示不显示,缺省为 25)最大训练时间(缺省为inf )动量因子(缺省0.9)学习率lr增长比(缺省为1.05)训练函数traingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingdm 、 traingdx traingda 、traingdxnet.trainParam.lr_dec 学习率 lr 下降比(缺省为 0.7) traingda 、 traingdxnet.trainParam.max_perf_inc 表现函数增加最大比(缺省traingda 、 traingdx为 1.04)net.trainParam.delt_inc 权值变化增加量(缺省为trainrp1.2)net.trainParam.delt_dec 权值变化减小量(缺省为trainrp0.5)net.trainParam.delt0 初始权值变化(缺省为 0.07) trainrpnet.trainParam.deltamax 权值变化最大值(缺省为trainrp50.0)net.trainParam.searchFcn 一维线性搜索方法(缺省为traincgf 、traincgp 、traincgb 、srchcha)trainbfg 、 trainossnet.trainParam.sigma 因为二次求导对权值调整的trainscg影响参数(缺省值 5.0e-5)mbda Hessian 矩阵不确定性调节trainscg参数(缺省为 5.0e-7)net.trainParam.men_reduc 控制计算机内存/ 速度的参trainlm量,内存较大设为1,否则设为 2(缺省为 1)net.trainParam.mu 的初始值(缺省为0.001) trainlmnet.trainParam.mu_dec 的减小率(缺省为0.1)trainlmnet.trainParam.mu_inc 的增长率(缺省为10)trainlmnet.trainParam.mu_max 的最大值(缺省为1e10)trainlm2、 BP 网络举例举例 1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用 minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)BP 神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
求用matlab编BP神经网络预测程序求一用matlab编的程序P=[。
];输入T=[。
];输出% 创建一个新的前向神经网络net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net_1.IW{1,1}inputbias=net_1.b{1}% 当前网络层权值和阈值layerWeights=net_1.LW{2,1}layerbias=net_1.b{2}% 设置训练参数net_1.trainParam.show = 50;net_1.trainParam.lr = 0.05;net_1.trainParam.mc = 0.9;net_1.trainParam.epochs = 10000;net_1.trainParam.goal = 1e-3;% 调用TRAINGDM 算法训练BP 网络[net_1,tr]=train(net_1,P,T);% 对BP 网络进行仿真A = sim(net_1,P);% 计算仿真误差E = T - A;MSE=mse(E)x=[。
]';%测试sim(net_1,x) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%不可能啊我200928对初学神经网络者的小提示第二步:掌握如下算法:2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。
3.在第2步的基础上看Hebb学习算法、SOM和K-近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,Simon Haykin著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社,Richard O. Duda等著,中英文都有)、《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)。
用遗传算法优化BP神经网络的M a t l a b编程实例由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。
以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。
程序一:GA训练BP权值的主函数function net=GABPNET(XX,YY)%--------------------------------------------------------------------------%??GABPNET.m%??使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络%--------------------------------------------------------------------------%数据归一化预处理nntwarn offXX=premnmx(XX);YY=premnmx(YY);%创建网络net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin' },'trainlm');%下面使用遗传算法对网络进行优化P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度aa=ones(S,1)*[-1,1];popu=50;%种群规模initPpp=initializega(popu,aa,'gabpEval');%初始化种群gen=100;%遗传代数%下面调用gaot工具箱,其中目标函数定义为gabpEval [x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,...??'