Newmark-精细积分方法的选择及稳定性
- 格式:pdf
- 大小:282.92 KB
- 文档页数:5
Newmark 算法程序计算报告1.Newmark 算法理论基础在~t t t +∆的时间区域内,Newmark 积分方法采用下列的假设,即()2112t t t t t t t tt t t t t t t tδδαα+∆+∆+∆+∆=+-+∆⎡⎤⎣⎦⎡⎤⎛⎫=+∆+-+∆ ⎪⎢⎥⎝⎭⎣⎦a a a a a a a a a (1.1) 其中α和δ是按积分精度和稳定性要求决定的参数。
另一方面,α和δ取不同的值则代表了不同的数值积分方案。
当1/6,1/2αδ==时,(1.1)式相应于线性加速度法,因为这时他们可以由下式得到()/ (0)t t t t t t t t ττ+∆+∆=+-∆≤≤∆a a a a (1.2)当1/4,1/2αδ==时,Newmark 算法相应于常平均加速度法这样一种无条件稳定的积分方案。
此时,t ∆内的加速度为()12t t t t t +∆+∆=+a a a (1.3) 因此,将(1.1)式可以得到()211112t t t t t t t t t ααα+∆+∆⎛⎫=---- ⎪∆∆⎝⎭a a a a a (1.4) 代入到动力学平衡方程中可以得到22111112 112t t t t t t t t t t t t t t t t δαααααδδδααα+∆+∆⎡⎤⎛⎫⎛⎫++=+++-+ ⎪ ⎪⎢⎥∆∆∆∆⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫+-+-∆ ⎪ ⎪⎢⎥∆⎝⎭⎝⎭⎣⎦K M C a Q M a a a C a a a (1.5)2.Newmark 算法计算步骤(1)形成刚度矩阵 K 、质量矩阵M 、阻尼矩阵 C 。
(2)给定0 a ,0a ,和0a(3)选择时间步长t ∆及参数α和δ,并计算积分常数。
这里要求:()20.5,0.250.5δαδ≥≥+()012324567111,,,121,2,1,2c c c c t t t t c c c t c t δααααδδδδαα====-∆∆∆∆⎛⎫=-=-=∆-=∆ ⎪⎝⎭(4)形成有效刚度矩阵01ˆˆc c + K :K =K +M C (5)三角分解ˆˆTK:K =LDL 对于每一个时间步长(1)计算时间t t +∆的有效载荷()()023145ˆt t t t t t t t t t c c c C c c c +∆+∆=++++++Q Q M a a a a a a(2)求解时间t t +∆的位移ˆT t t t t+∆+∆=LDL a Q (3)计算时间t t +∆的加速度和速度()02367t t t t t t t t t t t t tc c c c c +∆+∆+∆+∆=---=++a a a a a a a a a3.程序设计思路(1) 读入质量矩阵、刚度矩阵、阻尼矩阵、载荷列向量;读入初始状态值,如初始位移、初始速度、初始加速度;读入控制变量,如时间步长、时间步; (2) 计算8个积分常数;(3) 计算有效刚度矩阵ˆK并对有效刚度矩阵ˆK 进行LU 分解; (4) 求解时间t t +∆的有效载荷向量ˆt t+∆Q ; (5) 求解时间t t +∆的位移t t +∆a ;(6) 求解时间t t +∆的的加速度t t +∆a 和速度t t +∆a (7)计算下一时刻的有效载荷向量并循环。
matlab newmark法Matlab Newmark法是一种非线性动力学分析方法,主要用于求解动力学系统的时间响应。
该方法由Newmark在20世纪50年代提出,在工程结构领域得到了广泛应用。
本文将分步骤回答关于Matlab Newmark法的问题,包括算法原理、计算步骤、优缺点以及实际案例的应用。
一、算法原理1.1 基本原理Matlab Newmark法是一种基于离散时间步长的计算方法。
其基本原理是通过将系统的运动方程转化为等效的一阶微分方程组,然后使用步进法进行数值求解。
该方法采用了二阶精度的数值积分公式,具有较高的计算精度和稳定性。
1.2 新马克法公式Matlab Newmark法的核心公式为:δu(t+Δt) = u(t) + Δt * v(t) + Δt^2 * (0.5 - β) * a(t)δv(t+Δt) = v(t) + Δt * (1 - γ) * a(t)δa(t+Δt) = (1 - γ) * a(t) + γ* a(t+Δt)其中,δ表示增量,u(t)、v(t)和a(t)分别表示位移、速度和加速度在时间t的值,β和γ为Newmark法的两个参数。
