平面力系例题教材
- 格式:ppt
- 大小:1.72 MB
- 文档页数:82
第三章 平面力系一、填空题1.力F 作用线向O 点平移时,为不改变它对刚体的作用效果,这时应该 附加一力偶,该力偶的矩等于力F 对O 点的矩。
2.平面任意力系向其作用平面内不同两点简化,所得主矢的关系是相同,所得主矩的关系是力系对新简化中心的主矩等于原力系对原简化中心的主矩加上作用于原简化中心的主矢对新简化中心的矩。
3.平面任意力系平衡方程的二矩式应满足的附加条件是两矩心的连线不垂直于投影轴。
二、选择题1.一平面任意力系向点A 简化后,得到如图3.1所示的主矢和主矩,则该力系的最后合成结果应是(A )(A ) 作用在点A 左边的一个合力 (B ) 作用在点A 右边的一个合力 (C ) 作用在点A 的一个合力 (D ) 一个合力偶2.在刚体同一平面内A ,B ,C 三点上分别作用1F ,2F ,3F 三个力,并构成封闭三角形,如图3.2所示,此力系是属于什么情况(C )(A ) 力系平衡 (B ) 力系简化为合力 (C ) 力系可简化为合力偶 (D ) 无法判断3.均质杆长为l ,重为W ,在D 处用一绳将杆吊于光滑槽内,则槽壁在A ,B 处对杆产生的反力A F ,B F 有关系(D ) (A ) A B F F > (B ) A B F F < (C ) 0A B F F ==(D ) 0A B F F =≠ 三、计算题1.试求图3.4中力P 对点O 的矩,已知60a cm =,20b cm =,3r cm =,400P N =。
解:(a )()4000.6240O M Pa N m ==⨯=⋅P(b )o 1()sin304000.61202O M P a N m =-⨯=-⨯⨯=-⋅P 图3.2图3.1 图3.3(c )o o o ()cos20cos204000.03cos2011.3O M P r Pr N m =-⨯=-=-⨯=-⋅P(d)o o 1()sin30cos304000.64000.250.722O M P a P b N m =⨯-⨯=⨯⨯-⨯=⋅P (e)o o 1()cos60sin 604000.64000.2189.32O M P a P b N m =⨯+⨯=⨯⨯+⨯=⋅P2.如图3.5所示,在边长2a m =的正方形平板OABC 的A ,B ,C 三点上作用四个力:13F kN =,25F kN =,36F kN =,44F kN =。
第三章平面任意力系一、要求1、掌握平面任意力系向一点简化的方法。
会应用解析法求主矢和主矩。
熟知平面任意力系简化的结果。
2、深入理解平面任意力系的平衡条件及平衡方程的三种形式。
3、能熟练地计算在平面任意力系作用下物体和物体系的平衡问题。
4、理解简单桁架的简化假设,掌握计算其杆件内力的节点法和截面法。
二、重点、难点1、本章重点:平面任意力系向作用面内任一点的简化,力系的简化结果。
平面任意力系平衡的解析条件,平衡方程的各种形式。
物体及物体系平衡问题的解法。
2、本章难点:主矢与主矩的概念。
物体系的平衡问题。
三、学习指导1、力的平移定理,是力系向一点简化的理论基础。
一个力平移后,它对物体的作用效果发生了改变,要想保持原来力的作用效果,必须附加一个力偶。
2、平面任意力系向一点简化的方法:平面任意力系向一点简化,是依据力的平移定理,将作用在物体上的各力向任一点(称为简化中心)平移,得到作用在简化中心的一个平面汇交力系和平面力偶系(附加力偶系)。
两个力系合在一起与原力系等效。
这样,一个复杂的力系就分解成了两个简单的力系。
然后,分别求平面汇交力系的合力和平面力偶系的合力偶,则原力系由作用在简化中心的一个力和一个力偶所代替,该力的大小和方向等于力系的主矢,该力偶的力偶矩等于力系的主矩。
于是,平面任意力系的简化就成了计算力系的主矢和主矩的问题。
3、主矢和主矩:平面任意力系中,各力的矢量和称为力系的主矢,即平面任意力系中,各力对于简化中心的力矩的代数和称为力系的主矩,即关于主矢和主矩,需要弄清楚以下几点:(1)主矢不是力,主矩不是力偶。
主矢和主矩是描述平面任意力系对物体作用效果的量。
(2)主矢是自由矢量,只有大小和方向,描述平面任意力系使物体平动的作用效果。
平面任意力系的主矩是代数量,只有大小和正负,描述平面任意力系使物体绕点转动的作用效果。
(3)主矢与简化中心的选择无关。
从这个意义上讲,主矢是力系的一个不变量。
主矩与简化中心的选择有关。