一次函数基本概念汇总
- 格式:doc
- 大小:179.00 KB
- 文档页数:5
一次函数的基本概念总结一次函数是数学中最基础的函数之一,也被称为线性函数。
它的函数表达式为f(x) = ax + b,其中a和b为常数,且a不等于0。
一次函数的图像是一条直线,它具有许多重要的特性和用途。
本文将对一次函数的基本概念进行总结,包括定义、特征、图像、斜率和截距等内容。
一、定义一次函数是指函数的自变量x与因变量f(x)之间呈线性关系的函数。
它的函数表达式可以用一条直线来表示,其中a称为斜率,b称为截距。
一次函数的定义域是所有实数,即(-∞, +∞),而值域则依赖于斜率和截距的取值范围。
二、特征一次函数的特征主要包括斜率、截距和变化趋势。
斜率a决定了一次函数图像的倾斜程度和方向,斜率大于0表示图像向上倾斜,斜率小于0表示图像向下倾斜,斜率为0表示图像水平。
截距b决定了一次函数图像与y轴的交点位置,当x等于0时,函数值为b,即图像与y轴的交点为(0, b)。
三、图像一次函数的图像是一条直线,通过两个点即可确定一次函数的图像。
其中,截距b决定了函数与y轴的交点,而斜率a决定了图像的倾斜程度和方向。
当斜率为正时,图像从左下向右上倾斜;当斜率为负时,图像从左上向右下倾斜;斜率为0时,图像水平且平行于x轴。
通过图像可以直观地了解一次函数的变化趋势和特征。
四、斜率斜率是一次函数最重要的特征之一,它表示了函数图像在x轴方向上的变化率。
斜率可以通过计算任意两个点之间的纵向变化与横向变化的比值来求得。
具体而言,设点A(x1, f(x1))和点B(x2, f(x2))是一次函数上的两个点,其斜率可以用以下公式计算:斜率a = (f(x2) -f(x1))/(x2 - x1)。
斜率的正负决定了函数图像的上升或下降趋势,而斜率的绝对值则表示了图像的倾角大小。
五、截距截距是一次函数图像与y轴的交点在y轴上的坐标值。
截距是斜率为0时,函数图像与y轴的交点。
对于一次函数f(x) = ax + b,截距即为b。
截距的正负决定了交点的位置,在图像上表现为函数曲线与y轴的交点。
一次函数的知识点一、函数基本概念一次函数的定义:形如y = kx + b(其中k和b是常数,且k ≠ 0)的函数称为一次函数。
二、一次函数的性质1、斜率(k):当k > 0时,函数图像从左到右上升,即函数是增函数。
当k < 0时,函数图像从左到右下降,即函数是减函数。
斜率k表示函数图像与x轴正方向的夹角大小。
2、截距(b):当x = 0时,y = b,即点(0, b)为一次函数与y轴的交点,b称为y轴截距。
3、图象:一次函数的图象是一条直线。
当k > 0时,直线从左到右上升;当k < 0时,直线从左到右下降。
三、一次函数的表达式1、点斜式:y - y1 = k(x - x1),其中(x1, y1)是直线上的一点。
2、斜截式:y = kx + b,其中k是斜率,b是y轴截距。
3、两点式:当已知直线上的两点(x1, y1)和(x2, y2)时,可以使用两点式(y - y1) / (y2 - y1) = (x - x1) / (x2 - x1)。
四、一次函数的应用1、线性方程:一次函数常用于表示线性方程,如ax + by = c(其中a和b不全为0)可以转化为斜截式y = (-a/b)x + (c/b)。
2、实际问题建模:一次函数常用于建模实际问题中的线性关系,如物价增长、距离速度时间的关系等。
五、一次函数的平移和对称1、平移:2、上下平移:上加下减,即y = kx + b向上平移m个单位变为y = kx + (b + m),向下平移m个单位变为y = kx + (b - m)。
3、左右平移:左加右减,即y = kx + b向左平移m个单位变为y = k(x + m) + b,向右平移m个单位变为y = k(x - m) + b。
4、对称:一次函数图像关于x轴对称时,其解析式中的y变为-y,即y = -kx - b。
一次函数图像关于y轴对称时,其解析式中的x变为-x,即y = -kx + b。
一次函数知识点总结一、概述一次函数是数学中常见且重要的函数类型之一。
它的表达式形式为y = ax + b,其中 a 和 b 是常数,x 是自变量,y 是因变量。
一次函数具有线性关系,其图象为直线。
本文将对一次函数的相关概念、性质以及应用进行总结。
二、定义和性质1. 定义:一次函数是指其表达式为 y = ax + b 的函数,其中 a 和 b 是常数,且a ≠ 0。
2. 斜率和截距:在一次函数的表达式中,a 表示直线的斜率,b 表示直线与纵轴的交点,即 y 轴上的截距。
3. 直线的方向:当 a > 0 时,直线呈现上升趋势;当 a < 0 时,直线呈现下降趋势。
4. 直线的平行和垂直:两条直线平行的条件是它们的斜率相等;两条直线垂直的条件是它们的斜率的乘积等于 -1。
5. 零点和方程:一次函数的零点是指满足 y = 0 的 x 值,可以通过解一次方程 ax + b = 0 求得。
三、图像与性质1. 图像的特征:一次函数的图像为一条直线,在直角坐标系中呈现线性关系。
根据斜率和截距的不同取值,直线的方向、位置和倾斜程度会有所变化。
2. x 轴和 y 轴的交点:当 x = -b/a 时,直线与 x 轴的交点为横坐标为 -b/a 的点;当 y = 0 时,直线与 y 轴的交点为纵坐标为 b 的点。
3. 斜率的意义:斜率表示了直线上的两个点之间的变化率。
斜率越大,直线越陡峭;斜率为正值时,直线上升;斜率为负值时,直线下降。
4. 点斜式方程:一次函数的点斜式方程为 y - y1 = a(x - x1),其中(x1, y1) 是直线上的任意一点坐标。
5. 一般式方程:一次函数的一般式方程为 ax - y + b = 0,在其中 a,b 均为整数,且 a, b 不同时为 0。