二、计算步骤2.1 确定系统参数首先,需要确定系统的质量矩阵、刚度矩阵和阻尼矩阵,以及外部激励载荷等参数。
2.2 确定时间步长根据求解精度和计算效率的要求,选择合适的时间步长Δt。
2.3 初始化位移、速度和加速度给定初始位移、速度和加速度的值。
2.4 进行时间循环使用Newmark法的公式,根据当前时刻的位移、速度和加速度的值,计算下一时刻的位移、速度和加速度。
2.5 判断收敛条件在每个时间步长内,判断计算结果是否满足收敛要求。
如果满足要求,则继续计算下一个时间步长;如果不满足要求,则重新选择适当的步长,并重新进行计算。
2.6 输出结果将每个时间步长内计算得到的位移、速度和加速度的值保存起来,以获取系统的时间响应曲线。
三、优缺点3.1 优点Matlab Newmark法具有以下优点:- 可以处理复杂的非线性动力学系统。
用matlab编程实现Newmark-β法计算多自由度体系的动力响应姓名:***学号:**************专业:结构工程用matlab 编程实现Newmark -β法 计算多自由度体系的动力响应一、Newmark -β法的基本原理Newmark-β法是一种逐步积分的方法,避免了任何叠加的应用,能很好的适应非线性的反应分析。
Newmark-β法假定:t u u u ut t t t t t ∆ββ∆∆]}{}){1[(}{}{+++-+= (1-1)2]}{}){21[(}{}{}{t u u t uu u t t t t t t ∆γγ∆∆∆+++-++= (1-2) 式中,β和γ是按积分的精度和稳定性要求进行调整的参数。
当β=0.5,γ=0.25时,为常平均加速度法,即假定从t 到t +∆t 时刻的速度不变,取为常数)}{}({21t t t u u ∆++ 。
研究表明,当β≥0.5, γ≥0.25(0.5+β)2时,Newmark-β法是一种无条件稳定的格式。
由式(2-141)和式(2-142)可得到用t t u ∆+}{及t u }{,t u}{ ,t u }{ 表示的t t u ∆+}{ ,t t u ∆+}{ 表达式,即有t tt t t t t u u t u u t u}){121(}{1)}{}({1}{2----=++γ∆γ∆γ∆∆ (1-3) t t t t t t t u t uu u t u}{)21(}){1()}{}({}{ ∆γβγβ∆γβ∆∆-+-+-=++ (1-4) 考虑t +∆t 时刻的振动微分方程为:t t t t t t t t R u K u C uM ∆∆∆∆++++=++}{}]{[}]{[}]{[ (1-5) 将式(2-143)、式(2-144) 代入(2-145),得到关于u t +∆t 的方程t t t t R u K ∆∆++=}{}]{[ (1-6)式中][][1][][2C t M tK K ∆γβ∆γ++= )}{)12(}){1(}{]([)}){121(}{1}{1]([}{}{2t t t t t t t t u t uu t C u u t u tM R R ∆γβγβ∆γβγ∆γ∆γ∆-+-++-+++=+求解式(2-146)可得t t u ∆+}{,然后由式(2-143)和式(2-144)可解出t t u∆+}{ 和t t u ∆+}{ 。
用matlab 编程实现Newmark -β法计算多自由度体系的动力响应用matlab 编程实现Newmark -β法 计算多自由度体系的动力响应一、Newmark -β法的基本原理Newmark-β法是一种逐步积分的方法,避免了任何叠加的应用,能很好的适应非线性的反应分析。
Newmark-β法假定:t u u u ut t t t t t ∆ββ∆∆]}{}){1[(}{}{+++-+= (1-1)2]}{}){21[(}{}{}{t u u t uu u t t t t t t ∆γγ∆∆∆+++-++= (1-2) 式中,β和γ是按积分的精度和稳定性要求进行调整的参数。
当β=0.5,γ=0.25时,为常平均加速度法,即假定从t 到t +∆t 时刻的速度不变,取为常数)}{}({21t t t u u ∆++ 。
研究表明,当β≥0.5, γ≥0.25(0.5+β)2时,Newmark-β法是一种无条件稳定的格式。
