完全随机设计的方差分析
- 格式:ppt
- 大小:5.19 MB
- 文档页数:80
实习三方差分析(analysis of variance--- ANOV A )一、目的要求1、掌握方差分析的应用条件2、掌握方差分析的基本思想3、掌握方差分析的用途4、掌握常用方差分析的方法(完全随机设计、随机区组设计方差分析)5、掌握多个样本均数间的两两比较方法(a. 两两比较:SNK法(q检验);b.对照组与各处理组比较:LSD法)。
二、完全随机设计的方差分析(One-Way ANOVA)One-Way ANOVA过程用于进行两组及多组样本均数的比较,即完全随机设计(成组设计)的方差分析,如果做了相应选择,还可进行随后的两两比较。
P432第8题:某职业病防治院对某石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,结果如下表所示。
问三组石棉矿工的用力肺活量有无差别?三组石棉矿工的用力肺活量(L)石棉肺患者可疑患者非患者1.82.3 2.91.42.13.21.52.1 2.72.1 2.1 2.81.92.6 2.71.72.5 31.82.33.41.92.4 31.82.43.41.8 3.32.03.5建库:1、点击Variable View: 定义分类变量(组别)和应变量(用力肺活量)2、点击Data View,输入数据:3、分析过程界面说明:【Dependent List框】(选入应变量)选入需要分析的变量,可选入多个结果变量(应变量)。
【Factor框】(因素,即选入一个分类变量)选入需要比较的分组因素,只能选入一个。
【Contrasts钮】(线性组合比较,如检验均数之间差异大小的关系,均数间的线性趋势等)【Post Hoc钮】(各组均数的多重比较)弹出Post Hoc Multiple Comparisons(多重比较)对话框,用于选择进行各组间两两比较的方法,有:Equal Variances Assumed复选框组一组当各组方差齐时可用的两两比较方法,共有14中种这里不一一列出了,其中最常用的为LSD和S-N-K法。
单因素多个均数比较的方差分析(完全随机设计资料的方差分析)方差分析的基本思想是:将全部观察值的总变异按影响实验结果的诸因素分解为若干部分变异,构造出反映各部分变异作用的统计量,之后构造假设检验统计量F,实现对总体均数的判断。
方差分析的应用条件:各样本相互独立,且均来自总体方差具有齐性的正态分布。
完全随机设计是一种将研究对象随机地分配到处理因素各水平组的单因素设计方法。
其研究目的是推断处理因素不同水平下的试验结果的差异有否统计学意义,即该处理因素是否对试验结果有本质影响。
下面以一个实例来说明完全随机设计方差分析的基本思想和假设检验步骤。
例:为研究烫伤后不同时期切痂对肝脏ATP(u/L)含量的影响,将30只大鼠随机分3组,每组10只,分别接受不同的处理,试根据下表资料说明大鼠烫伤后不同时期切痂对其肝脏的ATP(u/L)含量是否有影响?大鼠烫伤后不同时期切痂肝脏ATP含量(u/L)烫伤对照组24h切痂组96h切痂组合计7.76 11.14 10.857.71 11.60 8.588.43 11.42 7.198.47 13.85 9.3610.30 13.53 9.596.67 14.16 8.8111.73 6.94 8.225.78 13.01 9.956.61 14.18 11.266.97 17.728.68合计(∑X)80.43 127.55 92.49 300.47(∑∑X ij)例数(n)10 10 10 30(N)均数(X)8.04 12.76 9.25 10.02平方和(∑X2)676.32 1696.96 868.93 3242.21(∑∑X ij2)1.建立检验假设,确定检验水准:H0:u1=u2=u3,3个总体均数全相等,即3组大鼠肝脏的ATP含量值无差别;H1:u1,u2,u3,3个总体均数不相等.即3组大鼠肝脏的ATP含量值有差别;a=0.052.计算检验统计量并列出方差分析表:①.