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMuta tion',[2 gen 3]);%绘收敛曲线图figure(1)plot(trace(:,1),1./trace(:,3),'r-');hold onplot(trace(:,1),1./trace(:,2),'b-');xlabel('Generation');ylabel('Sum-Squared Error');figure(2)plot(trace(:,1),trace(:,3),'r-');hold onplot(trace(:,1),trace(:,2),'b-');xlabel('Generation');ylabel('Fittness');%下面将初步得到的权值矩阵赋给尚未开始训练的BP 网络[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x);net.LW{2,1}=W1;net.LW{3,2}=W2;net.b{2,1}=B1;net.b{3,1}=B2;XX=P;YY=T;%设置训练参数%训练网络net=train(net,XX,YY);程序二:适应值函数function [sol, val] = gabpEval(sol,options)% val - the fittness of this individual% sol - the individual, returned to allow for Lamarckian evolution% options - [current_generation]load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度for i=1:S,? ?x(i)=sol(i);end;[W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);程序三:编解码函数function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x)load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度% 前R*S1个编码为W1for i=1:S1,? ? for k=1:R,? ?? ?W1(i,k)=x(R*(i-1)+k);? ? endend% 接着的S1*S2个编码(即第R*S1个后的编码)为W2for i=1:S2,? ?for k=1:S1,? ?? ?W2(i,k)=x(S1*(i-1)+k+R*S1);? ?endend% 接着的S1个编码(即第R*S1+S1*S2个后的编码)为B1for i=1:S1,? ?B1(i,1)=x((R*S1+S1*S2)+i);end% 接着的S2个编码(即第R*S1+S1*S2+S1个后的编码)为B2for i=1:S2,? ?B2(i,1)=x((R*S1+S1*S2+S1)+i);end% 计算S1与S2层的输出A1=tansig(W1*P,B1);A2=purelin(W2*A1,B2);% 计算误差平方和SE=sumsqr(T-A2);val=1/SE; % 遗传算法的适应值注意:上面的函数需要调用gaot工具箱,请从网上搜索下载。
bp神经网络及matlab实现分类:算法学习2012-06-20 20:56 66399人阅读评论(28) 收藏举报网络matlab算法functionnetworkinput本文主要内容包括: (1) 介绍神经网络基本原理,(2) 实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法。
第0节、引例本文以Fisher的Iris数据集作为神经网络程序的测试数据集。
Iris数据集可以在找到。
这里简要介绍一下Iris数据集:有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。
不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。
我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。
一种解决方法是用已有的数据训练一个神经网络用作分类器。
如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。
第一节、神经网络基本原理1. 人工神经元( Artificial Neuron )模型人工神经元是神经网络的基本元素,其原理可以用下图表示:图1. 人工神经元模型图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。
则神经元i的输出与输入的关系表示为:图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。
若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为:若用X表示输入向量,用W表示权重向量,即:X = [ x0 , x1 , x2 , ....... , xn ]则神经元的输出可以表示为向量相乘的形式:若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。
BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。