由式(2-141)和式(2-142)可得到用t t u ∆+}{及t u }{,t u}{ ,t u }{ 表示的t t u ∆+}{ ,t t u ∆+}{ 表达式,即有t tt t t t t u u t u u t u}){121(}{1)}{}({1}{2----=++γ∆γ∆γ∆∆ (1-3) t t t t t t t u t uu u t u}{)21(}){1()}{}({}{ ∆γβγβ∆γβ∆∆-+-+-=++ (1-4) 考虑t +∆t 时刻的振动微分方程为:t t t t t t t t R u K u C uM ∆∆∆∆++++=++}{}]{[}]{[}]{[ (1-5) 将式(2-143)、式(2-144) 代入(2-145),得到关于u t +∆t 的方程t t t t R u K ∆∆++=}{}]{[ (1-6)式中][][1][][2C t M tK K ∆γβ∆γ++= )}{)12(}){1(}{]([)}){121(}{1}{1]([}{}{2t t t t t t t t u t uu t C u u t u tM R R ∆γβγβ∆γβγ∆γ∆γ∆-+-++-+++=+求解式(2-146)可得t t u ∆+}{,然后由式(2-143)和式(2-144)可解出t t u∆+}{ 和t t u ∆+}{ 。
多自由度系统的振动——Newmark-β数值积分方法要求:(1)计算程序可以求出多自由度系统在任意荷载作用下的响应;(2)编写程序流程图;(3)做示例验算;(4)总结分析算法的稳定性及精度。
算例:计算图示结构的响应。
阻尼采用Rayleigh阻尼,α、β值自拟。
答:(1)程序流程图:是否(2)程序代码:%Newmark-β法求多自由度结构的响应dt=0.001; %计算时间间隔a=0.0452; b=0.0463; %计算阻力矩阵的α,β(Rayleigh阻尼) A=0.5;B=0.25; %Newmark-β法中的α,βa0=1/(A*dt^2); a1=B/(A*dt); a2=1/(A*dt); a3=1/(2*A)-1;a4=B/A-1; a5=dt/2*(B/A-2); a6=dt*(1-B); a7=B*dt;%计算所需数据T=30; %计算终点时刻n=T/dt+1;t=0:dt:T; %时间向量m=3; %质点个数M=[1,0,0;0,1,0;0,0,1]; %质量矩阵y=ones(m,n); %位移矩阵v=ones(m,n); %速度矩阵ac=ones(m,n); %加速度矩阵%确定初始位移、初速,计算初始加速度y(:,1)=[0;0;0];v(:,1)=[0;0;0];%K=[t(1)+1,0,0;0,t(1)+1,0;0,0,t(1)+2];%以时间为自变量的刚度矩阵K=[1,-1,0;-1,3,-2;0,-2,5];%常量刚度矩阵C=a.*K+b.*M;F=[sin(t(1));0;0]; %t0时刻荷载向量ac(:,1)=M\(F-C*v(:,1)-K*y(:,1)); %t0时刻加速度%计算等效刚度矩阵、位移向量、加速度向量、速度向量fori=2:n%K=[t(i)+1,0,0;0,t(i)+1,0;0,0,t(i)+2];%以时间为自变量的刚度矩阵C=a.*K+b.*M;F=[sin(t(i));0;0];F1=F+M*(a0*y(:,i-1)+a2*v(:,i-1)+a3*ac(:,i-1))...+C*(a1*y(:,i-1)+a4*v(:,i-1)+a5*ac(:,i-1)); %等效力K1=K+a0*M+a1*C; %等效刚度矩阵y(:,i)=K1\F1; %计算位移向量ac(:,i)=a0*(y(:,i)-y(:,i-1))-a2*v(:,i-1)-a3*ac(:,i-1);%计算加速度向量v(:,i)=v(:,i-1)+a6*ac(:,i-1)+a7*ac(:,i);%计算速度向量end%提取某些指点的位移、速度、加速度向量,绘制响应图plot(t,y(1,:),':b',t,y(2,:),'-r',t,y(3,:),'--g');grid onlegend('质点1','质点2','质点3');xlabel('时间t');ylabel('位移y');figure(2)plot(t,v(1,:),':b',t,v(2,:),'-r',t,v(3,:),'--g');grid onlegend('质点1','质点2','质点3');xlabel('时间t');ylabel('速度v');figure(3)plot(t,ac(1,:),':b',t,ac(2,:),'-r',t,ac(3,:),'--g');grid onlegend('质点1','质点2','质点3');xlabel('时间t');ylabel('加速度ac');程序运行结果:(3)算法稳定性及精度Newmark-β法基于泰勒公式将t(k+1)时刻的速度、位移在t(k)时刻展开,并将未知项做近似替换。
