2007-08学年概率A卷
- 格式:doc
- 大小:164.50 KB
- 文档页数:12
2010—2011学年第二学期期末考试08级数学系本科《概率统计》试卷(A )(本试卷满分100分,考试时间110分钟)特殊说明:答案直接写在试卷上2.236=,(2.33)0.99,(1.645)0.95,Φ=Φ= (1.285)0.90Φ=.一、单选题(每小题2分,共20分.每小题的4个选项中只有一个是正确的)1.设事件A 、B 相互独立,且)()(B P A P ≠0,则下式中不成立...的是( ) A . )()()(B P A P AB P =; B . )()(B A P A P =;C . )()(A B P B P =;D .)()()(B P A P B A P += .2.对( )随机变量,一定有(<<)()P a X b P a X b =≤≤成立.A. 任意;B. 连续型;C.离散型; D . 个别离散型. 3.设n X X X ,......,21是来自总体2(,)N μσ的样本,2,σμ未知,则2σ的无偏估计是( )。
A . 21)(11X X n n i i --∑= B . 21)(1X X n n i i -∑= 业:___________________ 班级:_____________________ 学号:_______________________ 姓名:_____________________————————————密——————————————封————————————————线———————————C . 21)(11μ--∑=n i i X n D . 21)(11μ-∑+=ini X n 4.某人向同一目标独立重复射击,每次射击命中目标的概率为(0<<1)p p ,则此人第4次射击时恰好第2次命中目标的概率为( )A.23(1)p p -;B.26(1)p p -;C.223(1)p p -D.226(1)p p -. 5.设随机变量X 服从正态分布),(2σμN ,随着σ的增大,概率μ-X P (<σ)=()。
2007 – 2008学年第一学期《概率论与数理统计A 》试卷答案一、填空题(每小题3分,满分21分,把答案填在题中横线上)1.设()()P A P B p ==,且,A B 至少有一个发生的概率为0.2,,A B 至少有一个不发生的概率为0.6,则p = 0.3 . 解 已知()0.2,()0.6P A B P A B == ,0.2()()()()2()P A B P A P B P AB p P AB ==+-=- ,0.6()1()1()P A B P A B P AB ==-=- ,()0.4P AB =, 0.3p =2.11个人随机地围一圆桌而坐,则甲乙两人相邻而坐的概率为 0.2 .解 设A 表示事件“甲乙相邻而坐”。
样本空间所包含的基本事件数为11!,事件A 包含的基本事件数为1129!⨯⨯11292()0.21110P A ⨯⨯===!! 3.设随机变量~(,)X B n p ,则对任意实数x ,有limn x P →∞⎫≤=⎬⎭()x Φ或22t xdt -⎰. 4.设随机变量X Y 与的方差和相关系数分别为XY ()3,()4,0D X D Y ρ===,则(21)D X Y -+= 16 .解 (21)(2)D X Y D X Y -+=-(2)()2cov(2,)D X D Y X Y =+- 4()()4cov(,)D X D Y X Y =+-4()()4XY D X D Y ρ=+-=165.设~(0,1)X N ,1.96是标准正态分布的上0.025分位点,则{}1.96P X =≤ 0.975 .解 1.96是标准正态分布的上0.025分位点,即{}0.0251.96P X =≥{}1.96P X =≤{}110.0250.9751.96P X -=-=>6.设12(,,,)n X X X 是来自总体2(,)N μσ的样本,则当常数k =11n -时, 221()ni i k X X σ==-∑ 是参数2σ的无偏估计量.7.设总体2~(,)X N μσ,12(,,,)n X X X 是来自总体X 的样本,X 为样本均值,2S 为样本方差,2σ未知,若检验假设0010:,:H H μμμμ=≠~ t (n-1).二、选择题(每小题3分,满分18分)X Y 与满足条件()()()D X Y D X D Y +=+, 则下面结论不成立的是( C )(A )X Y 与不相关.(B )()()()E XY E X E Y =.(C )X Y 与相互独立. (D )cov(,)0X Y =.2.设随机变量X 的概率密度为cos ,||,2()0,||.2k x x f x x ππ⎧≤⎪⎪=⎨⎪>⎪⎩ 则k 等于( B )(A )14. (B )12. (C )0. (D )1.3.某班12名战士各有一支归自己使用的枪,枪的外形完全一样,在一次夜间紧急集合中,每人随机地取了一支枪,则拿到是自己枪的人数的数学期望是( D ) (A )112. (B )0. (C )12. (D )1. 解 设1,i 0,i i X ⎧=⎨⎩第个战士拿到自己的枪,第个战士没拿到自己的枪,1,2,,12i = ,则1(),12i E X = 设X 表示拿到自己枪的人数.则121i i X X ==∑1212111()()12112i i i i E X E X E X ==⎛⎫===⨯= ⎪⎝⎭∑∑4.设X Y 与为相互独立的随机变量,其分布函数分别为()X F x 和()Y F y ,则随机变量max(,)Z X Y =的分布函数为( A ) (A )()()()Z X Y F z F z F z =.(B )[][]()1()1()Z X Y F z F z F z =--.(C )()1()()Z X Y F z F z F z =-.(D )()()()Z X Y F z F z F z =+.5.设1210(,,,)X X X 是来自总体2(0,)N σ的样本,则下面结论正确的是( C )(A )1022211~(9)kk Xχσ=∑.(B )1021~(9)k k X t =∑.(C )1022211~(10)k k X χσ=∑. (D )1021~(10)k k X t =∑.6.