在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。
首先,需要准备一个数据集来训练和测试BP神经网络。
数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。
一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。
在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。
假设数据集的前几列是输入特征,最后一列是输出。
可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。
可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。
该函数的输入参数为每个隐藏层的神经元数量。
下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。
可以使用`train`函数来训练模型。
该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。
下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。
可以使用`net`模型的`sim`函数来进行预测。
下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。
p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。
S S SNl:各层的神经元个数。
[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。
BTF:训练用函数的名称。
(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
(整理)BP神经网络matlab实现和matlab工具箱使用实例.BP神经网络matlab实现和matlab工具箱使用实例经过最近一段时间的神经网络学习,终于能初步使用matlab实现BP网络仿真试验。
这里特别感谢研友sistor2004的帖子《自己编的BP算法(工具:matlab)》和研友wangleisxcc的帖子《用C++,Matlab,Fortran实现的BP算法》前者帮助我对BP算法有了更明确的认识,后者让我对matlab下BP函数的使用有了初步了解。
因为他们发的帖子都没有加注释,对我等新手阅读时有一定困难,所以我把sistor2004发的程序稍加修改后加注了详细解释,方便新手阅读。
%严格按照BP网络计算公式来设计的一个matlab程序,对BP网络进行了优化设计%yyy,即在o(k)计算公式时,当网络进入平坦区时(<0.0001)学习率加大,出来后学习率又还原%v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j); 动量项clear allclcinputNums=3; %输入层节点outputNums=3; %输出层节点hideNums=10; %隐层节点数maxcount=20000; %最大迭代次数samplenum=3; %一个计数器,无意义precision=0.001; %预设精度yyy=1.3; %yyy是帮助网络加速走出平坦区alpha=0.01; %学习率设定值a=0.5; %BP优化算法的一个设定值,对上组训练的调整值按比例修改字串9error=zeros(1,maxcount+1); %error数组初始化;目的是预分配内存空间errorp=zeros(1,samplenum); %同上v=rand(inputNums,hideNums); %3*10;v初始化为一个3*10的随机归一矩阵; v表输入层到隐层的权值deltv=zeros(inputNums,hideNums); %3*10;内存空间预分配dv=zeros(inputNums,hideNums); %3*10;w=rand(hideNums,outputNums); %10*3;同Vdeltw=zeros(hideNums,outputNums);%10*3dw=zeros(hideNums,outputNums); %10*3samplelist=[0.1323,0.323,-0.132;0.321,0.2434,0.456;-0.6546,-0.3242,0.3255]; %3*3;指定输入值3*3(实为3个向量)expectlist=[0.5435,0.422,-0.642;0.1,0.562,0.5675;-0.6464,-0.756,0.11]; %3*3;期望输出值3*3(实为3个向量),有导师的监督学习count=1;while (count<=maxcount) %结束条件1迭代20000次c=1;while (c<=samplenum)for k=1:outputNumsd(k)=expectlist(c,k); %获得期望输出的向量,d(1:3)表示一个期望向量内的值endfor i=1:inputNumsx(i)=samplelist(c,i); %获得输入的向量(数据),x(1:3)表一个训练向量字串4end%Forward();for j=1:hideNumsnet=0.0;for i=1:inputNumsnet=net+x(i)*v(i,j);%输入层到隐层的加权和∑X(i)V(i)endy(j)=1/(1+exp(-net)); %输出层处理f(x)=1/(1+exp(-x))单极性sigmiod函数endfor k=1:outputNumsnet=0.0;for j=1:hideNumsnet=net+y(j)*w(j,k);endif