newmarkbeta法-回复什么是newmarkbeta法?Newmarkbeta法,也被称为Wilson-Newmark法,是一种数值积分方法,用于求解结构动力学问题。
它是基于普通微分方程的数值求解方法之一,适用于求解线性和非线性、自由和强迫响应的结构动力学问题。
该方法基于Newmark积分方法,考虑了质量矩阵和刚度矩阵对结构响应的影响,通过引入一个积分参数beta,使得在不同的参数设定下可以得到不同阶数的数值积分方法。
注意事项:在使用Newmarkbeta法时,需要明确一些注意事项:1. 时间步长的选择:时间步长需要根据所研究的问题和模型的特性来进行选择。
通常情况下,较小的时间步长可以提高精度,但也增加了计算量。
如果时间步长选择过大,可能会导致数值解的不稳定性。
2. 弛豫因子的选择:在Newmarkbeta法中,引入了一个松弛因子gamma来平衡速度和加速度的权重。
gamma为0.5时,等效于中点积分法。
gamma为0时,等效于显式向前差分法。
根据所研究问题的稳定性和精度要求,可以选择不同的gamma值。
3. 初始条件的设定:在数值解求解之前,需要设定初始条件,即结构的初始位移和速度。
这些初始条件将影响数值解的准确性和稳定性。
通常情况下,可以根据结构的静态平衡状态设定初始条件。
数值解求解步骤:下面将一步一步介绍使用Newmarkbeta法求解结构动力学问题的步骤:步骤1:建立结构模型首先,需要根据所研究的结构问题建立相应的有限元模型。
这包括定义结构的几何形状、材料性质和边界条件等。
步骤2:离散化将结构模型离散化,将结构划分成一系列有限元单元。
对于每个有限元单元,可以根据其几何形状和材料性质计算出相应的刚度矩阵和质量矩阵。
步骤3:时间积分将时间划分成一系列离散时间步长。
通过使用Newmarkbeta法中的数值积分公式,可以迭代计算每个时间步长内的结构响应。
步骤4:计算每个时间步长内的位移和速度根据Newmarkbeta法的数值积分公式,可以计算出每个时间步长内的位移和速度。
newmark-integral method -回复新马克积分法(Newmarkintegral method)是一种结构动力学分析方法,常用于求解结构响应的数字积分。
本文将逐步回答与新马克积分法相关的问题,希望能为读者提供相关的知识和理解。
什么是新马克积分法?新马克积分法是一种结构动力学分析方法,用于求解结构在时间域内的响应。
它基于牛顿第二定律和等效线性化原理,通过对结构的加速度进行数值积分,得到结构的速度和位移。
这种方法适用于非线性系统,尤其适用于考虑非线性材料和几何非线性的情况。
为什么使用新马克积分法?新马克积分法在结构动力学领域得到广泛应用的原因有三个方面:1. 考虑非线性响应:新马克积分法可以处理非线性材料和几何非线性的情况,例如混凝土结构的非线性行为或地震载荷下的结构反应。
这使得它成为研究或分析非线性系统的有力工具。
2. 数值计算效率高:新马克积分法是一种数值积分方法,通过将结构的动力方程离散化为一组常微分方程,使用迭代求解的方法得到结构的响应。
相比其他方法,它具有较高的计算效率,尤其是对于大型结构体系而言。
3. 解析解的不现实性:对于复杂的结构体系或非线性问题,往往难以获得解析解。
新马克积分法不仅可以处理线性问题,也可以处理复杂的非线性问题,为结构研究和设计提供了更多的便利。
新马克积分法的基本原理是什么?新马克积分法的基本原理是将结构的动力方程离散化为一组常微分方程,通过迭代求解得到结构的响应。
其具体步骤如下:1. 建立结构的动力方程:利用牛顿第二定律和等效线性化原理,将结构的加速度表达为位移和速度的函数,并将其离散化为一组常微分方程。
2. 定义时间步长和时间步数:确定时间的步长和时间的总数,决定了离散化的精度和计算的时间范围。
3. 迭代计算:从初始时刻开始,按照一定的时间步长依次计算结构的位移和速度,并利用牛顿迭代法不断修正位移和速度的值,直至收敛为止。
4. 结果输出:在每个时间步后,可以得到结构在该时刻的位移和速度,从而可以绘制结构的响应曲线或进行其他分析。