设总体2~(,)X N μσ,μ为未知参数,样本12,,,n X X X 的方差为2S ,对给定的显著水平α,检验假设2201:2,:2H H σσ=<的拒绝域是( B ) (A )221/2(1)a n χχ-≤-. (B )221(1)a n χχ-≤-. (C )221/2()a n χχ-≤.(D )221()a n χχ-≤.三、计算题(每小题10分,满分50分)1.一个系统中有三个相互独立的元件,元件损坏的概率都是0.2.当一个元件损坏时,系统发生故障的概率为0.25; 当两个元件损坏时,系统发生故障的概率为0.6; 当三个元件损坏时,系统发生故障的概率为0.95; 当三个元件都不损坏时,系统不发生故障. 求系统发生故障的概率. 解 设A 表示“系统发生故障”的事件,i B 表示“有i 个元件发生故障”的事件,1,2,3i =;由全概率公式 112233()()()()()()()P A P B P A B P B P A B P B P A B =++ 由已知,1()0.25P A B =,2()0.6P A B =,3()0.95P A B =1213()0.20.80.384P B C =⨯⨯= ,2223()0.20.80.096P B C =⨯⨯= ,3333()0.20.008P B C ==所以1612.095.0008.06.0096.025.0384.0)(=⨯+⨯+⨯=A P 2.设随机变量X 的分布律为X -1 0 1 2P 0.1 2.0 a b若()1E X =,(1)求常数a , b ; (2)求Y=X 2 的分布律.解 (1)由 0.10.21a b +++=,()E X =10.100.212a b -⨯+⨯+⨯+⨯=1,解得a =0.3, b =0.4. (2) Y=X 2的可取值为0,1,4.{}0P Y =={}0P X ==0.2,{}1P Y =={}1P X =-+{}1P X ==0.1+0.3=0.4, {}4P Y =={}==2X P 0.4, 因此Y=X 2 的分布律为Y 0 1 4 P 2.0 0.4 0.43.设二维随机变量(,)X Y 的联合概率密度函数为,0<1,(,)0,Ax x y f x y <<⎧=⎨⎩其他.(1)求常数A ; (2)求关于,X Y 的边缘概率密度函数;(3)判断X Y 与是否相互独立;(4)求{1}P X Y +≤. 解(1)由(,)d d 1f x y x y +∞+∞-∞-∞=⎰⎰,有 1001d d 6yAy Ax x ==⎰⎰,得6A =; (2)()X f x =(,)d f x y y +∞-∞⎰, 当0x ≤或1x ≥时,()X f x =0,当01x <<时,1()6d 6(1)X x f x x y x x ==-⎰, 所以6(1),01;()0.X x x x f x -<<⎧=⎨⎩其它同理 23,01;()0.Y y y f y ⎧<<=⎨⎩其它(3)由(,)()()X Y f x y f x f y ≠,所以X Y 与不相互独立 (4)11201(1)6d d 4xx P X Y x x y -+≤==⎰⎰.4.设随机变量X Y 与相互独立,其概率密度分别为0;e ,()0,0.xX x f x x ->⎧=⎨≤⎩ 20;1e ,()20,0.yY y f y y ->⎧⎪=⎨⎪≤⎩求Z X Y =+的概率密度.解法1 由卷积公式 ()()()d Z X Y f z f x f z x x +∞-∞=-⎰因为e >0;()00.xX x f x x -⎧=⎨≤⎩ 21e>0;()200.yY y f y y -⎧⎪=⎨⎪≤⎩所以 0()()()d e ()d xZ X Y Y f z f x f z x x f z x x -+∞+∞-∞=-=-⎰⎰e ()d t zY z t z x f t t --∞=--⎰令e()d t zzY f t t --∞=⎰当0z ≤时 ()e ()d 0t zzZ Y f z f t t --∞==⎰ 当0z >时 201()e ()d ee d 2tt zt zzzZ Y f z f t t t ----∞==⎰⎰2e (e 1),z z -=- ()()()d Z X Yf z f x f z x x +∞-∞=-⎰2e (e 1),0,0,0.zz z z -⎧⎪->=⎨⎪≤⎩解法2 先求Z 的分布函数()Z F z . 联合密度函数为21,0,0,(,)()()20,,y x X Y e e x y f x y f x f y --⎧>>⎪==⎨⎪⎩其它(){}{}(,)Z x y zF z P Z z P X Y z f x y dxdy +≤=≤=+≤=⎰⎰当0z ≤时, ()(,)0,Z x y zF z f x y dxdy +≤==⎰⎰当0z >时, 21()(,)2yx Z x y zDF z f x y dxdy e e dxdy --+≤==⎰⎰⎰⎰20012yzz x x e dx e dy ---=⎰⎰221z ze e --=-+分布函数为 221,0()0,0z z Z e e z F z z --⎧⎪-+>=⎨⎪≤⎩再求导,得概率密度 2e (e 1),0,()()0,0.zz Z Z z f z F z z -⎧⎪->'==⎨⎪≤⎩5.设12(,,,)n X X X 是来自总体2(,)N μσ的样本,求μ和2σ的最大似然估计量. 解 设12,,,n x x x ,相应的样本观测值,则似然函数为2()22122221L(,)11exp ()22i x ni nni i x μσμσμπσσ--===⎛⎫⎧⎫=--⎨⎬⎪⎝⎭⎩⎭∑取对数,得222211ln L(,)(ln 2ln )()22n i i n x μσπσμσ==-+--∑将2ln L(,)μσ分别对μ与2σ求偏导数,并令其等于零, 得方程组2122241ln 1()0ln 1()022ni i ni i L x L n x μμσμσσσ==∂⎧=-=⎪∂⎪⎨∂⎪=-+-=⎪∂⎩∑∑ 解此方程组,得到参数μ和2σ的最大似然估计值是12211ˆ;1().n i i ni i x x n x x n μσ==⎧==⎪⎪⎨⎪=-⎪⎩∑∑ 因此,μ和2σ的最大似然估计量是12211ˆ;1().n i i ni i X X n X X n μσ==⎧==⎪⎪⎨⎪=-⎪⎩∑∑四、证明题(共2道小题,满分11分)1.(6分)若(|)(|)P A B P A B >,试证(|)(|)P B A P B A >. 