四、应用1. 实际问题建模和解答:一次函数可以用来模拟许多实际问题,如物体的运动轨迹、收入与支出的关系等。
通过确定函数表达式中的参数,可以对问题进行数学建模和求解。
一次函数知识点总结_高三数学知识点总结一次函数是数学中的基本概念,也是高中数学中重要的内容之一。
下面是一次函数的知识点总结:1. 一次函数的定义:一次函数是指形如y=ax+b的函数,其中a和b是常数,且a不等于0。
一次函数也叫线性函数。
2. 一次函数的图像:一次函数的图像是一条直线。
斜率a决定了直线的倾斜程度,斜率a大于0时表示直线上升,a小于0时表示直线下降。
截距b决定了直线与y轴的交点位置。
3. 一次函数的性质:- 一次函数的定义域是所有实数。
- 一次函数是一个连续函数,不存在间断点。
- 一次函数是一个线性函数,具有划分直线平行、垂直、学函数等性质。
- 当斜率a大于0时,随着x的增大,y也增大;当斜率a小于0时,随着x的增大,y减小。
- 当截距b大于0时,直线与y轴的交点在正y轴上方;当截距b小于0时,直线与y轴的交点在负y轴上方。
4. 一次函数的性质与方程:对于一次函数y=ax+b,我们可以根据已知条件推导出其它性质或求解方程。
- 两点确定一条直线:已知两个点的坐标(x₁, y₁)和(x₂, y₂),我们可以通过斜率公式a=(y₂-y₁)/(x₂-x₁)求得斜率,再利用其中一个点的坐标和斜率即可得到方程y=ax+b。
- 已知斜率和一点确定一条直线:已知直线的斜率a和经过直线的一点的坐标(x₁, y₁),我们可以利用点斜式y-y₁=a(x-x₁)得到方程,并进一步化简为一次函数的形式。
- 求直线与x轴和y轴的交点:直线与x轴的交点是方程y=ax+b中的解,即令y=0,解得x=-b/a;直线与y轴的交点是(0, b)。
- 平行和垂直直线的关系:如果两条直线的斜率相等,那么它们是平行的;如果两条直线的斜率互为倒数,那么它们是垂直的。
5. 一次函数的应用:一次函数在实际生活中有许多应用。
- 速度和时间的关系:当物体以匀速运动时,其位移与时间的关系可以用一次函数表示。
位移就是y,时间就是x,斜率就是速度。
一次函数基础知识总结
一次函数也被称为线性函数,是数学中的基础概念之一。
本文将总结一次函数的基础知识。
什么是一次函数
一次函数是指形如 $y = mx + c$ 的函数,其中 $x$ 和 $y$ 分别表示自变量和因变量,$m$ 和 $c$ 分别表示斜率和截距。
斜率和截距
一次函数的斜率 $m$ 表示函数图像上每单位横向变化所对应的纵向变化。
斜率可正可负,正斜率表示图像向上倾斜,负斜率表示图像向下倾斜。
一次函数的截距 $c$ 表示函数图像与纵轴($x$ 轴)的交点,也可称为 $y$ 轴截距。
函数图像
一次函数的图像是一条直线,其斜率和截距决定了直线的方向和位置。
- 当斜率为正时,直线向上倾斜;
- 当斜率为负时,直线向下倾斜;
- 当斜率为零时,直线平行于横轴。
截距决定了直线与纵轴的交点位置。
函数的图像特征
一次函数的图像具有以下特征:
- 当斜率为正时,函数的图像从左下方向上右上运动;
- 当斜率为负时,函数的图像从左上方向下右下运动;
- 当斜率为零时,函数的图像平行于横轴。
一次函数的应用
一次函数在实际生活中有广泛的应用。
例如:
- 经济学中,一次函数可以用于描述价格和需求、供应之间的关系;
- 物理学中,一次函数可以用于描述速度和时间、位移之间的关系;
- 工程学中,一次函数可以用于描述成本和产量之间的关系。
总结
一次函数是数学中的基础概念,具有重要的应用价值。
本文对一次函数的定义、斜率、截距以及图像特征进行了总结,并介绍了一次函数在实际生活中的应用领域。
参考文献:。
一次函数知识点总结9篇第1篇示例:一次函数是初中阶段数学学习的重要内容之一。
它是一种最简单的线性函数,也是数学中最基础的函数之一。
一次函数的定义是形如y=kx+b的函数,其中x为自变量,y为因变量,k和b为常数,且k≠0。
一次函数的图象是一条直线,因此也被称为线性函数。
下面将从定义、性质、图象、应用等几个方面,对一次函数进行总结。
一、定义:一次函数y=kx+b是一种形式简单的线性函数,其中k 和b是常数且k≠0。
其中k称为斜率,b称为截距。
斜率代表了函数图象的倾斜程度,正数表示向上倾斜,负数表示向下倾斜;截距表示了函数与y轴的交点位置,即当x=0时,函数值为b。
一次函数的自变量x的最高次数为1。
三、图象:一次函数的图象是一条直线,因此也称为线性函数。
直线的斜率决定了图象的倾斜方向,截距决定了图象与y轴的交点位置。
当斜率为正时,图象右上倾斜;当斜率为负时,图象右下倾斜。
当截距为正时,图象在y轴上方;当截距为负时,图象在y轴下方。
四、应用:一次函数在现实生活中有着广泛的应用。
比如工资和工作时间的关系,距离和时间的关系等等都可以用一次函数来表示。
在经济学中,一次函数也有着重要的应用,如成本和产量的关系、供求关系等。
一次函数的应用范围十分广泛,在生活中随处可见。
一次函数是数学中最基础的函数之一,了解一次函数的性质和图象能够帮助我们更好地理解和应用各种函数。
在学习数学中,学好一次函数是至关重要的一步,也为后续学习更高阶函数和解决实际问题打下了坚实基础。
希望通过本文的总结,能够对一次函数有更深入的了解和应用。
第2篇示例:一次函数是初中数学中的一个基础知识点,也是数学学习的入门部分。
对于学生来说,掌握一次函数的相关知识,不仅可以帮助他们更好地理解数学知识,更可以培养他们的逻辑思维能力和解决问题的能力。
接下来我们就来总结一下一次函数的相关知识点。
一、定义:在数学中,一次函数是指一个函数,其定义域是实数集合,且函数表达式为f(x) = kx + b,其中k和b为实数,且k不等于零。
