buck电路驱动方法
- 格式:docx
- 大小:113.55 KB
- 文档页数:4
Buck电路拓扑及其工作原理Buck电路是一种常见的降压转换器,也被称为降压型开关电源。
它可以将一个较高的直流电压转换为一个较低的直流电压,同时保持较高的效率。
Buck电路的拓扑结构是基于一个电感元件和一个开关元件。
下面是Buck电路的基本拓扑图示:```Vin ─────┬───────┐││─┼─┬─────┴─┬──Vo││││││Cin│L││││││─┴─┴───────┼─GND││GND GND```在这个拓扑中,Vin代表输入电压,Vo代表输出电压,Cin代表输入电容,L代表电感,以及GND代表接地。
Buck电路的工作原理如下:1. 开关状态:当开关元件(通常是MOSFET)处于导通状态时,电感L储存能量,并将其传递到输出负载。
2. 关断状态:当开关元件处于关断状态时,电感L通过其自感性产生电压,并将这个能量转移到输出负载。
Buck电路的工作周期可以分为以下几个阶段:1. 导通状态(开关打开):开关元件处于导通状态时,输入电压Vin通过电感L传递到输出负载。
电感L储存能量,并将其传递到输出电容Cout。
2. 关断状态(开关关闭):开关元件关闭时,电感L的自感性会产生反向电压,将能量转移到输出电容Cout和负载上。
这个阶段也被称为“放电”阶段。
通过控制开关元件的导通时间和关断时间,可以调节输出电压的大小。
通常使用PWM(脉宽调制)技术来控制开关元件的导通和关断,以实现精确的输出电压调节。
总结起来,Buck电路通过周期性地切换开关元件的状态,将输入电压转换为较低的输出电压。
这种转换过程利用电感和电容储存和传递能量,实现了高效的降压转换。
如何设计BUCK电路的最佳驱动设计BUCK电路的最佳驱动方法需要考虑多个方面,包括输入电压范围、输出电流要求、效率要求、输出电压波动等因素。
下面以一个典型的BUCK电路为例,详细介绍如何设计最佳驱动。
首先,设计BUCK电路的最佳驱动需要确定输入电压范围。
这个范围决定了开关MOSFET的选择以及驱动电路的设计。
一般来说,BUCK电路通常工作在较高的输入电压范围(如12V到36V),因此需要选择能够承受较高电压的MOSFET。
其次,需要确定输出电流要求。
输出电流大小决定了MOSFET的选择以及驱动电路的设计。
通常情况下,BUCK电路的输出电流范围会比较大,因此需要选择带有较低导通电阻的MOSFET,以减小功耗和提高效率。
接下来,需要确定效率要求。
效率是衡量驱动电路性能的重要指标之一、为了提高效率,可以采用一些技术手段,如增加开关频率、添加电感、优化布局等。
此外,还可以选择效率更高的驱动芯片,提高整体的转换效率。
另外,需要考虑输出电压波动。
输出电压波动通常通过负反馈控制实现。
一个典型的控制方法是采用PID控制器,根据输出电压和参考电压之间的差值做出调整。
同时,可以使用电容器来滤波,减小输出电压的波动。
在选择驱动电路时,可以考虑使用专用的BUCK驱动芯片,这些芯片集成了开关MOSFET驱动、电流限制、软启动等功能,减少了外部器件的数量和尺寸。
最后,设计BUCK电路的最佳驱动还需要考虑一些额外的因素,如EMI(电磁干扰)和温度的控制。
为了减小EMI,可以使用滤波器、屏蔽等方法,将电磁辐射控制在允许范围内。
同时,为了保证电路的稳定性,还需要考虑散热问题,选择合适的散热器和温度传感器。
总结起来,设计BUCK电路的最佳驱动需要综合考虑输入电压范围、输出电流要求、效率要求、输出电压波动等因素。
通过选择合适的开关MOSFET、驱动芯片,优化布局和控制策略,可以最大程度地提高BUCK电路的性能和效率。
Buck变换器:也称降丿卡•式变换器,是一种输出电圧小于输入电圧的单管不隔离直流变换器。
图中,Q为开关管,其驱动电丿£一般为PW(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f二1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff, 占空比Dy二 Ton/TsoBoost变换器:也称升压式变换器,是一种输出电圧高于输入电圧的单管不隔离直流变换器。
开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=l的状态下工作。
电感Lf在输入侧,称为升压电感。
Boost变换器也有CCM和DCH两种工作方式Buck/Boost变换器:也称升降圧式变换器,是一种输出电汗既可低于也可高于输入电圧的单管不隔离直流变换器,但其输出电压的极性与输入电圧相反。
Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。
VoVoT Buck/Boost变换器也有CCM和DCM两种1:作方式,开关管Q也为PWM控制方式。
LDO的特点:①非常低的输入输出电圧差②非常小的内部损耗③很小的温度漂移④很髙的输出电圧稳定度⑤很好的负载和线性调整率⑥很宽的11作温度范圉⑦较宽的输入电圧范圉⑧外围电路非常简单,使用起來极为方便DC/DC变换是将固定的直流电压变换成可变的直流电汗,也称为直流斩波。
斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。