证明 因为()(|)()()()()()(|)()1()1()P AB P A B P B P AB P A AB P A P AB P A B P B P B P B =--===--由 (|)(|)P A B P A B >, 所以得()()()()1()P AB P A P AB P B P B ->- ()()()()()()()P AB P B P AB P A P B P B P AB ->- ()()()P AB P A P B ∴>从而 ()()()()()()()P AB P A P AB P A P B P A P AB ->-即()()()()P AB P A P A P BA > ()()()()P AB P BA P A P A > 所以(|)(|)P B A P B A >.2.(5分)设12(,,,)n X X X 是来自总体(0,1)N 的样本,证明{}21202ni i n P X n n=-<<≥∑. 证明 根据2221~()ni X n χχ=∑,且22(),()2E n D n χχ==,由切比雪夫不等式,有{}{}2221|()|02ni P P E nX n χχ=-<<<∑22()21D n n nχ-≥-=.。
考试课程: 班级: 姓名: 学号:------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------第 1 页(共 2 页)1)求b a ,应满足的条件;2)若X 与Y 相互独立,求b a ,的值。
7已知连续型随机变量),(Y X 的概率密度函数⎪⎩⎪⎨⎧≤≤≤≤=其它情况00,404),(x y x Axyy x f ,求:1)常数A ;2)边缘概率密度)(y f Y 。
8 设n X X X ,,,21⋅⋅⋅是来自总体X 的样本,总体X 的概率密度函数为⎪⎩⎪⎨⎧<<+=其它情况010)1(),(x x x f βββ,其中β未知,且1->β。
求1)β的矩估计量;2)β的极大似然估计量。
三 应用题(每小题8分,共16分)1 已知某种材料的抗压强度),(~2σμN X ,现随机地抽取9个试件进行抗压试验(单位Pa 510),测得样本均值50.457=x ,样本方差2222.35=s 。
已知2230=σ,求总体均值μ的95%的置信区间。
(注:8331.1)9(,2622.2)9(,645.1,96.105.0025.005.0025.0====t t z z )2某中电子元件要求其寿命不得低于10小时,今在生产的一批元件中随机抽取25件,测得其寿命的平均值为10.2小时,样本标准差为0.5小时,设元件寿命总体服从正态分布,问在 显著水平05.0=α下这批元件是否合格? (注:0639.2)24(,7081.1)25(,7109.1)24(025.005.005.0===t t t ,0595.2)25(025.0=t )四 证明题(共6分)设n X X X ,,,21⋅⋅⋅是来自总体X 的一个样本,设μ=EX ,2σ=DX ,其中∑==n i i X n X 11,212)(11∑=--=n i iX X n S ,证明:22)(σ=S E 。
上海立信会计学院2009~2010学年第二学期2008级本科《概率论与数理统计》期终考试试卷(A )(本场考试属闭卷考试,考试时间120分钟,可使用计算器) 共8页学院 班级 学号 姓名一、单项选择题(每题2分,共10分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.对于事件设B A ,,下列命题正确的是 ( ) A .若B A ,互不相容,则A 与B 也互不相容 B .若B A ,相容,则A 与B 也相容C .若B A ,互不相容,且概率都大于零,则A 与B 也相互独立D .若B A ,相互独立,则A 与B 也相互独立2.将一枚骰子掷两次,记21X X 、分别第一、第二掷出的点数。
记:}10{21=+=X X A ,}{21X X B <=。
则=)|(A B P ( )A .31 B .41 C .52 D .65 3.设随机变量X 与Y 均服从正态分布,)2,(~2μN X ,)5,(~2μN Y ,记}2{1-≤=μX P p ,}5{2+≥=μY P p ,则 ( )A .对任何实数μ,都有21p p =B .对任何实数μ,都有21p p <C .只对μ的个别值才有21p p =D .对任何实数μ,都有21p p > 4.设随机变量21,X X 独立,且21}1{}0{====i i X P X P (2,1=i ),那么下列结论正确的是 ( )A .21X X =B .1}{21==X X PC .21}{21==X X P D .以上都不正确 5.设21,X X 取自正态总体)2,(μN 的容量为2的样本,下列四个无偏估计中较优的是( )A .2114341ˆX X +=μB .2122121ˆX X +=μC .21332ˆX X +=μD .2147374ˆX X +=μ 二、填空题(每题2分,共10分)1.设B A ,为随机事件,5.0)(=A P ,6.0)(=B P ,8.0)|(=A B P ,则=)(B A P2.设离散型随机变量X 的分布列为kA k X P )2/1(}{==( ,2,1=k ),则常数=A3.设X 的概率密度为21)(x ex f -=π,则=)(X D4.已知随机变量X 的密度为⎩⎨⎧<<=其它010)(x x a x f ,则=a5.设随机变量X 和Y 相互独立且都服从正态分布)3,0(2N ,而91,,X X 和91,,Y Y 分别是来自总体X 和Y 简单随机样本,则统计量292191YY X X U ++++=服从 分布。