一次函数知识点总结一次函数是数学中的基础概念之一,也是学习更高级数学知识的基础。
它在数学、物理、经济学等领域都有着广泛的应用。
本文将对一次函数的相关知识点进行总结,希望能够帮助读者更好地理解和掌握这一重要的数学概念。
一、一次函数的定义。
一次函数是指形式为f(x) = ax + b的函数,其中a和b是常数且a不等于0。
在一次函数中,x的最高次数为1,因此也称为线性函数。
一次函数的图像是一条直线,其斜率为a,截距为b。
二、一次函数的性质。
1. 斜率,一次函数的斜率表示函数图像在x轴上每增加1个单位对应的y轴上的增加量。
斜率为正表示函数递增,斜率为负表示函数递减,斜率为零表示函数水平。
2. 截距,一次函数的截距表示函数图像与y轴的交点坐标,记作(0, b)。
截距决定了函数图像的位置关系。
3. 单调性,当斜率大于0时,函数递增;当斜率小于0时,函数递减。
4. 零点,一次函数的零点表示函数图像与x轴的交点坐标,记作(x, 0)。
零点决定了函数的根的位置。
5. 定义域和值域,一次函数的定义域为全体实数,值域为全体实数。
这意味着一次函数的图像可以覆盖整个坐标平面。
三、一次函数的图像。
一次函数的图像是一条直线,其特点是斜率和截距决定了直线的位置和倾斜程度。
当斜率增大时,直线越陡;当截距增大时,直线在y轴上的位置越高。
四、一次函数的应用。
1. 经济学中的应用,一次函数可以用来描述成本、收益、供求关系等经济学问题。
2. 物理学中的应用,一次函数可以用来描述速度、加速度、位移等物理学问题。
3. 工程学中的应用,一次函数可以用来描述线性电路、材料强度、温度变化等工程学问题。
五、一次函数的解题方法。
1. 求斜率,通过两点坐标的差值来求斜率,斜率为Δy/Δx。
2. 求截距,当已知斜率和一点坐标时,可以利用直线方程求截距。
3. 求零点,将函数值设为0,通过代数方法求解x的值。
4. 确定单调性,通过斜率的正负来确定函数的单调性。
一次函数知识点总结一次函数是数学中非常重要的一个概念,它在解决实际问题和数学理论中都有着广泛的应用。
下面我们就来详细总结一下一次函数的相关知识点。
一、一次函数的定义一般地,形如 y = kx + b(k,b 是常数,k ≠ 0)的函数,叫做一次函数。
当 b = 0 时,即 y = kx(k 为常数,k ≠ 0),这时称 y 是 x的正比例函数。
这里要注意的是,一次函数的表达式中,x 的次数为 1,且系数 k不能为 0。
如果 x 的次数不是 1 或者 k 为 0,那就不是一次函数。
二、一次函数的图像一次函数 y = kx + b 的图像是一条直线。
当 k > 0 时,直线从左到右上升;当 k < 0 时,直线从左到右下降。
b 的值决定了直线与 y 轴的交点。
当 b > 0 时,直线与 y 轴交于正半轴;当 b < 0 时,直线与 y 轴交于负半轴;当 b = 0 时,直线经过原点。
例如,函数 y = 2x + 1,k = 2 > 0,直线上升,b = 1 > 0,与 y 轴交于正半轴。
三、一次函数的性质1、当 k > 0 时,y 随 x 的增大而增大;当 k < 0 时,y 随 x 的增大而减小。
2、直线 y = kx + b 与 x 轴的交点坐标为( b / k ,0 )。
四、一次函数的解析式的确定通常我们可以使用待定系数法来确定一次函数的解析式。
具体步骤如下:1、设出一次函数的解析式 y = kx + b 。
2、根据已知条件列出关于 k、b 的方程组。
3、解方程组,求出 k、b 的值。
例如,已知一次函数经过点(1,3)和( 1, 1),设解析式为 y = kx + b,将两点坐标代入可得:\\begin{cases}k + b = 3 \\k + b = 1\end{cases}\解这个方程组,可得 k = 2,b = 1,所以解析式为 y = 2x + 1 。
五、一次函数与方程、不等式的关系1、一次函数 y = kx + b 的图像与 x 轴的交点的横坐标,就是方程kx + b = 0 的解。
一次函数的知识点总结一、一次函数的基本概念一次函数是数学中最基础的函数之一,它的表达式为y = ax + b,其中a和b是常数,a不等于0。
在这个函数中,x称为自变量,y称为因变量,a称为斜率,b称为截距。
斜率表示了函数图象的倾斜程度,而截距表示了函数图象与y轴的交点位置。
从函数的表达式中可以看出,一次函数的图象是一条直线,即直线函数。
一次函数的定义域为实数集R,值域也为实数集R。
它的图象可以延伸到整个坐标平面上。
当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。
二、一次函数的性质1. 斜率和截距一次函数的斜率a表示了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。
当a大于0时,函数图象向右上方倾斜;当a小于0时,函数图象向右下方倾斜。
而截距b表示了函数图象与y轴的交点位置,当b大于0时,函数图象在y轴上方;当b小于0时,函数图象在y轴下方。
2. 函数值对于一次函数y = ax + b,当给定x的值时,我们可以通过代入x的值得到对应的函数值y。
一次函数的函数值可以用来描述一根直线上的点的位置。
3. 函数的奇偶性一次函数是一个奇函数,它的图象关于原点对称。
这意味着,如果(x, y)在函数的图象上,则(-x, -y)也在函数的图象上。
4. 函数的单调性当a大于0时,一次函数是递增的;当a小于0时,一次函数是递减的。
递增意味着函数图象自左向右是上升的,递减意味着函数图象自左向右是下降的。
三、一次函数的图象一次函数的图象是一条直线,在坐标平面上呈现出一种特定的形状。