其具体的电路由以下几类:(DBuck电路一一降圧斩波器,其输岀平均电圧U0小于输入电圧Ui,极性相同。
(2)Boost电路一一升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。
(3)Buck-Boost电路一一降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui, 极性相反,电感传输。
(4)Cuk电路一一降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。
关于BUCK线路的工作原理及线路调整说明A点一、工作原理其主电路结构为BUCK型开关电路,Q1为主功率开关管,工作在高频开关状态,当其导通时,电流通过整流桥、LED灯珠、变压器T1、Q1形成导通回路。
当Q1关闭时,变压器T1中贮存的能量通过二极管D1、LED 灯珠的回路来电流释放,这样就是此线路高频开关的一个周期。
从而在LED灯珠上会有连续的电流通过,致其发光照明。
整个电路开启时,三极管Q1的基极驱动电流初次由电阻R6提供,随后其基极驱动电流由T1-2通过R5和C2提供。
三极管Q1的关断由Q2、Q3来控制,低压放大三极管Q2、Q3组成了达林顿结构,当它导通时,会将三极管Q1的基极驱动电流释放掉,使其关闭。
因此控制Q1的导通时间是LED是否恒流的关键点。
R3、R4、RC和Q2、Q3组成了温度补偿线路,其原理如下:RC为一种NTC热敏电阻,当图中A点电压大于{VBE(Q2)+ VBE(Q3)}×(R4+RC+R3)/ (R4+RC)时,Q2、Q3组成的达林顿三极管导通,控制Q1关闭。
当环境温度升高时,根据三极管特性,BE结正向电压会降低,即VBE(Q2)+ VBE(Q3)会降低。
而热敏电阻RC阻值会减小,这样就起到了温度补偿反馈的作用。
使A点电压在不同温度时仍能保证在相同电压值时使Q1关断。
直接的结果就是不同的环境温度下,Q1仍能保持基本相同的导通时间。
减小了温度对LED电流的影响。
T1-2和R1在电路中是起到对电源电压反馈的作用,例如当电源电压升高时,Q1导通时,T1-2电压会升高,通过R1使A点电压提高。
从而能使三极管Q1适当提前关断,来减小LED电流受电源电压的影响。
电阻R0能够检测三极管Q1源极电流,把电流在R0上产生的电压值通过R2加到A点,来控制Q1关断。
电阻R7在电路中可起到使整体电路功率更稳定的作用,并可调整功率因数。
二极管D3是起到负载开路保护作用,当LED开路时,D3就处于反向截止状态,从而使R6没有启动电流流过,电路无法启动,起到开路保护的作用。
Buck电源中绝缘栅场效应管的驱动方法
作者:王华彪魏金玲常辉陈亚宁
一、引言
图一所示的单管降压电源,拓扑很简单,但由于MOSFET的源极电位不固定,驱动不是很容易。
本文就斩波电源的不同驱动方式,分别就其电路的复杂性、驱动脉冲质量、价格成本以及工作频率的适应性等方面进行了分析和比较。
二、各种驱动电路分析
1、电平转换直接驱动
当主电路的供电电压不太高时,可插入图二所示的电平转换驱动电路。
这种方法的优点是成本较低,缺点一是当输入电压Vin较高时不易处理好;二是电平移动驱动部分需要电荷泵供电,因此电路比较繁复。
2、光电耦合器隔离驱动
这是一种常用的方法,如图三所示,优点是电路比较成熟,但光耦次级需要隔离电源,由于光耦的速度不是很快,工作频率不能太高,并可能降低电源的瞬态响应速度。
3、变换MOSFET的位置,直接驱动
如图四所示,将MOS管移到供电电源的负端,就可用IC输出的信号直接驱动。
优点是驱动成本低,缺点一是输出地悬浮,抗干扰性差;二是不能直接引进反馈,需要再加光耦隔离传送。
4、变压器直接隔离驱动
图5所示这种直接驱动方法的突出优点是成本最低,但由于变压器只能传递交流信号,因此输出的正负脉冲幅值随占空比而变,只适用于占空比在0.5左右、而且变化不大的情况。
同时由于变压器的负载是MOS管的输入电容,驱动脉冲的前后沿一般不会很理想。
5、有源变压器驱动
用变压器传送信号,次级另加隔离电源和放大电路,如图6所示。
因为变压器只传送信号,因此响应比较快,工作频率可以很高,次级有源,可以输出比较陡峭的脉冲信号。
缺点是要有一路隔离的电源供给。
6、采用新型隔离驱动组件直接驱动
图7示出的是采用KD103(原CMB3)型驱动模块的斩波电路,该驱动组件是北京落木源公司开发出的单管隔离驱动器。
该款驱动器使用变压器隔离,采用分时技术,在输入信号的上升和下降沿传递PWM的信号,在平顶阶段传递能量,因而能够输出陡峭的驱动脉冲。
这种驱动方法的优点是使用方便(在MOSFET功率不大时,只要如图7连接就可以了),驱动脉冲质量好,工作频率高,体积较小,输入电压最高可达1000V,价格也比较便宜。
缺点是工作频率低时要求的变压器体积比较大,同时成本稍高些,但考虑到简化了设计、并降低了装配成本,总成本可能还要低些。
三、结语
下表总结了上面的分析,可以看出,在大多数情况下,采用KD103(原CMB3)专用斩波隔离驱动器是较佳的选择。
电平移位驱动光耦隔离驱
动
MOS管移位
驱动
变压器直
接驱动
有源变压
器驱动
TX-KD模块
驱动
最高工作频率比较高不高,受限
于光耦
高比较高高高。