2007~2008学年度第一学期期中试卷八年级数学(A )一、精心选一选(共40分).1、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是A B C D2、和数轴上的点成一一对应关系的数是A.自然数B.有理数C.无理数D. 实数3、下列说法不正确的A 、251的平方根是±51; B 、-9是81的一个平方根;C 、16的算术平方根是4 ;D 、3273-=-4、已知,三角形的三边长为6,8,10,则这个三角形最长边上的高是A 、10B 、8C 、2.4D 、4.85、2)33(-的值为A.33-B.33-C. 33-或33-D.以上答案都不对 6、如图ABCD 中,EF ∥BC , GH ∥AB ,GH 与EF 线交于点O ,图中共有平行四边形的个数 A 、6 B 、7 C 、8 D 、9学校______________ 班别____________ 姓名________________ 座号_________…………………………………………………………………………………………………………………………………………………………………………○…………… 密 ………… 封 ………… 线 ………… 内 ………… 不 ………… 准 ………… 答 ………… 题 ………………………………○7、如图,延长正方形ABCD 的一边BC 至E ,使CE =AC ,连结AE 交CD 于F , 则∠AFC 的度数是A 、112.5°B 、120°C 、122.5°D 、135°8、有四组线段中不能组成直角三角形的是:A 、3,2,1B 、7,24,25C 、32,42,52D 、9,40.,41 9、剪掉多边形的一个角,则所成的新多边形的内角和A. 减少180°B. 增加180°C. 减少所剪掉的角的度数D. 增加180°或减少180°或不变10、甲、乙、丙、丁四位同学到木工厂参观时,一木工师傅要他们拿尺子帮助检测一个窗框是否是矩形,他们各自做了如下检测:检测后,他们都说窗框是矩形,你认为最有说服力的是A 、甲量得窗框两组对边分别相等B 、乙量得窗框的对角线相等C 、丙量得窗框的一组邻边相等D 、丁量得窗框的两组对边分别相等且两条对角线也相等第二卷二、耐心填一填(4×5=20分).11、实数4-,0,722,3125-,0.1010010001……(两个1之间依次多一个0),3.0,2π中,无理数有: ; 12、如图,有一圆柱,其高为12cm ,它的底面半径为3cm ,在圆柱下底面A 处有一只蚂蚁,它想得到上面B 处的食物,则蚂蚁经过的最短距离为______cm 。
离散数学2007级A卷试题参考答案一、填空题(每小题2分,共20分)1.┐p∧q 2.┐∃x(F(x)∧G(x))3.(F(a)∨F(b)∨F(c))→(G(a)∧G(b)∧G(c)) 4.f是双射的5.2 6.<a3>=<e, a3, a6, a9>7.(a∧b)∨c≥c 8.79.2 10.n-1二、判断题(每小题2分,共20分,正确的划√,错误的划×)1.×2.√3.√4.√5.×6.×7.×8.×9.×10.√三、计算题(每小题5分,共15分)1.M2∧M4∧M5∧M62. I={<<2,2>,<2,2>>, <<2,4>,<2,4>>, <<4,2>,<4,2>>, <<4,4>,<4,4>> } R⊆I3. 2m=2n-2=2*2+2*3+1*4+(n-5)*1=9+n解出n=11,m=10,t=11-5=6。
四、证明题(共45分)1.(8分)设集合D,E,F∈P(B) (1分)(1) 证明对称差运算具有可结合性(4分)(D⊕E)⊕F=((D⊕E)∩~F)∪(~(D⊕E)∩F)=[((D∩~E)∪(~D∩E))∩~F]∪[~((D∩~E)∪(~D∩E))∩F]=(D∩~E∩~F)∪(~D∩E∩~F)∪[~(D∩~E)∩~(~D∩E)∩F]=(D∩~E∩~F)∪(~D∩E∩~F)∪[(~D∪E)∩(D∪~E)∩F] 但:[(~D∪E)∩(D∪~E)∩F]=[(~D∩D)∪(E∩D)∪(~D∩~E)∪(E∩~E)]∩F=[φ∪(D∩E)∪(~D∩~E)∪φ]∩F=(D∩E∩F)∪(~D∩~E∩F) 故:(D⊕E)⊕F =((D⊕E)∩~F)∪(~(D⊕E)∩F)=(D∩~E∩~F)∪(~D∩E∩~F)∪(D∩E∩F)∪(~D∩~E∩F) 同理:D⊕(E⊕F)=((D⊕E)∩~F)∪(~(D⊕E)∩F)=(D∩~E∩~F)∪(~D∩E∩~F)∪(D∩E∩F)∪(~D∩~E∩F) 因此,(D⊕E)⊕F=D⊕(E⊕F)所以对称差运算具有结合性。
华东政法大学2007-2008学年第一学期期末考试商学院07级各专业《高等数学》A 卷参考答案一、填空题(每题2分,共20分)(1) e(2) 0(3) -2(4) 0(5) 3(6) C x F +-)(c o s(7) xdy x dx yxy y ln 1+- (8) ⎰⎰ee y dx y xf dy ),(10(9 ) 1/2 (10) 222-。
二、单项选择题(在每小题的四个备选答案中选出一个正确答案,每小题2分,共20分)(1) C (2) B (3) D (4) A (5) A (6) B (7) C (8)A (9)C (10)A三、计算题(每小题6分,共30分)1、解:x x xf x x dt t tf x x x x F 2)(0)(00lim lim )(lim 20→→→=⎰= (3分)2/)(lim 0x f x →= 02/)0(==f (5分)所以当0=x 时,F (x )在x=0处连续。
(6分)2、解:)111111(1lim )21111(lim 1nn n n n n n n n +++++=++++∞→∞→ n n i n i n 111lim 1∑=∞→+= (2分) ⎰+=1011dx x (4分)2ln |)1ln(10=+=x (6分)3、解:323552x x y -= 0)'52(332351310'=令x x x x y -=-=,所以x=1是函数的稳定点。
X=0是函数的不可导的点,这两点是可能的极值点。
在0)('),0,(>-∞x f ,0)('),1,0(<x f ,0)('),,1(>∞x f所以函数的单调区间增区间为)0,(-∞),1(∞,单调递减区间为)1,0(在点x=0处,函数取得极大值0; 在点x=1处,函数取得极小值-3。
(3分))12()'(''3239101310+==--x x y x x 令,0''=y 则x=-1/2,则在0)(''),,(21<--∞x y ,0)(''),,(21>+∞-x y ,因此,函数在区间),(21--∞内凸,在),(21+∞-内凹。