count>=2&&error(count)-error(count+1)<=0.0001o(k)=1/(1+exp(-net)/yyy); %平坦区加大学习率else o(k)=1/(1+exp(-net)); %同上endend%BpError(c)反馈/修改;errortmp=0.0;for k=1:outputNumserrortmp=errortmp+(d(k)-o(k))^2; %第一组训练后的误差计算enderrorp(c)=0.5*errortmp; %误差E=∑(d(k)-o(k))^2 * 1/2%end%Backward();for k=1:outputNumsyitao(k)=(d(k)-o(k))*o(k)*(1-o(k)); %输入层误差偏导字串5endfor j=1:hideNumstem=0.0;for k=1:outputNumstem=tem+yitao(k)*w(j,k); %为了求隐层偏导,而计算的∑endyitay(j)=tem*y(j)*(1-y(j)); %隐层偏导end%调整各层权值for j=1:hideNumsfor k=1:outputNumsdeltw(j,k)=alpha*yitao(k)*y(j); %权值w的调整量deltw(已乘学习率)w(j,k)=w(j,k)+deltw(j,k)+a*dw(j,k);%权值调整,这里的dw=dletw(t-1),实际是对BP算法的一个dw(j,k)=deltw(j,k); %改进措施--增加动量项目的是提高训练速度endendfor i=1:inputNumsfor j=1:hideNumsdeltv(i,j)=alpha*yitay(j)*x(i); %同上deltwv(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j);dv(i,j)=deltv(i,j);endendc=c+1;end%第二个while结束;表示一次BP训练结束double tmp;tmp=0.0; 字串8for i=1:samplenumtmp=tmp+errorp(i)*errorp(i);%误差求和endtmp=tmp/c;error(count)=sqrt(tmp);%误差求均方根,即精度if (error(count)<precision)%另一个结束条件< p="">break;endcount=count+1;%训练次数加1end%第一个while结束error(maxcount+1)=error(maxcount);p=1:count;pp=p/50;plot(pp,error(p),"-"); %显示误差然后下面是研友wangleisxcc的程序基础上,我把初始化网络,训练网络,和网络使用三个稍微集成后的一个新函数bpnet %简单的BP神经网络集成,使用时直接调用bpnet就行%输入的是p-作为训练值的输入% t-也是网络的期望输出结果% ynum-设定隐层点数一般取3~20;% maxnum-如果训练一直达不到期望误差之内,那么BP迭代的次数一般设为5000% ex-期望误差,也就是训练一小于这个误差后结束迭代一般设为0.01% lr-学习率一般设为0.01% pp-使用p-t虚拟蓝好的BP网络来分类计算的向量,也就是嵌入二值水印的大组系数进行训练然后得到二值序列% ww-输出结果% 注明:ynum,maxnum,ex,lr均是一个值;而p,t,pp,ww均可以为向量字串1% 比如p是m*n的n维行向量,t那么为m*k的k维行向量,pp为o*i的i维行向量,ww为o* k的k维行向量%p,t作为网络训练输入,pp作为训练好的网络输入计算,最后的ww作为pp经过训练好的BP训练后的输出function ww=bpnet(p,t,ynum,maxnum,ex,lr,pp)plot(p,t,"+");title("训练向量");xlabel("P");ylabel("t");[w1,b1,w2,b2]=initff(p,ynum,"tansig",t,"purelin"); %初始化含一个隐层的BP网络zhen=25; %每迭代多少次更新显示biglr=1.1; %学习慢时学习率(用于跳出平坦区)litlr=0.7; %学习快时学习率(梯度下降过快时)a=0.7 %动量项a大小(△W(t)=lr*X*ん+a*△W(t-1))tp=[zhen maxnum ex lr biglr litlr a 1.04]; %trainbpx[w1,b1,w2,b2,ep,tr]=trainbpx(w1,b1,"tansig",w2,b2,"purelin", p,t,tp);ww=simuff(pp,w1,b1,"tansig",w2,b2,"purelin"); %ww就是调用结果下面是bpnet使用简例:%bpnet举例,因为BP网络的权值初始化都是随即生成,所以每次运行的状态可能不一样。
p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx'); %设置网络,建立相应的BP 网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络(,[1 2...],{ 1 2...},,,) net newff PR S S SNl TF TF TFNl BTF BLF PFPR:由R维的输入样本最小最大值构成的2R⨯维矩阵。
S S SNl:各层的神经元个数。
[ 1 2...]TF TF TFNl:各层的神经元传递函数。
{ 1 2...}BTF:训练用函数的名称。
(2)网络训练=[,,,,,] (,,,,,,)net tr Y E Pf Af train net P T Pi Ai VV TV (3)网络仿真=Y Pf Af E perf sim net P Pi Ai T[,,,,] (,,,,){'tansig','purelin'},'trainrp'BP网络的训练函数BP网络训练参数2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