计算离均数差平方和SS:首先计算每一组的合计、均数、平方和,再计算综合计数(∑X ij2),由表得:∑∑X ij=300.47 ∑X ij2=3242.21 N=30总的离均数差平方和SS总=∑X ij2 - (∑X ij)2n= 3242.21-300.47230=232.8026SS组间=∑ (∑X ij)2n i-(∑X ij)2n=80.43210+127.55210+92.49210-300.47230=119.8314SS组内=SS总-SS组间= 232.8026-119.8314=112.9712 ②.计算均方MS:MS组间= SS组间k-1(k为组数) =119.83143-1= 59.916MS组内= SS组内N-k(N为总例数) =112.971230-3= 4.184③.求F值F = MS组间MS组内=59.9164.184= 14.32将上述计算结果列成方差分析表,如下:变异来源平方和SS 自由度v 均方MS F值总变异232.8026 29组间变异119.8314 2 59.916 14.32 组内变异(误差) 112.9712 27 4.184(注:自由度:v总= N-1 = 30-1= 29;v组间= k-1 = 3-1 = 2; v组内=N -k = 30-3= 27)利用SPSS作方差分析时,会得到类似于以下的方差分析表:DescriptivesTest of Homogeneity of VariancesANOVA3.查表确定P值,并作出统计推断:V组间= 2,v组内=27, 得界限值Fα(2,27)为F0.05(2,27)= 3.35, 则F= 14.32> F0.05(2,27),则P<0.05,按0.05水准,拒绝H0,可以认为3个总体均数不全相同,即3组大鼠肝脏的ATP含量值有差别。
单因素多个均数比较的方差分析(完全随机设计资料的方差分析)方差分析的基本思想是:将全部观察值的总变异按影响实验结果的诸因素分解为若干部分变异,构造出反映各部分变异作用的统计量,之后构造假设检验统计量F,实现对总体均数的判断。
方差分析的应用条件:各样本相互独立,且均来自总体方差具有齐性的正态分布。
完全随机设计是一种将研究对象随机地分配到处理因素各水平组的单因素设计方法。
其研究目的是推断处理因素不同水平下的试验结果的差异有否统计学意义,即该处理因素是否对试验结果有本质影响。
下面以一个实例来说明完全随机设计方差分析的基本思想和假设检验步骤。
例:为研究烫伤后不同时期切痂对肝脏ATP(u/L)含量的影响,将30只大鼠随机分3组,每组10只,分别接受不同的处理,试根据下表资料说明大鼠烫伤后不同时期切痂对其肝脏的ATP(u/L)含量是否有影响大鼠烫伤后不同时期切痂肝脏ATP含量(u/L)烫伤对照组 24h切痂组 96h切痂组合计合计(∑X)(∑∑X ij)例数(n) 10 10 10 30(N)均数(X)平方和(∑X2) (∑∑X ij2)1.建立检验假设,确定检验水准:H0:u1=u2=u3,3个总体均数全相等,即3组大鼠肝脏的ATP含量值无差别;H 1:u 1,u 2,u 3,3个总体均数不相等.即3组大鼠肝脏的ATP 含量值有差别; a=2.计算检验统计量并列出方差分析表:①.计算离均数差平方和SS :首先计算每一组的合计、均数、平方和,再计算综合计数 (∑X ij 2),由表得: ∑∑X ij = ∑X ij 2= N=30 总的离均数差平方和SS 总=∑X ij2- (∑X ij )2 n= - 错误! =SS 组间=∑ (∑X ij )2 n i - (∑X ij )2n = 错误! + 错误! + 错误!- 错误!=SS 组内=SS 总- SS 组间 = - =②.计算均方MS : MS 组间 =SS 组间k-1(k 为组数) = 错误!= MS 组内 =SS 组内N-k(N 为总例数) = 错误!= ③.求F 值F = MS 组间MS 组内= 错误!=将上述计算结果列成方差分析表,如下:变异来源 平方和SS 自由度v 均方MS F 值 总变异 29组间变异 2 组内变异(误差) 27(注:自由度:v 总= N -1 = 30-1= 29;v 组间= k -1 = 3-1 = 2; v 组内=N -k = 30-3= 27)利用SPSS 作方差分析时,会得到类似于以下的方差分析表:DescriptivesCONTest of Homogeneity of VariancesCONANOVACON3.查表确定P 值,并作出统计推断:V 组间= 2, v 组内=27, 得界限值F α(2,27)为(2,27)= , 则F= > (2,27),则P<,按水准,拒绝H,可以认为3个总体均数不全相同,即3组大鼠肝脏的ATP含量值有差别。