华南农业大学2007第一期概率统计试卷参考答案一. 选择题('53⨯=15分) 1. D 2.B 3. B 4. C 5.A 二. 填空题('53⨯=15分)1.243e -或0.1804; 2.2(1)1Φ-或0.7;3/2(1)n α-; 4.2(10)n χ; 5.3.0202; 三. (10分)解 设B ={此人感染此病},A 1,A 2,A 3分别表示此人选自甲、乙、丙三个地区 由已知,有1()0.2P A =,2()0.5P A =,3()0.3P A =,1()0.06P B A =,2()0.04P B A =,3()0.03P B A =(1)由全概率公式有112233()()()()()()()0.20.060.50.040.30.030.041P B P A P B A P A P B A P A P B A =++=⨯+⨯+⨯=(2)由贝叶斯公式有 112()()0.20.0612()0.2927.()0.04141P A P B A P A B P B ⨯===≈答:从三个地区任意抽取一人,感染此流行病的概率为0.041;若已知此人染病,此人来自乙地区的概率约为0.2927. ………………… 四.(12分)解 (1) 11-22p X ⎛⎫<< ⎪⎝⎭=1201212121arcsin 3x ππ-==⎰(2)当x <-1时 ()00xF X dx -∞==⎰当11x -≤<时1111()0arcsin arcsin 12xxF x dx xx ππ--∞-=+==+-⎰⎰当x 1≥时11111111()00arcsin 122xF x dx dxdx xπ--∞--=+==+=⎰⎰⎰故X 分布函数为0,111()arcsin ,1121,1x F x x x x π<-⎧⎪⎪=+-≤<⎨⎪≤⎪⎩五(16分) 解 (1)()(,)X f x f x y dy +∞-∞=⎰当0x <时,(,)0f x y =,从而()X f x =0.当0x ≥时3434300()(,)0123()3x y x y x X f x f x y dy dy e dy e e e +∞+∞----+∞--∞-∞==+=-=⎰⎰⎰33,0()0,0x X e x f x x -⎧≥=⎨<⎩ 同理44,0()0,0y Y e y f y y -⎧≥=⎨<⎩(2)由(1)求出的两个边缘密度函数表达式可知,对于一切x ,y ,有(,)()()X Y f x y f x f y =则可证明X 与Y 相互独立. (3)21(01,02)(,)P X Y f x y dxdy<≤<≤=⎰⎰210()()Y X f y dy f x dx=⋅⎰⎰21430214383432.x x x x e dy e dxeee e ------=⋅=--=--⎰⎰六.(10分)解 令X 表示取到正品之前已经取出的废品的数,则X 的可能取值为0,1,2,X 的分布律为8{0}10P X ==,288{1}10945P X ==⋅=,2181{2}109845P X ==⋅⋅=,所以88120121045459EX =⨯+⨯+⨯=, 2222881401210454515EX =⨯+⨯+⨯=224488().1581405DX EX EX =-=-=七.(10分) 解 设该次考试的考生成绩为X ,则2(,)XN μσ,把从X 中抽取的容量为n =26的样本均值记为X ,样本标准差为S .本题是在显著水平0.05α=下检验假设 01:70,:70.H H μμ=≠ 由于2σ未知,用t 检验法. 当H 0为真时,统计量/2(1)T t n α=≥-,由0.02526,66.5,15,(25) 2.060n X S t ====算得 1.19 2.060T =<,所以统计量T 未落入拒绝域中,从而接受H 0,即在显著水平0.05下,可以认为这次考试全体考生的平均成绩为70分. 八.(12分) 解 ()101(1)2E X x x dx ββββ+=+=+⎰ 由()12X E X ββ+==+知矩估计量为1ˆ21Xβ=-- ()1(1),010,nn i i i x x L βββ=⎧+<<⎪=⎨⎪⎩∏其它 ()1ln ln(1)ln ni i L n x βββ==++∑令()1ln ln 01ni i L nx βββ=∂=+=∂+∑ 故极大似然估计量为 11ln nii nxβ=-=-∑。
中国农业大学2007 ~2008 学年秋季学期概率论与数理统计(C ) 课程考试试题(A )一、 填空 (每空3分, 共30分)1、设事件A ⊃B ,P(B) = 0.3, 则)(B A P ⋃=_______。
2 、两人各抛一枚硬币,出现国徽面次数相同的概率为____________。
3、随机变量X 服从参数为2的泊松分布,P(X=0)= ,D(-2X+5) = 。
4、 设X~N(3,4),Y~ N(1, 12)且相互独立 则X -Y ~ 。
5、 已知男子有5%是色盲患者,女子有0.25%是色盲患者。
今从男女人数相等的人群中随机地挑选一人,则此人是色盲患者的概率为_____。
6、随机变量X 在(0, 1)服从均匀分布,则Y=-3X+1的概率密度f Y (y) = 。
7、设X 1,X 2, ⋯ ,X n 为来自总体X~N( 0, λ )的样本,且统计量∑==ni i X 122χ服从自由度为n 的χ2分布,则 λ = ,∑=--ni i X X n E 12])(11[ = 。
8、已知)3,2,1(,)(===k ka k X P , 则E(X)= 。
二、单项选择填空题(每题3分, 共15分)1、设A 、B 为任意两事件,则P(A-B) =( )a 、)()(B P A P -;b 、)()()(B A P B P A P +-;c 、)()(AB P A P +;d 、)()(AB P A P -2、若随机变量X 与Y 的相关系数ρ = 0,则下列结论正确的是( )a 、D(X-Y)=D(X) - D(Y) ;b 、D(X-Y)=D(X)+D(Y) ;c 、X 与Y 相关;d 、X 与Y 相互独立。
3、某人设击,中靶率为43,如果射击直到中靶为止,则射击次数为3的概率为( )a 、3)43(; b 、41)43(2; c 、 43)41(2 ; d 、3)41( 4、对单个正态总体的方差检验:H 0: σ2 = σ02 ; H 1: σ2 ≠ σ02 ; (μ未知) 应选择检验统计量( )a 、212)(σ∑=-ni i X X ; b 、212)(σμ∑=-ni i X ; c 、ns X /μ-; d 、2221s s 。
2007----2008学年第一学期《随机数学》期中考试试卷一、本题满分30分,每小题5分1.设事件A ,B 相互独立,A ,C 互不相容,且2.0)|(,4.0)(,3.0)(,4.0)(====C B P C P B P A P 。