目录1.引言 (1)2.BP神经网络 (1)2.1.BP神经网络模型 (1)2.2 BP神经网络的设计方法 (2)3.用MATLAB神经网络工具箱进行BP网络设计 (2)4.BP网络设计实例 (4)4.1问题描述 (4)4.2使用MATLAB 进行函数逼近仿真实验 (4)5.结论 (10)参考文献: (10)BP网络的MATLAB实现摘要:本文介绍了BP神经网络及利用MATLAB神经网络工具箱构造BP网络的方法,阐述了构造神经网络的基本步骤,给出了具体应用实例,构造了一个典型的三层结构的神经网络,实现了具有函数逼近功能的BP网络设计。
关键词:BP神经网络MATLAB仿真函数逼近1.引言误差反向传播网络(Back Propagation Net-work,简称BP网络)是目前人工神经网络模式中最具代表性,应用最广泛的一种模型,具有自学习、自组织、自适应和很强的非线性映射能力,可以以任意精度逼近任何连续函数。
近年来,为了解决BP网络收敛速度慢,训练时间长等不足,提出了很多改进算法,然而,在针对实际问题的BP网络建模过程中,选择多少层网络,每层多少个神经元节点,选择何种传递函数等,均无可行的理论指导,只能通过大量的实验计算获得。
MATLAB中的神经网络工具箱(Neural Network Toolbox,简称NNbox),为解决这一问题提供了便利的条件,神经网络工具箱功能十分完善,提供了各种MATLAB 函数,包括神经网络的建立、初始化、训练和仿真等函数,以及各种改进训练算法函数,用户可以很方便地进行神经网络的设计和仿真,也可以在MATLAB源文件的基础上进行适当修改,形成自己的工具包满足实际需求。
2.BP神经网络2.1.BP神经网络模型从结构上讲,BP网络是一种分层型网络,由输入层。
隐含层和输出层组成。
层与层之间采用全互连方式,同一层的单元之间则不存在相互连接。
隐层可以有一个或多个。
1989年,Robert Hecht-Nielson 证明了一个三层的BP网络可以完成任意的n维到m维的映射。
神经网络的设计实例(MATLAB编程)例1 采用动量梯度下降算法训练BP 网络。
训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本P=[-1, -2, 3, 1; -1, 1, 5, -3]; % P 为输入矢量T=[-1, -1, 1, 1]; % T 为目标矢量pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用TRAINGDM 算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高BP 网络的推广能力。
在本例中,我们采用两种训练方法,即L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。
BP神经网络实验-MatlabBP神经网络是一种常见的人工神经网络模型。
在实际应用中,BP神经网络广泛用于分类、预测、优化等任务中。
本文将介绍如何在Matlab中实现BP神经网络,并通过一个简单的分类问题进行实验验证。
1. 数据准备首先,我们需要准备数据。
本文采用的数据是一个二分类问题,即在一个二维平面中,将数据点分为两类。
为了方便起见,我们可以手动生成一些数据点,或者使用Matlab自带的数据集如“fisheriris”。
2. BP神经网络模型的构建在Matlab中,我们可以使用“newff”函数来构建BP神经网络模型。
该函数可以接受多个参数,包括输入层、隐含层和输出层的节点数量,以及激活函数、学习算法等参数。
以下是构建一个包含1个输入层、1个隐含层和1个输出层的BP神经网络的示例代码:4. BP神经网络模型的测试在训练完成后,我们可以使用BP神经网络模型对测试数据进行分类预测。
在Matlab 中,我们可以使用“sim”函数来预测分类结果。
以下是对测试数据进行分类预测的示例代码:output=round(sim(net,test_data));其中,“output”是分类预测结果;“test_data”是测试数据。
5. 性能评估最后,我们需要对BP神经网络模型的分类性能进行评估。
在Matlab中,我们可以使用“confusionmat”函数来计算分类矩阵,进而计算分类准确率等性能指标。
以下是计算分类准确率的示例代码:[C,order]=confusionmat(test_label,output);accuracy=(C(1,1)+C(2,2))/sum(sum(C));其中,“C”是分类矩阵;“order”是分类标签;“accuracy”是分类准确率。
MATLAB下BP神经网络的设计开发BP网络在神经网络工具箱中的仿真本文利用Matlab6.5神经网络工具箱,以一组动态冲击实验数据为例建立网络模型。
实验数据共有13组,将其中对曲线形状有关键性影响的10组数据作为网络的训练数据,另外3组作为测试数据用以验证网络的预测性能。
①BP网络的建立在建立BP神经网络时,首先要根据应用的问题确定网络结构,即选择网络的层数和隐层节点数。
由于本例中实验数据较少,采用最基本的两层网络就可以很好地逼近未知函数了。
隐层节点数的选择在神经网络的应用中一直是一个复杂的问题:隐层节点数过多,将导致网络的预测能力不够,并容易导致网络陷入局部极小值难以跳出;隐层节点数过少,网络训练不出来,或不能识别以前没有的样本,且容错性差。
在设计中,比较实际的做法是通过对不同神经元数的网络进行训练、对比,找出网络效果最好时的隐层节点数。
在本例中,经大量的训练、对比,最终取中间隐层节点数为10。
另一方面,BP隐层传递函数采用正切Sigmoid 函数tansig,可以逼近任意非线性函数;输出层神经元则采用线性函数purelin,可以把输出值释放到任意值。