它的位置、斜率、倾斜方向和截距等特征可以通过图象来直观地展现。
1. 斜率和截距斜率a决定了函数图象的倾斜程度,它的绝对值越大,直线的斜率越大。
当a大于0时,函数图象是上升的直线;当a小于0时,函数图象是下降的直线。
而截距b决定了函数图象与y轴的交点位置,它是函数图象与y轴的交点的纵坐标。
2. 基本图象y = x + 1是一次函数的基本图象,它是一条经过原点,斜率为1的直线。
一次函数所有知识点讲解一次函数是初中数学中的重要内容,也是高中数学的基础。
在学习一次函数时,我们需要掌握以下知识点:一、函数的概念函数是一种数学关系,它将一个自变量的值映射到一个因变量的值。
一般地,我们用f(x)表示函数,其中x是自变量,f(x)是因变量。
函数的定义域是自变量的取值范围,值域是因变量的取值范围。
二、一次函数的定义一次函数是指函数f(x) = kx + b,其中k和b是常数,且k不等于0。
一次函数的图像是一条直线,斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。
三、一次函数的图像一次函数的图像是一条直线,可以通过斜率k和截距b来确定。
当k>0时,直线向上倾斜;当k<0时,直线向下倾斜;当k=0时,直线水平。
当b>0时,直线与y轴正向平移;当b<0时,直线与y轴负向平移。
四、一次函数的性质1. 斜率k表示函数的变化率,即函数值的增量与自变量增量的比值。
当k>0时,函数单调递增;当k<0时,函数单调递减;当k=0时,函数为常函数。
2. 截距b表示函数与y轴的交点,当x=0时,函数的值为b。
因此,截距b可以用来确定函数的位置。
3. 一次函数的定义域为全体实数,值域为全体实数。
五、一次函数的应用1. 一次函数可以用来描述直线运动的速度和位置关系。
例如,当一辆车以匀速v行驶时,它的位置与时间的关系可以表示为f(t) = vt + b,其中b为初始位置。
2. 一次函数可以用来描述经济问题中的成本和收益关系。
例如,当一家公司生产x件产品时,它的成本和收益可以表示为f(x) = kx + b,其中k为单位成本或单位收益,b为固定成本或固定收益。
3. 一次函数可以用来描述物理问题中的速度和加速度关系。
例如,当一个物体以初速度v0加速a时,它的速度与时间的关系可以表示为f(t) = v0 + at。
一次函数是数学中的重要内容,它不仅具有理论意义,还有广泛的应用价值。
一次函数知识点分类一次函数是初中数学中的重要内容之一,也称为一元一次方程。
它在各种实际问题中都有应用,如经济学、物理学、化学等领域。
下面对一次函数的知识点进行分类介绍。
一、基本概念1.一次函数的定义:如果在一个数域上,有两个数a和b,且a≠0,那么函数y=ax+b 称为一次函数。
2.自变量与因变量:一次函数中自变量为x,因变量为y。
3.函数图像:一次函数的图像是一条直线,可用直线段中的任意一点和斜率来确定。
4.斜率和截距:一次函数中,a称为直线的斜率(k),b称为截距(b)。
5.解析式:一次函数的一般解析式为y=kx+b,其中k为斜率,b为截距。
二、性质与特征1.平移变换:一次函数的图像可通过平移变换得到。
2.斜率的意义:斜率表示的是直线的倾斜程度,正斜率表示线段朝上,负斜率表示线段朝下,斜率为0表示线段水平,斜率不存在表示线段垂直。
3.截距的意义:截距表示的是直线与y轴相交的位置。
4.一次函数的单调性:如果a>0,斜率为正,则函数单调递增;如果a<0,斜率为负,则函数单调递减。
5.零点:一次函数的零点指y=0时,对应的x的值,为函数与x轴交点的横坐标。
三、解题方法1.解一次方程:将一次函数转化为一元一次方程,通过求解方程的解来求解x的值。
2.求斜率和截距:根据对应点的坐标计算斜率和截距。
4.求函数解析式:根据已知条件求出斜率和截距,写出函数的解析式。
四、实际应用1.经济学应用:一次函数主要在经济学中应用,如需求函数、供给函数等。
2.物理学应用:在物理学中,一次函数可以用来描述简单的物理现象,如速度、加速度等。
3.化学应用:化学实验中,一次函数也有应用,如在一元反应过程中,浓度随时间的变化可以用一次函数描述。
总结:一次函数作为初中数学的重要知识点,需要我们掌握其基本概念、性质与特征、解题方法和实际应用等方面的知识。
通过对这些内容的学习和理解,我们可以更好地掌握一次函数的本质,提高我们的数学素养。
基本知识提炼整理一、基本概念1.函数的概念一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数.2.一次函数和正比例函数的概念若两个变量x,y之间的关系式可以表示成y=kx+b(k,b为常数,且k≠0)的形式,则称y是x的一次函数(x是自变量).特别地,当b=0时,称y是x的正比例函数.二、一次函数和正比例函数的图象和性质过原点的一条直线专题总结及应用一、基础知识应用1.结合实例理解函数的概念.2.熟练掌握一次函数和正比例函数的概念.3.结合一次函数的图象,熟练掌握一次函数和正比例函数的性质.4.会求一次函数的表达式.5.能灵活运用一次函数的图象解决实际问题.例1 一报亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以每份0.2元的价格退回报社,在一个月内(以30天计算)有20天每天可以卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为自变量x ,每月所获利润为y (元).(1)写出y 与x 之间的函数关系式,并指出自变量x 的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?..