doe简介(经典方法)_图
- 格式:ppt
- 大小:3.65 MB
- 文档页数:51
DOE方法介绍设计实验(Design of Experiments,简称DOE)是一种统计学的方法,用于优化和改进产品或过程的性能。
通过DOE方法,我们可以确定最佳的实验设计,并且分析因素对结果的影响。
本文将介绍DOE方法的基本原理、常用的DOE方法和其在实际应用中的意义。
DOE方法的基本原理是通过设计一系列实验,系统地改变和调节输入变量,以观察输出变量的变化情况。
在DOE方法中,输入变量被称为因素(factors),而输出变量被称为响应变量(response variable)。
通过不断地变化因素的水平和观察响应变量的变化,我们可以找到最佳的因素组合,以实现最佳的性能或者结果。
常用的DOE方法包括全因子实验设计、因子水平减少法、响应面法和标准序列法等。
全因子实验设计是基于完全随机化设计的,它考虑了所有可能的因素组合。
因子水平减少法是通过先评估所有可能的因素组合,然后通过筛选和减少因素的水平,以提高实验效率。
响应面法是通过建立模型来描述因素和响应之间的关系,然后利用该模型来进行因素优化和预测响应变量的水平。
标准序列法是通过选择具有特定属性的实验设计点,以最小化实验数量并确保可获得准确的结果。
在实际应用中,DOE方法有着广泛的意义和应用价值。
首先,它可以大大提高实验效率和成本效益。
通过系统化地设计实验,我们可以减少实验次数,节省实验资源和时间。
其次,DOE方法可以帮助我们理解因素之间的复杂关系。
通过观察和分析实验结果,我们可以了解哪些因素对结果有重要影响,以及它们之间的相互作用方式。
最后,DOE方法可以帮助我们进行优化和改进。
通过找到最佳的因素组合,我们可以实现性能的最大化,提高产品质量和生产效率。
然而,要成功应用DOE方法,我们需要注意一些关键要点。
首先,我们需要选择适当的因素和水平。
因素应该是可能影响结果的参数,而水平则应该涵盖可能的变化范围。
其次,我们需要注意样本的选择和实验的随机化。
样本应该是具有代表性的,并且实验应该是随机进行的,以减少实验结果的偏差。
DOE 简介DOE(Design of Experiment,试验设计)什么是DOEDOE(Design of Experiment)试验设计,一种安排实验和分析实验数据的数理统计方法;试验设计主要对试验进行合理安排,以较小的试验规模(试验次数)、较短的试验周期和较低的试验成本,获得理想的试验结果以及得出科学的结论。
试验设计源于1920年代研究育种的科学家Dr.Fisher的研究, Dr. Fisher是大家一致公认的此方法策略的创始者, 但后续努力集其大成, 而使DOE在工业界得以普及且发扬光大者, 则非Dr. Taguchi (田口玄一博士) 莫属。
为什么需要DOE要为原料选择最合理的配方时(原料及其含量);要对生产过程选择最合理的工艺参数时;要解决那些久经未决的“顽固”品质问题时;要缩短新产品之开发周期时;要提高现有产品的产量和质量时;要为新或现有生产设备或检测设备选择最合理的参数时等。
另一方面,过程通过数据表现出来的变异,实际上来源于二部分:一部分来源于过程本身的变异,一部分来源于测量过程中产生的变差,如何知道过程表现出来的变异有多接近过程本身真实的变异呢?这就需要进行MSA测量系统分析。
DOE的基本原理试验设计的三个基本原理是重复,随机化,以及区组化。
所谓重复,意思是基本试验的重复进行。
重复有两条重要的性质。
第一,允许试验者得到试验误差的一个估计量。
这个误差的估计量成为确定数据的观察差是否是统计上的试验差的基本度量单位。
第二,如果样本均值用作为试验中一个因素的效应的估计量,则重复允许试验者求得这一效应的更为精确的估计量。
如s2是数据的方差,而有n次重复,则样本均值的方差是。
这一点的实际含义是s2/n,如果n=1,如果2个处理的y1 = 145,和y2 = 147,这时我们可能不能作出2个处理之间有没有差异的推断,也就是说,观察差147-145=2可能是试验误差的结果。
但如果n合理的大,试验误差足够小,则当我们观察得y1随机化是试验设计使用统计方法的基石。