.)(B A C P 求解:58.012.03.04.0)()()()()(=-+=-+=B P A P B P A P B A P 分108.02.04.0)|()()()(=⨯===C B P C P BC P BC AC P 分2138.058.008.0)()()())(()(====B A P BC AC P B A P B A C P B A C P 分22. 袋子中有6只红球,4只黑球,今从袋中随机取出4只球,设取到一只红球得2分,取到一只黑球得1分,求得分不大于6分的概率。
解:A=“得分不大于6分”, B=“抽出的球中有3只红球”,C=“抽出的球都是红球”分1)(1)()(C B P C B P A P -== 分242231)()(1410464101436=-⋅-=--=C C C C C C P B P 分2 3.设随机变量X 服从参数为),2(p 的二项分布,随机变量Y 服从参数为),3(p 的二项分布,若95}1{=≥X P ,求}1{≥Y P 解:由于 ),2(~p b X ,95)1(1}0{1}1{2=--==-=≥p X P X P 分2 所以, 31=p 分127193111}0{1}1{3=⎪⎭⎫ ⎝⎛--==-=≥Y P Y P 分2 4.设连续型随机变量X 的分布函数为 )(arctan )(+∞<<-∞⋅+=x xb a x F(1)试确定常数b a , (2)求}1{2>X P 解:(1)根据分布函数的性质,有2)arctan (lim )(1π⋅+=+=+∞=+∞→b a x a F x2)arctan (lim )(0π⋅-=+=-∞=-∞→b a x a F x 分2所以, .1,21π==b a 分1 (2)21)]1()1([1}11{1}1{2=---=≤≤--=>F F X P X P 分2 5.已知随机变量X 在(-3,3)上服从均匀分布,现有方程 02442=+++X Xy y 求方程有实根的概率。
概率论与A 2007~2008学年第一学期《概率论与数理统计A 》期末试题(B )答案一、简单计算(每个题5分,共25分)1. 设B A ,为两事件,且p A P =)(,)()(AB P B A P =,求)(B P . 解:由于)(1)()(B A P B A P B A P -== …………2分 而)()()()(AB P B P A P B A P -+= …………2分 所以)()()()(1)()(AB P AB P B P A P B A P B A P =+--==即1)()(=+B P A P因而p A P B P -=-=1)(1)( …………1分2. 设随机变量X 的分布律为613121201-i p X ,而53-=X Y ,求 Y 的分布函数. 解:由于613121201-i p X ,所以613121158--i p Y …………2分所以Y 的分布函数为 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤--<≤--<=.1,1,15,65,58,21,8,0)(y y y y y F Y …………3分3. 设总体)4,5(~N X 中随机抽取一容量为25的样本,求样本均值X 落在4.2到5.8之间的概率.解: 由于)4,5(~N X , 所以)254,5(~N X ………2分 所以9544.0129772.01)2(2)8.52.4(=-⨯=-Φ=<<X P………3分4. 设9名足球运动员在比赛前的脉搏(12秒)次数为11 13 12 13 11 12 12 13 11假设脉搏次数X 服从正态分布,12=X , 42=σ,求μ的置信水平为0.95的置信区间. 解:由于12=X , 42=σ,05.0=α,μ的置信区间为),(22n Z X n Z X σσαα+-…………3分即为)3067.13,6933.10(. …………2分5. 设总体X 服从泊松分布,1210,,,X X X 是来自X 的样本,求参数λ的矩估计.解: 由于)(~λP X ,所以λ=)(X E 而∑==101101i i X X …………2分 所以由矩估计的思想得: X X E =)( …………2分参数λ的矩估计为:∑==101101ˆi i X λ …………1分概率论与数理统计A 试题 班级 姓名 学号 第2 页 二、计算题(每题6分,共30分)1. 设离散型随机变量X 的分布函数为 ⎪⎪⎩⎪⎪⎨⎧≥+<≤-<≤--<=.2,,21,32,11,,1,0)(x b a x a x a x x F 且21)2(==X P .(1)求常数b a ,;(2)求X 的分布律. 解: (1)由分布函数的性质得1=+b a ,而且21)2(==X P …………2分 所以21322)32(=-+=--+b a a b a ,则65,61==b a . …………1分 (2)X 的分布律为i X p -112111632 …………3分2. 已知随机变量),1(~),,1(~p B Y p B X ,而Y X ,相互独立. (1)求),max(Y X U =的分布律;(2)求Y X V +=的分布律. 解: 联合分布律: 22)1()1()1()1,1()0,1()1,0()0,0(),(p p p p p p p Y X ij --- …………2分 ),max(Y X U =的分布律为: 22)1(1)1(10p p p U i --- …………2分 Y X V +=的分布律为: 222)(2)1(210p p p p p V i -- …………2分3. 已知随机变量)4,3(~U X ,求X e Y =的概率密度函数. 解:X e Y =的反函数y y h ln )(= …………2分 其概率密度函数为⎪⎩⎪⎨⎧<<='⋅=.,0,,1)())(()(43其它e y e y y h y h f y f X Y …………4分4. 设总体X 服从指数分布,参数为θ,12,,,n X X X 是来自X 的样本,求θ的最大似然估计量.解:由于)(~θe X ,则n X X X ,,,21 是来自总体X 的一个样本, 似然函数为 ∑===-=-∏n i i i x n n i x ee L 11111θθθθ …………3分 而 ∑=--=n i i x n L 11ln ln θθ …………1分 01ln 12=+-=∑=n i i xn d L d θθλ,所以 X =θˆ. …………2分5. 