小结 解有关一次函数的应用题要注意运用数形结合的方法综合分析问题,将所学知识灵活运用,融会贯通,同时还要特别注意自变量的取值范围的限制,它是解决问题的关键之一.例2 拖拉机耕地时,每小时的耗油量假定是个常量,已知拖拉机耕地2小时油箱中余油28升,耕地3小时油箱中余油22升.(1)写出油箱中余油量Q (升)与工作时间t (时)之间的函数关系式; (2)画出函数图象;(3)这台拖拉机工作3小时后,油箱中的油还够拖拉机继续耕地几小时?(分析)由两组对应量可求出函数关系式,再画出图象(在自变量取值范围内).小结 运用一次函数图象及其性质可以帮助我们解决实际生活中的许多问题,如利润最大、成本最小、话费最省、最佳设计方案等问题,我们应善于总结规律,达到灵活运用的目的.二、数学思想方法的归纳及应用 1.函数方法函数方法就是应用运动、变化的观点来分析问题中的数量关系,抽象升华为函数的模型,进而解决有关问题的方法,函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.例1 利用图象解二元一次方程组⎩⎨⎧-=+=- ② ①.5,22y x y x .小结 解方程组通常用消元法.但如果把方程组中的两个方程看作是两个一次函数,画出这两个函数的图象,那么它们的交点坐标就是方程组的解.例2 我国是一个严重缺水的国家,大家应该倍加珍惜水资源,节约用水,据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05mL.小明同学在洗手时,没有把水龙头拧紧,当小明离开x小时后,水龙头滴了ymL水.(1)试写出y与x之间的函数关系式;(2)当滴了1620mL水时,小明离开水龙头几小时?.2.数形结合法数形结合法是指将数与形结合起来进行分析、研究、解决问题的一种思想方法.数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.例3 如图11-55所示,一次函数的图象与x轴、y轴分别相交于A,B两点,如果A 点的坐标为A(2,0),且OA=OB,试求一次函数的解析式.【说明】利用函数图象研究数量之间的关系是数形结合思想的具体运用,在解决有关函数问题时有着重要的作用.3.分类讨论法分类讨论法是在对数学对象进行分类的过程中寻求答案的一种思想方法.分类讨论法既是一种重要的数学思想,又是一种重要的教学方法.分类的关键是根据分类的目的,找出分类的对象,分类既不能重复,也不能遗漏,最后要全面总结.例4 在一次遥控车比赛中,电脑记录了速度的变化过程,如图11-56所示,能否用函数关系式表示这段记录?例5 某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售可获利15%,并可用本利和再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付仓储费用700元,问他如何销售获利较多?4.方程方法方程方法是指对所求数学问题通过列方程(组)使问题得解的方法.在函数及其图象中,方程方法的应用主要体现在运用待定系数法确定函数关系式中.例6 已知一次函数y=kx+b(k≠0)的图象经过点A(-3,-2)及点B(1,6),求此函数关系式,并作出函数图象.【说明】一次函数y=kx+b中含有两个待定系数k,b,根据待定系数法,只要列出方程组即可.例7 科学家通过研究得出:一定质量的某种气体在体积不变的情况下,压强p(kPa)随温度t(℃)变化的函数关系式是p=kt+b,其图象如图11-58所示的直线.(1)根据图象求出上述气体的压强P与温度t之间的函数关系式;(2)当压强p为200kPa时,求上述气体的温度.。
一次函数知识点汇总一、一次函数的概念。
1. 定义。
- 一般地,形如y = kx + b(k,b是常数,k≠0)的函数,叫做一次函数。
当b = 0时,y=kx(k为常数,k≠0),y = kx叫做正比例函数,它是一种特殊的一次函数。
2. 自变量的取值范围。
- 自变量x的取值范围是全体实数。
但在实际问题中,要根据具体情况确定自变量的取值范围。
例如,在计算长方形周长y = 2(x + 3)(设长为x,宽为3),x的取值范围是x>0。
二、一次函数的图象。
1. 图象的形状。
- 一次函数y = kx + b(k≠0)的图象是一条直线。
- 由于两点确定一条直线,所以画一次函数图象时,只要先描出两点,再连成直线即可。
通常选取(0,b)和(-(b)/(k),0)(k≠0)这两点。
2. 图象的性质。
- k的作用。
- 当k>0时,直线y = kx + b从左向右上升,y随x的增大而增大。
例如y = 2x+1,k = 2>0,当x = 1时,y=3;当x = 2时,y = 5,y随着x的增大而增大。
- 当k<0时,直线y = kx + b从左向右下降,y随x的增大而减小。
例如y=-3x + 2,k=-3<0,当x = 1时,y=-1;当x = 0时,y = 2,y随着x的增大而减小。
- b的作用。
- b是直线y = kx + b与y轴交点的纵坐标。
当b>0时,直线与y轴交于正半轴;例如y = x+3,b = 3,直线与y轴交于点(0,3)。
- 当b<0时,直线与y轴交于负半轴;例如y = 2x - 1,b=-1,直线与y轴交于点(0, - 1)。
- 当b = 0时,直线过原点,此时函数为正比例函数。
例如y = 3x,图象过原点(0,0)。
三、一次函数的解析式的确定。
1. 待定系数法。
- 一般步骤:- 设出含有待定系数的函数解析式,例如设一次函数解析式为y = kx + b。
- 把已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程(组)。