第七章 方差分析基础方差分析基础二、完全随机与随机区组设计资料的方差分析完全随机设计资料方差分析概述n完全随机设计(completely randomized design) 是将同质的受试对象随机地分配到各处理组,再观察其 实验效应。
完全随机设计是最常见的研究单因素两水平或多水平的 实验设计方法,属单向方差分析(oneway ANOVA)。
以上一节的例1为例完全随机设计资料方差分析的一般步骤 (1) 建立检验假设,确定检验水准: 0 H 三组不同喂养方式下大白鼠体重改变的总体平均水 平相同。
: 1 H 三组不同喂养方式下大白鼠体重改变的总体平均水平不全相同。
05. 0 = a(2) 计算检验统计量表1 例1资料的方差分析表变异来源 SS df MS F P 总变异 47758.32 35组间(处理组间) 31291.67 2 15645.83 31.36 <0.001 组内(误差) 16466.65 33 498.99(3) 确定P值并作出推断结论查F 界值表,得 。
由F = 31.36,查表得到P < 0.01。
按 水准,差别 有统计学意义,可以认为三组不同喂养方式下大白鼠体重 改变的总体平均水平不全相同,即三个总体均数中至少有 两个不等。
05 . 0 = a 34 . 5 29 . 3 32 , 2 01 . 0 32 , 2 05 . 0 = = )( ) ( ,F F随机区组设计资料方差分析概述n随机区组设计(randomized block design)又称配伍组设计,通常是将受试对象按性质(如动物的 窝别、体重等非实验因素)相同或相近者组成b个区组(配 伍组),每个区组中的受试对象分别随机分配到k个处理 组中去。
随机区组设计资料方差分析的例子例2 为探索丹参对肢体缺血再灌注损伤的影响,将30只纯种 新西兰实验用大白兔,按窝别相同分为10个区组。
每个区 组的3只大白兔随机接受三种不同的处理,即在松止血带前 分别给予丹参2ml/kg、丹参1ml/kg、生理盐水2ml/kg,并分 别测定松止血带前及松后1小时后血中白蛋白含量(g/L),算 出白蛋白的减少量如表2所示。
完全随机设计资料方差分析的适用条件完全随机设计资料方差分析(CompletelyRandomizedDesignDataVarianceAnalysis,简称CRD-VA)是一种统计工具,用于从不同来源获取的多种资料中揭示信息和发现规律。
它可以识别组织、把握定量结果、控制研究变量,是统计学中重要的一个分支,常被用来解决实际问题。
本文旨在阐述完全随机设计资料方差分析的适用条件。
首先,完全随机设计资料方差分析要求被研究对象是一组从同一总体中采样得到的实际资料。
即使这些资料来自于不同的源头,也要有一个总体来指导抽样。
此外,它要求尽可能少的外部变量对研究过程的结果产生影响。
如果没有一个单一的定量变量来控制,可以考虑把外部变量细分成更为可控的小组,从而获得更准确的结果。
其次,CRD-VA的样本数量要求比较充裕。
为了获得统计可靠的结果,最好是有至少50个样本。
相反,如果样本数量很少,则可能无法拟合方差模型,从而导致结论无法准确把握。
同时,CRD-VA要求每一组数据都要来自于不同的样本,从而避免样本内方差计算中任何外部变量对结果的影响。
此外,由于完全随机设计资料方差分析往往涉及多个变量,所以有时也被称为多变量变量分析。
这种分析的方法需要不同类型的资料,包括定量资料和定性资料,可以用于不同领域的研究。
最后,完全随机设计资料方差分析可以帮助研究者找出相关的因素,从而将结果细分到不同的小组中,更好地把握定量结果,以便做出正确的决策。
此外,CRD-VA也可以帮助研究者对实验过程进行模拟,更好地理解不同变量之间的关系,以及实验结果如何受外来和内部因素的影响。
综上所述,适用于完全随机设计资料方差分析的条件包括:被研究对象是从同一总体中采样的实际资料,可控的外部变量,充足的样本量,不同类型的资料,以及从不同变量中把握定量结果的能力。
总之,CRD-VA技术可以帮助研究者更好地理解实验结果,以及结果如何受外来和内部因素的影响,为最终决策提供依据。