设4321,,,X X X X 是来自正态总体)2,0(2N 的简单随机样本,243221)43()2(X X b X X a Y -+-=,若统计量Y 服从2χ分布,则常数b a ,分别为多少?统计量Y 的自由度为多少?解:由于)100,0(~43)20,0(~24321N X X N X X -- 所以)1,0(~)2(21N X X a - ,所以201=a …………3分 )1,0(~)43(43N X X b -,所以1001=b . …………2分 所以)2(~2χY ,其自由度为2. …………1分概率论与数理统计A 试题 班 姓 学号 第 3 页 三、(9分)设某批产品中,甲、乙、丙三厂生产的产品分别占 %20%,35%,45,各厂的产品的次品率分别为%5%,2%,4,现从中任取一件,(1)求取到的是次品的概率;(2)经检验发现取到的产品是次品,求该产品是甲厂生产的概率. 解:设事件)3,2,1(=i A i 分别表示任取一件产品,该产品来自于甲、乙、丙厂, 设事件B 表示取到的是次品. (1))|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++= ………2分 05.02.002.035.004.045.0⨯+⨯+⨯= 035.0= ………2分 (2) 514.0035.004.045.0)()|()()|(111=⨯==B P A B P A P B A P ………5分 四、(12分)设随机变量X 的概率密度函数为 ⎪⎩⎪⎨⎧<<-<<=.,0,21,1,10,)(其它x x x x x f (1)求随机变量X 的分布函数;(2)令53+-=X Y ,求XY ρ;(3)判断Y X ,独立性. 解: ⎰∞-=x X dt t f x F )()( ………2分 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤+-=-+<≤=≤=⎰⎰⎰.2,1,21,121,10,2,0,0211020x x x x dt t tdt x x tdt x x x …………6分(2)由于53+-=X Y ,根据相关系数的性质,易得1-=XY ρ.………2分(3)由于01≠-=XY ρ,所以Y X ,不独立.………2分五、(12分) 设随机变量),(Y X 在区域G 上服从均匀分布,G 为y 轴,x 轴与直线13+-=x y 所围城的区域. (1)求),(Y X 的联合概率密度及边 缘概率密度;(2)求)2(≤+Y X P .解: (1) 由题意知⎩⎨⎧∈=.,0;),(,6),(其它G y x y x f (2)分 ⎰+∞∞-=dy y x f x f X ),()(⎪⎩⎪⎨⎧<<+-==⎰+-.,0;310,6186130其它x x dy x ………4分⎰+∞∞-=dx y x f y f Y ),()(⎪⎩⎪⎨⎧<<+-==⎰--.,0;10,226310其它y y dx y………4分(2) 1),()2(==≤+⎰⎰Gdxdy y x f Y X P………2分概率论与数理统计A 试题 班级 姓 学 第 4 页 六、(12分)设421,,,X X X 是来自正态总体),(2σμN 的样本.其中σμ,未知,设有估计量)(31)(6143211X X X X T +++= 43212743X X X X T +-+= 421343X X X T +-= (1) 指出321,,T T T 中哪个是μ的无偏估计; (2) 在上述μ的无偏估计中指出哪一个较为有效. 解:由于μ=+++=)(31)(61)(43211EX EX EX EX T E ………2分 μ=+-+=43212743)(EX EX EX EX T E ………2分 0434213=+-=EX EX EX ET ………2分 所以21,T T 是μ的无偏估计. ………1分 (2) 243211185)(91)(361)(σ=+++=DX DX DX DX T D ………2分 2432127549169)(σ=+++=DX DX DX DX T D ………2分 因为)()(21T D T D <,所以1T 比2T 更有效. ……1分 95.0)65.1(=Φ, 975.0)96.1(=Φ, 9772.0)2(=Φ, 8413.0)1(=Φ, 017.36)25(2025.0=χ, 42.36)24(2025.0=χ。
06级《线性代数与概率统计》期末考试试题(A 卷)2007学年(1)学期姓名:___________________学号:____________________分数:____________________一、是非题(下列叙述正确的打“√”,错误的打“×”)(共10分)1、若A 是n 阶方阵(n≥2),则A A =-。
( × )2、在样本空间S 中存在两个事件A 、B 满足()()()A B P AB P A P B φ⋂==且( √ )3、若向量组123,,,...,m αααα线性无关,则1α必可由23,,...,m ααα线性表出。
( × )4、设A 是m×n 矩阵,若m <n ,则A X=0有无穷多个解。
( √ ) 5、对于随机变量X 、Y ,若ρXY ≠0,则X与Y 必定不相互独立。
( √ ) 6、在圆周上任意放置三个点,则该三点构成各种三角形的概率必定大于0。
( ×)7、将一枚硬币抛掷10000次,出现正面5800次,认为这枚硬币不均匀是合理。
( √ ) 8、已知()(),A B A B A B A B C ++++++=则C =B 。
( √ )9、设m ×n 矩阵B ≠O,且BX =B Y,则X =Y 。
( × )10、对于矩阵A 、B ,若矩阵A 满秩,则r(AB )=r(B )。