一次函数知识点总结一次函数,即一元一次方程,是数学中常见的函数形式。
它的特点是变量的最高次数为1,表示为y = ax + b的形式,其中a和b是实数常数。
本文将对一次函数的基本概念、性质及应用进行总结。
一、一次函数的定义及特点一次函数是指变量的最高次数为1的函数,通常表示为y = ax + b。
其中,a称为一次项系数,b称为常数项。
1. 一次函数的定义域和值域一次函数的定义域为整个实数集,即(-∞, +∞)。
其值域同样为整个实数集,即(-∞, +∞)。
2. 一次函数的图像特点一次函数的图像是一条直线。
当a > 0时,表示直线为正斜率,斜率越大,直线越陡;当a < 0时,表示直线为负斜率,斜率越小,直线越陡峭;当a = 0时,表示直线为水平线。
3. 一次函数的斜率和截距斜率是一次函数中的重要概念,表示函数图像上两个点间的垂直距离与水平距离的比值。
对于一次函数y = ax + b来说,斜率为a。
截距则表示直线与y轴的交点,在一次函数中即b。
二、一次函数的性质1. 一次函数的单调性一次函数的单调性取决于其斜率的正负性。
当a > 0时,函数单调递增;当a < 0时,函数单调递减。
2. 一次函数的零点一次函数的零点是指函数值等于零的x值。
对于一次函数y = ax + b 来说,其零点为-x = b / a。
3. 一次函数的最值一次函数的最值即函数的最大值和最小值。
对于一次函数而言,由于其斜率始终为常数,所以不存在最值。
三、一次函数的应用1. 直线方程的求解一次函数可用于求解直线方程。
假设已知通过两个点P(x1, y1)和Q(x2, y2),可根据两点式直线方程求解。
首先根据两点间的差值确定斜率a,然后再利用一次函数的形式求解常数项b。
2. 经济学中的线性关系一次函数常用于经济学中建立线性关系模型。
例如,将总收入与销售数量之间的关系表示为一次函数,可以帮助经济学家预测在不同销售情况下的总收入。
一次函数总结一次函数是高中数学中的基础知识之一,也是最简单的一种函数类型。
它的表达式可以写成y = kx + b的形式,其中k和b 是常数,x和y是变量。
在本文中,我将对一次函数的定义、图像、性质和应用进行详细的总结和介绍。
一、一次函数的定义一次函数又称为线性函数,它满足以下两个条件:1)函数的自变量和因变量都是一次的;2)函数的图像是一条直线。
一次函数的一般形式是y = kx + b,其中k称为斜率,b称为截距。
二、一次函数的图像一次函数的图像是一条直线,可以通过两个点确定。
其中,截距b是函数图像与y轴交点的纵坐标,斜率k代表图像的倾斜程度。
当k为正数时,表示函数图像是从左下到右上的,斜率越大图像越陡峭;当k为负数时,表示函数图像是从左上到右下的,斜率越小图像越陡峭。
三、一次函数的性质1)斜率k:斜率表示函数图像的倾斜程度,可以通过两个点的坐标计算得到。
当斜率为正数时,函数图像是递增的;当斜率为负数时,函数图像是递减的;斜率为0时,函数图像是水平的。
2)截距b:截距表示函数图像与y轴的交点的纵坐标。
通过设定x=0,可以得到截距b的值。
3)增减性:当斜率k为正数时,函数图像是递增的;当斜率k为负数时,函数图像是递减的;4)单调性:当斜率k为正数时,函数图像是单调递增的;当斜率k为负数时,函数图像是单调递减的;5)零点:一次函数的零点是使得函数值等于0的自变量值x。
通过设定y=0,可以求得零点的值。
四、一次函数的应用一次函数在现实生活中具有广泛的应用。
以下是一些常见的应用场景:1)速度与时间的关系:在物理学中,一次函数可以用来描述物体的速度与时间的关系。
斜率代表速度的变化率,截距代表初始速度。
2)销售收益的关系:在经济学中,一次函数可以用来描述销售收益与销售数量的关系。
斜率代表每增加一个单位的销售数量所带来的收益变化,截距代表固定成本。
3)成绩与学习时间的关系:在教育领域中,一次函数可以用来描述学生的成绩与学习时间的关系。
一次函数知识点总结小学一次函数是初中数学中的基础知识,也是后续学习二次函数、指数函数等更高级函数的重要基础。
在小学阶段,我们也会开始接触一次函数的概念,虽然不会深入学习它的相关定理和公式,但是了解一些基本知识还是很有必要的。
本文将对一次函数的相关概念、性质、图像以及实际应用进行总结,希望能够帮助小学生更好地理解一次函数。
一、一次函数的基本概念1. 一次函数的定义一次函数是指函数 f(x) = ax + b,其中 a 和 b 是常数且a ≠ 0。
其中 x 是自变量,f(x) 是因变量,a 是斜率,b 是截距。
一次函数描述了一条直线的特性,因此也称为线性函数。
2. 一次函数的定义域和值域一次函数的定义域是所有使得 f(x) 有意义的 x 的取值范围,通常是实数集 R。
而一次函数的值域是所有可能的函数值所组成的集合,通常也是实数集 R。
3. 一次函数的斜率和截距在一次函数 f(x) = ax + b 中,a 表示斜率,代表了函数曲线上的一点对应的斜率,反映了函数曲线的倾斜程度;b 表示截距,代表了函数曲线与 y 轴的交点的纵坐标,反映了函数曲线的位置。
二、一次函数的性质1. 斜率的性质斜率代表了函数曲线的倾斜程度,其性质如下:(1)当 a > 0 时,函数曲线向右上倾斜,当 a < 0 时,函数曲线向右下倾斜;(2)斜率的绝对值表示了函数曲线的倾斜程度,绝对值越大,倾斜程度越大;(3)当 a = 0 时,函数曲线平行于 x 轴,斜率为零。
2. 截距的性质截距代表了函数曲线与 y 轴的交点的纵坐标,其性质如下:(1)当 b > 0 时,函数曲线与 y 轴的交点在原点的上方,当 b < 0 时,函数曲线与 y 轴的交点在原点的下方;(2)截距的绝对值表示了函数曲线与 y 轴的距离,绝对值越大,距离越远;(3)当 b = 0 时,函数曲线经过原点。