至此,一个1-10-1的神经网络模型建立完毕。
②BP网络的训练Matlab神经网络工具箱为用户提供了三种可用于BP网络的训练函数,它们是:trainbp、trainbpx和trainlm。
它们用法类似,采用不同的学习规则。
trainlm训练函数使用Levenberg-Marquardt算法,是三种规则中迭代次数最少、训练速度最快的一个,缺点是该算法在每次迭代时的计算量比其他算法大,故需要大量的存储空间,对于参数很大的应用是不实用的,考虑到待处理问题的参数较小,因此采用trainlm训练函数。
目标误差设为0.01,最大训练步数设为10 000。
设定好参数之后开始训练网络,训练结果显示:网络在训练了32次之后达到目标误差0.01,训练停止。
③BP网络的测试由于初始值取随机值,每次训练得到的结果都不相同,经多次训练得到最好的结果,并记录下此时的权值和阈值。
【最新整理,下载后即可编辑】p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络,minmax(pn)找到pn 矩阵的最大最小值net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络net newff PR S S SNl TF TF TFNl BTF BLF PF=(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。
S S SNl:各层的神经元个数。
[ 1 2...]TF TF TFNl:各层的神经元传递函数。
{ 1 2...}BTF:训练用函数的名称。
(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV (3)网络仿真=Y Pf Af E perf sim net P Pi Ai T[,,,,] (,,,,){'tansig','purelin'},'trainrp'BP网络训练参数举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),[5,1],{'tansig','purelin'},'trainrp');%minmax(P)取P的最大最小值;[5,1]第一次神经元5个,第二层1个;'tansig','purelin'神经网络第一层和第二层的转移函数;'trainrp'网络训练函数。
BP-神经网络的设计实例(MATLAB编程)BP神经网络的设计实例(MATLAB编程)例1 采用动量梯度下降算法训练BP 网络。
训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本% P 为输入矢量P=[-1, -2, 3, 1; -1, 1, 5, -3]; % T 为目标矢量解:本例的MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本矢量% P 为输入矢量P = [-1:0.05:1];% T 为目标矢量randn('seed',78341223); T = sin(2*pi*P)+0.1*randn(size(P)); % 绘制样本数据点plot(P,T,'+');echo offhold on;plot(P,sin(2*pi*P),':');% 绘制不含噪声的正弦曲线echo onclcpauseclc% 创建一个新的前向神经网络net=newff(minmax(P),[20,1],{'tansig','purelin'});pauseclcecho offclcdisp('1. L-M 优化算法TRAINLM'); disp('2. 贝叶斯正则化算法TRAINBR');choice=input('请选择训练算法(1,2):');figure(gcf);if(choice==1)echo onclc% 采用L-M 优化算法TRAINLMnet.trainFcn='trainlm';pauseclc% 设置训练参数net.trainParam.epochs = 500;net.trainParam.goal = 1e-6;net=init(net);% 重新初始化pauseclcelseif(choice==2)echo onclc% 采用贝叶斯正则化算法TRAINBRnet.trainFcn='trainbr';pauseclc% 设置训练参数net.trainParam.epochs = 500;randn('seed',192736547);net = init(net);% 重新初始化pauseclcend% 调用相应算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P);% 计算仿真误差E = T - A;MSE=mse(E)pauseclc% 绘制匹配结果曲线close all;plot(P,A,P,T,'+',P,sin(2*pi*P),':');pause;clcecho off通过采用两种不同的训练算法,我们可以得到如图1和图2所示的两种拟合结果。
图中的实线表示拟合曲线,虚线代表不含白噪声的正弦曲线,“+”点为含有白噪声的正弦样本数据点。
显然,经trainlm 函数训练后的神经网络对样本数据点实现了“过度匹配”,而经trainbr 函数训练的神经网络对噪声不敏感,具有较好的推广能力。
值得指出的是,在利用trainbr 函数训练BP 网络时,若训练结果收敛,通常会给出提示信息“Maximum MU reached”。
此外,用户还可以根据SSE 和SSW 的大小变化情况来判断训练是否收敛:当SSE 和SSW 的值在经过若干步迭代后处于恒值时,则通常说明网络训练收敛,此时可以停止训练。
观察trainbr 函数训练BP 网络的误差变化曲线,可见,当训练迭代至320 步时,网络训练收敛,此时SSE 和SSW 均为恒值,当前有效网络的参数(有效权值和阈值)个数为11.7973。