( √ )二、选择题(20分)1、已知A 、B 、C为某随机试验中的事件,则下列各式一定正确的是( D ) (A)();A B B A -+= (B)()();A B C A B C +-=+- (C);A C B C A B +=+⇒= (D)以上答案都不一定正确 2、设,A B 均为可逆矩阵,且AB BA =,则( B )(A)11;A B B A --= (B)11;AB B A --= (C)11;AB B A --= (D )11()()0A B A B --++≠3、某人射击时,中靶的概率为3/4,如果射击直到中靶为止,则射击次数为3的概率为( C )(A)33();4 (B) 231();44⨯ (C) 213();44⨯ (D) 31()44、下列说法不正确的是( A )(A )对于事件A ,若P(A)=1,则事件A 必定为必然事件; (B )极大无关组中的解向量一定线性无关;(C)交换行列式的某两行,行列式的值变为相反数;(D)满秩矩阵一定可逆,且可以化为若干个初等矩阵的乘积。
2007-2008学年第二学期高数试卷A 参考答案试卷号:A20080630一、1. 0 ;2. 0)2(2)1(4=+-+-z y x ;3. =I ⎰⎰101),(xdy y x f dx ;4. 32a π, ;5、R = 2 。
6、(4)0y y -=。
二、1、 B ; 2、 A ;3、B ;4、 C ;5、 A ;6、(化工、食工做) D ;6、(物理、机电、电气、计算机做) D三.1、令,12t x =+则 212-=t x ,,tdt dx =当0=x 时1=t 。
4=x 时3=t⎰++40122dx x x =⎰⎰+=+-312312)3(21221dt t tdt t t =3221333213=⎥⎦⎤⎢⎣⎡+t t2、)cos()sin(y x e y x e xzx x -+-=∂∂ ,)cos(y x e y z x --=∂∂ ))cos())cos()((sin(dy y x dx y x y x e dz x---+-=3、令1sin )1(11+-=++n u n n n ππ,111sin)1(2sin )1(lim lim11221<=+-+-=++++∞→+∞→πππππn n u u n n n n n nn n所以原级数收敛且是绝对收敛的。
4、原式=⎰⎰⎰--++-∂+∂-∂-∂aa D dy x y dx y x dxdy yy x x x y )2()())()2((22 =⎰⎰⎰---D aaxdx dxdy )3(=32ab π-5、设长方体得长、宽、高分别为z y x ,,,则)(2xz yz xy S ++=,3a xyz = 令)(),,(3a xyz xz yz xy z y x F --++=λ 则00=-+==-+==-+=xy y x F xz z x F yz z y F z y x λλλ,解得z y x ==,代入3a xyz =得a z y x === , 2min 6a S =四 )(),(),(2x y y x Q xy y x P ϕ==。
信息技术科学学院本科生2007——2008学年第一学期
《概率论与数理统计》课程期末考试试卷(A 卷)
专业: 年级: 学号: 姓名: 成绩:
、一 、填空题(本题共32分,每小题4分,共8题)
1.假如每个人血清中含有肝炎病毒的概率为p ,混合n 个人的血清(设每个人的血清中是否含有肝炎病毒是相互独立的),则此血清中含有肝炎病毒的概率为
2.设二维随机变量(,)X Y 的联合密度函数为
221
(,)0
cx y x y f x y ⎧≤≤=⎨
⎩其它 则常数c =
3.设0)()(≠=Y D X D ,记Y X U -=,Y X V +=,则U 与V 必然( )。
A. 不独立
B. 独立
C. 相关
D. 不相关
4.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他,0,
20,2)(x x
x f ,则X 的上α
分位点(α=1/2),为
第1页,共6页
第1页,共6页
5.设(n X X X ,...,,21)是来自正态总体N(0,1)的样本,那么统计量
Y =21
12
)(1)(1∑∑+==-+n
m i i m i i X m n X m 服从的分布是____
6.设某种药品中有效成分的含量服从正态总体),(2σμN ,原工艺生产的产品中有效成分的平均含量为a ,现在用新工艺试制了一批产品,测其有效成份的含量,以检验新工艺是否真的提高了有效成份的含量,要求当新工艺没有提高有效成分含量时,误认为新工艺提高了有效成分的含量的概率不超过0.05,那么在假设检验中,应取原假设0H 和显著性水平α分别为
7.某种零件尺寸偏差X 服从正态分布22(,),,N μσμσ未知,今随机抽取n 个零件,测得样本均值为X ,样本方差为2S ,则总体数学期望μ的置信度为1α-的双侧置信区间为 8.设随机过程(),0At X t e t -=>,其中A 是在(0,)a 上服从均匀分布的随机变量,则()X t 的自相关函数为
、二 、甲、乙两人同时向同一飞行目标射击,击中的概率分别为0.4, 0.5, 如果只有一个人击中,则目标被击落的概率为0.2;如果有两个人击中,则目标被击落的概率为0.6。
求目标被击落的概率。
(注:每人只射击一次)(本题10分)
第2页,共6页
草稿区第2页,共6页
、三、设二维随机变量(,)X Y 的联合密度函数
22,0,0
(,)0,x y e x y f x y --⎧>>=⎨
⎩其他, 求 (1)X,Y 的边缘概率密度函数。
(2)X,Y 是否相互独立 (3)max{,}Z X Y =的分布函数.
(4) max{,}Z X Y =的概率密度函数.(本题20分)
第3页,共6页
第3页,共6页
、四 、一工厂生产的某种设备的寿命X (以年计)服从
指数分布,概率密度为: /510()5
x e x f x x -⎧>⎪=⎨⎪≤⎩
工厂规定,出售的设备若在一年内损坏可予以调换。
若工厂售出
一台设备可赢利150元,调换一台设备厂方需花费260元。
试求厂方出售一台设备净赢利的数学期望。
(本题13分)
第4页,共6页
第4页,共6页
、五 、某人作独立重复射击,每次击中目标的概率均为p ,它在第X 次射击时,首次击中目标,
(1) 试写出X 的分布律
(2)以此X 为总体,从中抽取简单随机样本,得到样本观察值12(,,)n x x x ,试求未知参数p 的最大似然估计量 (本题15分)
第5页,共6页
第5页,共6页
、六 、某彩电公司每月生产20万台背投彩电,次
品率为0.0005. 检验时每台次品未被查出的概率为0.01.
试用中心极限定理求每月检验后出厂的彩电中次品数超过3台的概率.(本题10分)
附表:标准正态分布数值表 2χ分布数值表 t 分布数值表
第6页,共6页
草稿区第6页,共6页。