3. 函数图像的性质一次函数的图像总是一条直线,其斜率和截距决定了直线的倾斜程度和位置。
初二学生数学一次函数知识点总结8篇第1篇示例:初二学生在学习数学的过程中,一次函数是一个非常重要的知识点。
一次函数也称为一元一次方程,是数学中最简单的一种函数形式,通常表示为y=ax+b。
在初中阶段,学生需要了解一次函数的基本概念、性质和应用。
一、一次函数的基本概念1. 一次函数的定义一次函数是由形如y=ax+b的函数所构成,其中a和b是常数,a 不等于0。
其中a称为斜率,b称为截距。
2. 一次函数的图像一次函数的图像是一条直线,其斜率决定了直线的斜度,截距决定了直线与y轴的交点。
3. 一次函数的定义域和值域一次函数的定义域是整个实数集,值域也是整个实数集。
4. 一次函数的自变量和因变量在一次函数中,自变量是x,表示输入的数值;因变量是y,表示输出的数值。
二、一次函数的性质1. 斜率的意义一次函数中,斜率a表示当自变量x增加1单位时,因变量y的增量。
斜率可以告诉我们函数的增减趋势。
2. 相关性质一次函数中,两条直线平行或重合的条件是它们的斜率相等,截距相等。
3. 函数值的计算根据一次函数的表达式,可以通过代入自变量的值计算出相应的因变量的值。
4. 求解一元一次方程一次函数也可以看作是一元一次方程,通过方程的变形求解可以得到未知数的值。
三、一次函数的应用1. 数据拟合在实际问题中,可以利用一次函数对数据进行拟合,从而预测未来的发展趋势。
2. 函数关系一次函数描述了两个变量之间的线性关系,可以用来研究变量之间的影响和规律。
3. 图像分析通过一次函数的图像,可以分析函数的特性,如斜率的大小、截距的位置等。
四、注意事项1. 理解斜率和截距的含义,掌握它们在一次函数中的作用。
2. 熟练掌握一次函数的基本运算,如加减乘除等。
3. 多做练习,加深对一次函数的理解和掌握。
4. 注意一次函数在实际问题中的应用,培养运用数学解决问题的能力。
一次函数是初中数学中的基础知识之一,掌握好一次函数的概念、性质和应用可以为学生打下坚实的数学基础,提升数学运用能力。
一次函数知识点一次函数是数学中一种基本的函数类型,它在解析几何、函数分析等领域中有着广泛的应用。
一次函数的表达式通常写作y = kx + b,其中k是斜率,b是y轴截距。
以下是一次函数的主要知识点总结:1. 定义:一次函数是形如y = kx + b的函数,其中k和b是常数,k≠0。
2. 图像:一次函数的图像是一条直线,这条直线的斜率由k决定,截距由b决定。
3. 斜率:斜率k表示函数图像的倾斜程度,斜率的正负决定了直线的上升或下降方向。
4. 截距:截距b是直线与y轴交点的y坐标,当x=0时,y的值即为b。
5. 增减性:当k>0时,函数随着x的增加而增加;当k<0时,函数随着x的增加而减少。
6. 函数值的正负:当k>0,b>0时,函数值y>0;当k>0,b<0时,函数值y可能为正或负;当k<0,b>0时,函数值y可能为正或负;当k<0,b<0时,函数值y<0。
7. 函数的平移:一次函数可以通过改变k和b的值来实现图像的平移。
8. 函数的对称性:一次函数没有对称性,因为它的图像是一条直线,不会关于任何点或线对称。
9. 函数的交点:两条一次函数的图像相交于一点,这一点的坐标满足两个函数的方程。
10. 函数的应用:一次函数在现实生活中有着广泛的应用,如计算斜率、预测趋势、解决实际问题等。
11. 函数的解析:通过解析一次函数的方程,可以找到函数图像上任意一点的坐标。
12. 函数的变换:一次函数可以通过缩放、平移等方式进行变换,以适应不同的数学和实际问题。
13. 函数的方程:一次函数的方程可以表示为y = kx + b,也可以表示为x = (y - b) / k。
14. 函数的解析式:解析式是描述一次函数图像特征的数学表达式,它包含了斜率和截距的信息。
15. 函数的图像绘制:通过绘制一次函数的图像,可以直观地理解函数的性质和变化趋势。
掌握这些知识点,可以帮助我们更好地理解和应用一次函数,解决与之相关的数学问题。
一次函数知识点全一次函数作为初中数学中最基础的函数之一,在我们的学习中扮演着非常重要的角色。
它是一个线性函数,表达式为y = kx + b,其中k和b为常数,x和y分别表示自变量和因变量。
在本文中,我们将全面介绍一次函数的各个知识点。
一、函数的定义和性质1. 函数的定义:一次函数是指自变量和因变量之间的关系能够用线性方程y = kx + b表示的函数。
其中k和b为常数,x和y分别表示自变量和因变量。
2. 定义域和值域:一次函数的定义域是所有实数集,值域也是所有实数集。
3. 单调性和增减性:一次函数的单调性取决于斜率k的正负。
当k > 0时,函数是递增的;当k < 0时,函数是递减的。
4. 零点和斜率:一次函数的零点是使得函数值为0的x值。
斜率表示函数图像的斜率,它等于函数的斜率系数k。
二、图像和性质1. 直线图像:一次函数的图像是一条直线。
当斜率k为正时,图像向上倾斜;当斜率k为负时,图像向下倾斜。
2. 截距:截距表示函数图像与坐标轴的交点。
一次函数有两个截距,分别为x轴截距和y轴截距。
x轴截距等于使得y = 0的x值,即-x轴的坐标;y轴截距等于使得x = 0的y值,即-y轴的坐标。
3. 平行和垂直:两条一次函数图像平行的条件是它们的斜率相等;两条一次函数图像垂直的条件是它们的斜率的乘积等于-1。
4. 点斜式和截距式:一次函数的点斜式表示为y - y₁ = k(x - x ₁),其中(x₁, y₁)为已知点,k为斜率;一次函数的截距式表示为y = kx + b,其中b为y轴截距。
三、应用1. 直线方程:一次函数在实际中常常用于解决直线方程的问题。