例3 采用“提前停止”方法提高BP 网络的推广能力。
对于和例2相同的问题,在本例中我们将采用训练函数traingdx 和“提前停止”相结合的方法来训练BP 网络,以提高BP 网络的推广能力。
解:在利用“提前停止”方法时,首先应分别定义训练样本、验证样本或测试样本,其中,验证样本是必不可少的。
在本例中,我们只定义并使用验证样本,即有验证样本输入矢量:val.P = [-0.975:.05:0.975]验证样本目标矢量:val.T = sin(2*pi*val.P)+0.1*randn(size(val.P))值得注意的是,尽管“提前停止”方法可以和任何一种BP 网络训练函数一起使用,但是不适合同训练速度过快的算法联合使用,比如trainlm 函数,所以本例中我们采用训练速度相对较慢的变学习速率算法traingdx 函数作为训练函数。
本例的MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本矢量% P 为输入矢量P = [-1:0.05:1];% T 为目标矢量randn('seed',78341223);T = sin(2*pi*P)+0.1*randn(size(P));% 绘制训练样本数据点plot(P,T,'+');echo offhold on;plot(P,sin(2*pi*P),':'); % 绘制不含噪声的正弦曲线echo onclcpauseclc% 定义验证样本val.P = [-0.975:0.05:0.975]; % 验证样本的输入矢量val.T = sin(2*pi*val.P)+0.1*randn(size(val.P)); % 验证样本的目标矢量pauseclc% 创建一个新的前向神经网络net=newff(minmax(P),[5,1],{'tansig','purelin'},'traingdx'); pauseclc% 设置训练参数net.trainParam.epochs = 500;net = init(net);pauseclc% 训练BP 网络[net,tr]=train(net,P,T,[],[],val);pauseclc% 对BP 网络进行仿真A = sim(net,P);% 计算仿真误差E = T - A;MSE=mse(E)pauseclc% 绘制仿真拟合结果曲线close all;plot(P,A,P,T,'+',P,sin(2*pi*P),':');pause;clcecho off下面给出了网络的某次训练结果,可见,当训练至第136 步时,训练提前停止,此时的网络误差为0.0102565。
给出了训练后的仿真数据拟合曲线,效果是相当满意的。
[net,tr]=train(net,P,T,[],[],val);TRAINGDX, Epoch 0/500, MSE 0.504647/0, Gradient 2.1201/1e-006TRAINGDX, Epoch 25/500, MSE 0.163593/0, Gradient 0.384793/1e-006TRAINGDX, Epoch 50/500, MSE 0.130259/0, Gradient 0.158209/1e-006TRAINGDX, Epoch 75/500, MSE 0.086869/0, Gradient 0.0883479/1e-006TRAINGDX, Epoch 100/500, MSE 0.0492511/0, Gradient 0.0387894/1e-006TRAINGDX, Epoch 125/500, MSE 0.0110016/0, Gradient 0.017242/1e-006TRAINGDX, Epoch 136/500, MSE 0.0102565/0, Gradient 0.01203/1e-006TRAINGDX, Validation stop.例3 用BP网络估计胆固醇含量这是一个将神经网络用于医疗应用的例子。
我们设计一个器械,用于从血样的光谱组成的测量中得到血清的胆固醇含量级别,我们有261个病人的血样值,包括21种波长的谱线的数据,对于这些病人,我们得到了基于光谱分类的胆固醇含量级别hdl,ldl,vldl。
(1) 样本数据的定义与预处理。
choles_all.mat 文件中存储了网络训练所需要的全部样本数据。
利用load 函数可以在工作空间中自动载入网络训练所需的输入数据p 和目标数据t,即load choles_allsizeofp = size (p)sizeofp = 21 264sizeoft = size (t)sizeoft = 3 264可见,样本集的大小为264。
为了提高神经网络的训练效率,通常要对样本数据作适当的预处理。
首先,利用prestd 函数对样本数据作归一化处理,使得归一化后的输入和目标数据均服从正态分布,即[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);然后,利用prepca 函数对归一化后的样本数据进行主元分析,从而消除样本数据中的冗余成份,起到数据降维的目的。
[ptrans,transMat] = prepca(pn,0.001);[R,Q] = size(ptrans)R = 4 Q = 264可见,主元分析之后的样本数据维数被大大降低,输入数据的维数由21 变为4。
(2) 对训练样本、验证样本和测试样本进行划分。
为了提高网络的推广能力和识别能力,训练中采用“提前停止”的方法,因此,在训练之前,需要将上面处理后的样本数据适当划分为训练样本集、验证样本集和测试样本集。
(3) 网络生成与训练。
选用两层BP 网络,其中网络输入维数为4,输出维数为3,输出值即为血清胆固醇的三个指标值大小。
网络中间层神经元数目预选为5,传递函数类型选为tansig 函数,输出层传递函数选为线性函数purelin,训练函数设为trainlm。