通过已知条件,可以确定一个点和斜率,从而写出一次函数的方程。
2. 性质推导:一次函数的各种性质可以通过代入特定的值来推导得出。
例如,已知两个点,可以求出斜率和截距;已知斜率和一个点,也可以确定该一次函数的方程。
3. 解方程:一次函数常用于解决实际问题中的方程。
基本概念
1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应
3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:
(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;
(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
9、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数. 注:当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也
增大;
当k<0时,•直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
(1) 解析式:y=kx(k是常数,k≠0)
(2) 必过点:(0,0)、(1,k)
(3) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限
(4) 增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小
(5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴
例2:.正比例函数y=(3m+5)x,当m 时,y随x的增大而增大.
若y=x+2-3b是正比例函数,则b的值是() A.0 B.223 C.- D.- 332
.函数y=(k-1)x,y随x增大而减小,则k的范围是 ( )
A.k<0
B.k>1
C.k≤1
D.k<1
10、一次函数及性质
一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,
y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.
注:一次函数y=kx+b的图象是经过(0,b)和(-b,0)两点的一条直线,我们称它为k
直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)
(1)解析式:y=kx+b(k、b是常数,k≠0)
(2)必过点:(0,b)和(-b,0) k
(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限
b>0,图象经过第一、二象限;b<0,图象经过第三、四象限
⎧k>0⎧k>0⇔直线经过第一、二、三象限⎨⇔直线经过第一、三、四象限
⎨b>0b<0⎩⎩
⎧k<0⎧k<0直线经过第一、二、四象限⇔⇔直线经过第二、三、四象限
⎨⎨⎩b>0⎩b<0
(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.
(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.
(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;
当b<0时,将直线y=kx的图象向下平移b个单位.
例3:若关于x的函数y=(n+1)xm-1是一次函数,则m,n.函数y=ax+b与y=bx+a 的图象在同一坐标系内的大致位置正确的是()
将直线y=3x向下平移5个单位,得到直线;将直线y=-x-5向上平移5个单位,得到直线 .
若直线y=-x+a和直线y=x+b的交点坐标为(m,8),则a+b=____________. 已知函数y=3x+1,当自变量增加m时,相应的函数值增加()
A.3m+1 B.3m C.m D.3m-1
11、一次函数y=kx+b的图象的画法.
根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),(-
b,0)即横坐标或纵坐标为0的点. k
例4:若m<0, n>0, 则一次函数y=mx+n的图象不经过()
A.第一象限
B. 第二象限
C.第三象限
D.第四象限
分别说出满足下列条件的一次函数的图象过哪几个象限?
(1)k>0 b>0 (2)k>0 b<0
(3)k<0 b>0 (4)k<0 b<0
练习:1、找出下列函数中的正比例函数,并画出它们的图像.
(1) y=2x (2) y=
-212 (3) y=5x+6 (4) y=-x x2
2、已知函数y=kx的函数值随x的增大而增大,则函数的图像经过()A.第一、二象限 B.第一、三象限
C.第二、三象限 D.第二、四象限
3、对于函数y=kx(k是常数,k≠0)的图象,下列说法不正确的是()
A.是一条直线 B.过点(21,k) k
C.经过一、三象限或二、四象限 D.y随着x增大而增大
4、直线y=2x-3与x轴交点坐标为_______,与y轴交点坐标为_________,•图象经过第________象限,y随x增大而_________.
5、.若函数y=mx-(4m-4)的图象过原点,则m=_______,此时函数是______•函数.若函数y=mx-(4m-4)的图象经过(1,3)点,则m=______,此时函数是______函数.
6、若一次函数y=(1-2m)x+3图象经过A(x1、y1)、B(x2、y2)两点.当x1<x2时,y1>•y2,则m的取值范围是什么?。